6L 14s
Jump to navigation
Jump to search
Scale structure
Step pattern
LssLssLsssLssLssLsss
sssLssLssLsssLssLssL
Equave
2/1 (1200.0¢)
Period
1\2 (600.0¢)
Generator size
Bright
3\20 to 1\6 (180.0¢ to 200.0¢)
Dark
2\6 to 7\20 (400.0¢ to 420.0¢)
TAMNAMS information
Descends from
6L 2s (ekic)
Ancestor's step ratio range
3:1 to 1:0 (hard)
Related MOS scales
Parent
6L 8s
Sister
14L 6s
Daughters
20L 6s, 6L 20s
Neutralized
12L 8s
2-Flought
26L 14s, 6L 34s
Equal tunings
Equalized (L:s = 1:1)
3\20 (180.0¢)
Supersoft (L:s = 4:3)
10\66 (181.8¢)
Soft (L:s = 3:2)
7\46 (182.6¢)
Semisoft (L:s = 5:3)
11\72 (183.3¢)
Basic (L:s = 2:1)
4\26 (184.6¢)
Semihard (L:s = 5:2)
9\58 (186.2¢)
Hard (L:s = 3:1)
5\32 (187.5¢)
Superhard (L:s = 4:1)
6\38 (189.5¢)
Collapsed (L:s = 1:0)
1\6 (200.0¢)
↖ 5L 13s | ↑ 6L 13s | 7L 13s ↗ |
← 5L 14s | 6L 14s | 7L 14s → |
↙ 5L 15s | ↓ 6L 15s | 7L 15s ↘ |
┌╥┬┬╥┬┬╥┬┬┬╥┬┬╥┬┬╥┬┬┬┐ │║││║││║│││║││║││║││││ ││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sssLssLssLsssLssLssL
6L 14s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 6 large steps and 14 small steps, with a period of 3 large steps and 7 small steps that repeats every 600.0¢, or twice every octave. 6L 14s is a grandchild scale of 6L 2s, expanding it by 12 tones. Generators that produce this scale range from 180¢ to 200¢, or from 400¢ to 420¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
18|0(2) | 1 | LssLssLsssLssLssLsss |
16|2(2) | 4 | LssLsssLssLssLsssLss |
14|4(2) | 7 | LsssLssLssLsssLssLss |
12|6(2) | 10 | sLssLssLsssLssLssLss |
10|8(2) | 3 | sLssLsssLssLssLsssLs |
8|10(2) | 6 | sLsssLssLssLsssLssLs |
6|12(2) | 9 | ssLssLssLsssLssLssLs |
4|14(2) | 2 | ssLssLsssLssLssLsssL |
2|16(2) | 5 | ssLsssLssLssLsssLssL |
0|18(2) | 8 | sssLssLssLsssLssLssL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 60.0¢ |
Major 1-mosstep | M1ms | L | 60.0¢ to 200.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 120.0¢ |
Major 2-mosstep | M2ms | L + s | 120.0¢ to 200.0¢ | |
3-mosstep | Diminished 3-mosstep | d3ms | 3s | 0.0¢ to 180.0¢ |
Perfect 3-mosstep | P3ms | L + 2s | 180.0¢ to 200.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 200.0¢ to 240.0¢ |
Major 4-mosstep | M4ms | 2L + 2s | 240.0¢ to 400.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | L + 4s | 200.0¢ to 300.0¢ |
Major 5-mosstep | M5ms | 2L + 3s | 300.0¢ to 400.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | L + 5s | 200.0¢ to 360.0¢ |
Major 6-mosstep | M6ms | 2L + 4s | 360.0¢ to 400.0¢ | |
7-mosstep | Perfect 7-mosstep | P7ms | 2L + 5s | 400.0¢ to 420.0¢ |
Augmented 7-mosstep | A7ms | 3L + 4s | 420.0¢ to 600.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 2L + 6s | 400.0¢ to 480.0¢ |
Major 8-mosstep | M8ms | 3L + 5s | 480.0¢ to 600.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 2L + 7s | 400.0¢ to 540.0¢ |
Major 9-mosstep | M9ms | 3L + 6s | 540.0¢ to 600.0¢ | |
10-mosstep | Perfect 10-mosstep | P10ms | 3L + 7s | 600.0¢ |
11-mosstep | Minor 11-mosstep | m11ms | 3L + 8s | 600.0¢ to 660.0¢ |
Major 11-mosstep | M11ms | 4L + 7s | 660.0¢ to 800.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 3L + 9s | 600.0¢ to 720.0¢ |
Major 12-mosstep | M12ms | 4L + 8s | 720.0¢ to 800.0¢ | |
13-mosstep | Diminished 13-mosstep | d13ms | 3L + 10s | 600.0¢ to 780.0¢ |
Perfect 13-mosstep | P13ms | 4L + 9s | 780.0¢ to 800.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 4L + 10s | 800.0¢ to 840.0¢ |
Major 14-mosstep | M14ms | 5L + 9s | 840.0¢ to 1000.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 4L + 11s | 800.0¢ to 900.0¢ |
Major 15-mosstep | M15ms | 5L + 10s | 900.0¢ to 1000.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 4L + 12s | 800.0¢ to 960.0¢ |
Major 16-mosstep | M16ms | 5L + 11s | 960.0¢ to 1000.0¢ | |
17-mosstep | Perfect 17-mosstep | P17ms | 5L + 12s | 1000.0¢ to 1020.0¢ |
Augmented 17-mosstep | A17ms | 6L + 11s | 1020.0¢ to 1200.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 5L + 13s | 1000.0¢ to 1080.0¢ |
Major 18-mosstep | M18ms | 6L + 12s | 1080.0¢ to 1200.0¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 5L + 14s | 1000.0¢ to 1140.0¢ |
Major 19-mosstep | M19ms | 6L + 13s | 1140.0¢ to 1200.0¢ | |
20-mosstep | Perfect 20-mosstep | P20ms | 6L + 14s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
3\20 | 180.000 | 420.000 | 1:1 | 1.000 | Equalized 6L 14s | |||||
16\106 | 181.132 | 418.868 | 6:5 | 1.200 | ||||||
13\86 | 181.395 | 418.605 | 5:4 | 1.250 | ||||||
23\152 | 181.579 | 418.421 | 9:7 | 1.286 | ||||||
10\66 | 181.818 | 418.182 | 4:3 | 1.333 | Supersoft 6L 14s | |||||
27\178 | 182.022 | 417.978 | 11:8 | 1.375 | ||||||
17\112 | 182.143 | 417.857 | 7:5 | 1.400 | ||||||
24\158 | 182.278 | 417.722 | 10:7 | 1.429 | ||||||
7\46 | 182.609 | 417.391 | 3:2 | 1.500 | Soft 6L 14s | |||||
25\164 | 182.927 | 417.073 | 11:7 | 1.571 | ||||||
18\118 | 183.051 | 416.949 | 8:5 | 1.600 | ||||||
29\190 | 183.158 | 416.842 | 13:8 | 1.625 | ||||||
11\72 | 183.333 | 416.667 | 5:3 | 1.667 | Semisoft 6L 14s | |||||
26\170 | 183.529 | 416.471 | 12:7 | 1.714 | ||||||
15\98 | 183.673 | 416.327 | 7:4 | 1.750 | ||||||
19\124 | 183.871 | 416.129 | 9:5 | 1.800 | ||||||
4\26 | 184.615 | 415.385 | 2:1 | 2.000 | Basic 6L 14s Scales with tunings softer than this are proper | |||||
17\110 | 185.455 | 414.545 | 9:4 | 2.250 | ||||||
13\84 | 185.714 | 414.286 | 7:3 | 2.333 | ||||||
22\142 | 185.915 | 414.085 | 12:5 | 2.400 | ||||||
9\58 | 186.207 | 413.793 | 5:2 | 2.500 | Semihard 6L 14s | |||||
23\148 | 186.486 | 413.514 | 13:5 | 2.600 | ||||||
14\90 | 186.667 | 413.333 | 8:3 | 2.667 | ||||||
19\122 | 186.885 | 413.115 | 11:4 | 2.750 | ||||||
5\32 | 187.500 | 412.500 | 3:1 | 3.000 | Hard 6L 14s | |||||
16\102 | 188.235 | 411.765 | 10:3 | 3.333 | ||||||
11\70 | 188.571 | 411.429 | 7:2 | 3.500 | ||||||
17\108 | 188.889 | 411.111 | 11:3 | 3.667 | ||||||
6\38 | 189.474 | 410.526 | 4:1 | 4.000 | Superhard 6L 14s | |||||
13\82 | 190.244 | 409.756 | 9:2 | 4.500 | ||||||
7\44 | 190.909 | 409.091 | 5:1 | 5.000 | ||||||
8\50 | 192.000 | 408.000 | 6:1 | 6.000 | ||||||
1\6 | 200.000 | 400.000 | 1:0 | → ∞ | Collapsed 6L 14s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |