273edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 272edo273edo274edo →
Prime factorization 3 × 7 × 13
Step size 4.3956¢
Fifth 160\273 (703.297¢)
Semitones (A1:m2) 28:19 (123.1¢ : 83.52¢)
Consistency limit 5
Distinct consistency limit 5

273 equal divisions of the octave (273edo), or 273-tone equal temperament (273tet), 273 equal temperament (273et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 273 equal parts of about 4.4 ¢ each.

Theory

Approximation of odd harmonics in 273edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +1.34 +0.50 -1.79 -1.71 -1.87 -0.97 +1.84 +0.54 +1.39 -0.45 +0.30
relative (%) +31 +11 -41 -39 -42 -22 +42 +12 +32 -10 +7
Steps
(reduced)
433
(160)
634
(88)
766
(220)
865
(46)
944
(125)
1010
(191)
1067
(248)
1116
(24)
1160
(68)
1199
(107)
1235
(143)


This page is a stub. You can help the Xenharmonic Wiki by expanding it.