# 273edo

Jump to navigation
Jump to search
Prime factorization
3 × 7 × 13
Step size
4.3956¢
Fifth
160\273 (703.297¢)
Semitones (A1:m2)
28:19 (123.1¢ : 83.52¢)
Consistency limit
5
Distinct consistency limit
5

← 272edo | 273edo | 274edo → |

**273 equal divisions of the octave** (**273edo**), or **273-tone equal temperament** (**273tet**), **273 equal temperament** (**273et**) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 273 equal parts of about 4.4 ¢ each.

## Theory

Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|

Error | absolute (¢) | +1.34 | +0.50 | -1.79 | -1.71 | -1.87 | -0.97 | +1.84 | +0.54 | +1.39 | -0.45 | +0.30 |

relative (%) | +31 | +11 | -41 | -39 | -42 | -22 | +42 | +12 | +32 | -10 | +7 | |

Steps (reduced) |
433 (160) |
634 (88) |
766 (220) |
865 (46) |
944 (125) |
1010 (191) |
1067 (248) |
1116 (24) |
1160 (68) |
1199 (107) |
1235 (143) |

*This page is a stub. You can help the Xenharmonic Wiki by expanding it.*