273edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 272edo273edo274edo →
Prime factorization 3 × 7 × 13
Step size 4.3956¢
Fifth 160\273 (703.297¢)
Semitones (A1:m2) 28:19 (123.1¢ : 83.52¢)
Consistency limit 5
Distinct consistency limit 5

273 equal divisions of the octave (273edo), or 273-tone equal temperament (273tet), 273 equal temperament (273et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 273 equal parts of about 4.4 ¢ each.

Theory

Approximation of prime intervals in 273 EDO
Prime number 2 3 5 7 11 13 17 19
Error absolute (¢) +0.00 +1.34 +0.50 -1.79 -1.87 -0.97 +0.54 +1.39
relative (%) +0 +31 +11 -41 -42 -22 +12 +32
Steps (reduced) 273 (0) 433 (160) 634 (88) 766 (220) 944 (125) 1010 (191) 1116 (24) 1160 (68)