3L 3s

From Xenharmonic Wiki
Jump to navigation Jump to search
↖ 2L 2s ↑ 3L 2s 4L 2s ↗
← 2L 3s 3L 3s 4L 3s →
↙ 2L 4s ↓ 3L 4s 4L 4s ↘
┌╥┬╥┬╥┬┐
│║│║│║││
││││││││
└┴┴┴┴┴┴┘
Scale structure
Step pattern LsLsLs
sLsLsL
Equave 2/1 (1200.0¢)
Period 1\3 (400.0¢)
Generator size
Bright 1\6 to 1\3 (200.0¢ to 400.0¢)
Dark 0\3 to 1\6 (0.0¢ to 200.0¢)
Related MOS scales
Parent 3L 0s
Sister 3L 3s
Daughters 6L 3s, 3L 6s
Neutralized 6L 0s
2-Flought 9L 3s, 3L 9s
Equal tunings
Equalized (L:s = 1:1) 1\6 (200.0¢)
Supersoft (L:s = 4:3) 4\21 (228.6¢)
Soft (L:s = 3:2) 3\15 (240.0¢)
Semisoft (L:s = 5:3) 5\24 (250.0¢)
Basic (L:s = 2:1) 2\9 (266.7¢)
Semihard (L:s = 5:2) 5\21 (285.7¢)
Hard (L:s = 3:1) 3\12 (300.0¢)
Superhard (L:s = 4:1) 4\15 (320.0¢)
Collapsed (L:s = 1:0) 1\3 (400.0¢)

3L 3s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 3 large steps and 3 small steps, with a period of 1 large step and 1 small step that repeats every 400.0¢, or 3 times every octave. Generators that produce this scale range from 200¢ to 400¢, or from 0¢ to 200¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.

In addition to the true MOS (LsLsLs or sLsLsL), there are also near-MOS patterns of LLsLss and LLssLs, which are only proper if the generator is larger than 1\9.

Out of all proper six-note MOS scales, this augmented scale probably has the lowest harmonic entropy⁠ ⁠[clarification needed].

Intervals

Intervals of 3L 3s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-mosstep Perfect 0-mosstep P0ms 0 0.0¢
1-mosstep Minor 1-mosstep m1ms s 0.0¢ to 200.0¢
Major 1-mosstep M1ms L 200.0¢ to 400.0¢
2-mosstep Perfect 2-mosstep P2ms L + s 400.0¢
3-mosstep Minor 3-mosstep m3ms L + 2s 400.0¢ to 600.0¢
Major 3-mosstep M3ms 2L + s 600.0¢ to 800.0¢
4-mosstep Perfect 4-mosstep P4ms 2L + 2s 800.0¢
5-mosstep Minor 5-mosstep m5ms 2L + 3s 800.0¢ to 1000.0¢
Major 5-mosstep M5ms 3L + 2s 1000.0¢ to 1200.0¢
6-mosstep Perfect 6-mosstep P6ms 3L + 3s 1200.0¢

Modes

Scale degrees of the modes of 3L 3s 
UDP Cyclic
order
Step
pattern
Scale degree (mosdegree)
0 1 2 3 4 5 6
3|0(3) 1 LsLsLs Perf. Maj. Perf. Maj. Perf. Maj. Perf.
0|3(3) 2 sLsLsL Perf. Min. Perf. Min. Perf. Min. Perf.

Scale tree

Generator Cents L s L/s Comments
Chroma-positive Chroma-negative
1\6 200.000 200.000 1 1 1.000
6\33 218.182 181.818 6 5 1.200
5\27 222.222 177.778 5 4 1.250
9\48 225.000 175.000 9 7 1.286 Oodako
4\21 228.571 171.429 4 3 1.333
11\57 231.579 168.421 11 8 1.375
7\36 233.333 166.667 7 5 1.400
10\51 235.294 164.706 10 7 1.428
3\15 240.000 160.000 3 2 1.500
11\54 244.444 155.556 11 7 1.571
8\39 246.154 153.846 8 5 1.600 Triforce
13\63 247.619 152.381 13 8 1.625 Unnamed golden tuning
5\24 250.000 150.000 5 3 1.667
12\57 252.632 147.368 12 7 1.714
7\33 254.545 145.455 7 4 1.750
9\42 257.143 142.857 9 5 1.800
2\9 266.667 133.333 2 1 2.000 Basic triwood
9\39 276.923 123.077 9 4 2.250
7\30 280.000 120.000 7 3 2.333 Deflated (optimal around here)
12\51 282.353 117.647 12 5 2.400
5\21 285.714 114.286 5 2 2.500
13\54 288.889 111.111 13 5 2.600 Unnamed golden tuning
8\33 290.909 109.091 8 3 2.667
11\45 293.333 106.667 11 4 2.750 August
3\12 300.000 100.000 3 1 3.000 Trug (optimal around here)
10\39 307.692 92.308 10 3 3.333 Augene
7\27 311.111 88.889 7 2 3.500
11\42 314.286 85.714 11 3 3.667
4\15 320.000 80.000 4 1 4.000 Inflated
9\33 327.273 72.727 9 2 4.500
5\18 333.333 66.667 5 1 5.000
6\21 342.857 57.143 6 1 6.000 Hemiug↓, hemiaug↓
1\3 400.000 0.000 1 0 → inf