433edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 432edo433edo434edo →
Prime factorization 433 (prime)
Step size 2.77136¢
Fifth 253\433 (701.155¢)
Semitones (A1:m2) 39:34 (108.1¢ : 94.23¢)
Consistency limit 5
Distinct consistency limit 5

433 equal divisions of the octave (433edo), or 433-tone equal temperament (433tet), 433 equal temperament (433et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 433 equal parts of about 2.77 ¢ each.

Theory

433et tempers out 4096000/4084101, 95703125/95551488 and 1640558367/1638400000 in the 7-limit; 161280/161051, 25165824/25109315, 1019215872/1019046875, 4000/3993, 2359296/2358125, 6250/6237, 180224/180075, 17537553/17500000, 3025/3024 and 1362944/1361367 in the 11-limit.

Subsets and supersets

433edo is the 84th prime edo.

Odd harmonics

Approximation of odd harmonics in 433edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) -0.80 -1.09 +1.15 +1.17 +0.18 -0.80 +0.88 +0.36 -0.98 +0.35 +0.82
relative (%) -29 -39 +42 +42 +7 -29 +32 +13 -35 +13 +30
Steps
(reduced)
686
(253)
1005
(139)
1216
(350)
1373
(74)
1498
(199)
1602
(303)
1692
(393)
1770
(38)
1839
(107)
1902
(170)
1959
(227)

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-686 433 433 686] 0.2525 0.2525 9.11
2.3.5 [-21 3 7, [-29 52 -23 433 686 1005] 0.3254 0.2306 8.32
2.3.5.7 19683/19600, 4096000/4084101, 2109375/2097152 433 686 1005 1216] 0.1414 0.3759 13.56
2.3.5.7.11 3025/3024, 6250/6237, 30375/30184, 180224/180075 433 686 1005 1216 1498] 0.1026 0.3451 12.45
2.3.5.7.11.13 2080/2079, 625/624, 3025/3024, 18954/18865, 41472/41405 433 686 1005 1216 1498 1602] 0.1217 0.3179 11.47
2.3.5.7.11.13.17 2080/2079, 375/374, 715/714, 936/935, 1377/1372, 76032/75803 433 686 1005 1216 1498 1602 1770] 0.0919 0.3033 10.94

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 98\433 271.594 75/64 Orson

Music