11L 3s

From Xenharmonic Wiki
Jump to: navigation, search

The Ketradektriatoh Scale

This is a type of scale which denotes the use of a scale placed between 11 and 14 ED2's, employing a ratio generator between 41/32 ~ 9/7 (being 25-ED2 the middle size of the Ketradektriatoh spectrum, in the 2;1 relation), resulting in a variant of tetradecatonic scale comforms by this scheme: LLLsLLLLsLLLLs.

ED2s that contains this scale:

2 2 2 1 2 2 2 2 1 2 2 2 2 1: 25 (Middle range)

3 3 3 1 3 3 3 3 1 3 3 3 3 1: 36 (Lufsur range)

3 3 3 2 3 3 3 3 2 3 3 3 3 2: 39 (Fuslur range)

4 4 4 1 4 4 4 4 1 4 4 4 4 1: 47

4 4 4 2 4 4 4 4 2 4 4 4 4 2: 50

4 4 4 3 4 4 4 4 3 4 4 4 4 3: 53

5 5 5 1 5 5 5 5 1 5 5 5 5 1: 58

5 5 5 2 5 5 5 5 2 5 5 5 5 2: 61 Split-φ

5 5 5 3 5 5 5 5 3 5 5 5 5 3: 64 φ

5 5 5 4 5 5 5 5 4 5 5 5 5 4: 67

6 6 6 1 6 6 6 6 1 6 6 6 6 1: 69

6 6 6 5 6 6 6 6 5 6 6 6 6 5: 81

7 7 7 1 7 7 7 7 1 7 7 7 7 1: 80

7 7 7 2 7 7 7 7 2 7 7 7 7 2: 83

7 7 7 3 7 7 7 7 3 7 7 7 7 3: 86

7 7 7 4 7 7 7 7 4 7 7 7 7 4: 89

7 7 7 5 7 7 7 7 5 7 7 7 7 5: 92

7 7 7 6 7 7 7 7 6 7 7 7 7 6: 95

8 8 8 1 8 8 8 8 1 8 8 8 8 1: 91

8 8 8 3 8 8 8 8 3 8 8 8 8 3: 97 Split-φ

8 8 8 5 8 8 8 8 5 8 8 8 8 5: 103 φ

8 8 8 7 8 8 8 8 7 8 8 8 8 7: 109

9 9 9 1 9 9 9 9 1 9 9 9 9 1: 102

9 9 9 2 9 9 9 9 2 9 9 9 9 2: 105

9 9 9 4 9 9 9 9 4 9 9 9 9 4: 111

9 9 9 5 9 9 9 9 5 9 9 9 9 5: 114

9 9 9 7 9 9 9 9 7 9 9 9 9 7: 120

9 9 9 8 9 9 9 9 8 9 9 9 9 8: 123

10 10 10 1 10 10 10 10 1 10 10 10 10 1:113

10 10 10 3 10 10 10 10 3 10 10 10 10 3: 119

10 10 10 7 10 10 10 10 7 10 10 10 10 7: 131

10 10 10 9 10 10 10 10 9 10 10 10 10 9: 137

11 11 11 1 11 11 11 11 1 11 11 11 11 1: 124

11 11 11 2 11 11 11 11 2 11 11 11 11 2: 127

11 11 11 3 11 11 11 11 3 11 11 11 11 3: 130

11 11 11 4 11 11 11 11 4 11 11 11 11 4: 133

11 11 11 5 11 11 11 11 5 11 11 11 11 5: 136

11 11 11 6 11 11 11 11 6 11 11 11 11 6: 139

11 11 11 7 11 11 11 11 7 11 11 11 11 7: 142

11 11 11 8 11 11 11 11 8 11 11 11 11 8: 145

11 11 11 9 11 11 11 11 9 11 11 11 11 9 :148

11 11 11 10 11 11 11 11 10 11 11 11 11 10: 151

12 12 12 1 12 12 12 12 1 12 12 12 12 1: 135

12 12 12 5 12 12 12 12 5 12 12 12 12 5: 147

12 12 12 7 12 12 12 12 7 12 12 12 12 7: 153

12 12 12 11 12 12 12 12 11 12 12 12 12 11: 165

13 13 13 1 13 13 13 13 1 13 13 13 13 1: 146

13 13 13 2 13 13 13 13 2 13 13 13 13 2: 149

13 13 13 3 13 13 13 13 3 13 13 13 13 3: 152

13 13 13 4 13 13 13 13 4 13 13 13 13 4: 155

13 13 13 5 13 13 13 13 5 13 13 13 13 5: 158 Split-φ

13 13 13 6 13 13 13 13 6 13 13 13 13 6: 161

13 13 13 7 13 13 13 13 7 13 13 13 13 7: 164

13 13 13 8 13 13 13 13 8 13 13 13 13 8: 167 φ

13 13 13 9 13 13 13 13 9 13 13 13 13 9: 170

13 13 13 10 13 13 13 13 10 13 13 13 13 10: 173

13 13 13 11 13 13 13 13 11 13 13 13 13 11: 176

13 13 13 12 13 13 13 13 12 13 13 13 13 12: 179

14 14 14 1 14 14 14 14 1 14 14 14 14 1: 157

14 14 14 3 14 14 14 14 3 14 14 14 14 3: 163

14 14 14 5 14 14 14 14 5 14 14 14 14 5: 169

14 14 14 9 14 14 14 14 9 14 14 14 14 9: 181

14 14 14 11 14 14 14 14 11 14 14 14 14 11: 187

14 14 14 13 14 14 14 14 13 14 14 14 14 13: 193

15 15 15 1 15 15 15 15 1 15 15 15 15 1: 168

15 15 15 2 15 15 15 15 2 15 15 15 15 2: 171

15 15 15 4 15 15 15 15 4 15 15 15 15 4: 177

15 15 15 7 15 15 15 15 7 15 15 15 15 7: 186

15 15 15 8 15 15 15 15 8 15 15 15 15 8: 189

15 15 15 11 15 15 15 15 11 15 15 15 15 11: 198

15 15 15 13 15 15 15 15 13 15 15 15 15 13: 204

15 15 15 14 15 15 15 15 14 15 15 15 15 14: 207

16 16 16 1 16 16 16 16 1 16 16 16 16 1: 179

16 16 16 3 16 16 16 16 3 16 16 16 16 3: 185

16 16 16 5 16 16 16 16 5 16 16 16 16 5: 191

16 16 16 7 16 16 16 16 7 16 16 16 16 7: 197

16 16 16 9 16 16 16 16 9 16 16 16 16 9: 203

16 16 16 11 16 16 16 16 11 16 16 16 16 11: 209

16 16 16 13 16 16 16 16 13 16 16 16 16 13: 215

16 16 16 15 16 16 16 16 15 16 16 16 16 15: 221

17 17 17 1 17 17 17 17 1 17 17 17 17 1: 190

17 17 17 2 17 17 17 17 2 17 17 17 17 2: 193

17 17 17 3 17 17 17 17 3 17 17 17 17 3: 196

17 17 17 4 17 17 17 17 4 17 17 17 17 4: 199

17 17 17 5 17 17 17 17 5 17 17 17 17 5: 202 (Top limit for Lufsur range)

17 17 17 6 17 17 17 17 6 17 17 17 17 6: 205

17 17 17 7 17 17 17 17 7 17 17 17 17 7: 208

17 17 17 8 17 17 17 17 8 17 17 17 17 8: 211

17 17 17 9 17 17 17 17 9 17 17 17 17 9: 214

17 17 17 10 17 17 17 17 10 17 17 17 17 10: 217

17 17 17 11 17 17 17 17 11 17 17 17 17 11: 220

17 17 17 12 17 17 17 17 12 17 17 17 17 12: 223 (Top limit for Fuslur range)

17 17 17 13 17 17 17 17 13 17 17 17 17 13: 226

17 17 17 14 17 17 17 17 14 17 17 17 17 14: 229

17 17 17 15 17 17 17 17 15 17 17 17 17 15: 232

17 17 17 16 17 17 17 17 16 17 17 17 17 16: 235

The next table below shows an extension of ED2s which supports the Ketradektriatoh scale, with respect to the principal generator and their results for each L/s sizes:

4\11 436.364 109.091 0
29\80 435 105 15
25\69 434.783 104.348 17.391
21\58 434.483 103.448 20.69
17\47 434.043 102.128 25.532
30\83 433.735 101.208 28.916
73\202 433.663 100.990 29.703 Since here are the optimal range Lufsur mode (?)
43\119 433.613 100.840 30.252
433.459 100.377 31.95
13\36 433.333 100 33.333
433.048 99.144 36.473
35\97 432.99 98.969 37.113
432.933 98.799 37.738
22\61 432.787 98.361 39.344
9\25 432 96 48 Boundary of propriety;

generators smaller than this are proper

431.417 94.25 54.4155
23\64 431.25 93.75 56.25
431.1185 93.355 57.697
37\103 431.068 93.204 58.25
430.984 92.952 58.175
14\39 430.769 92.308 61.538
47\131 430.534 91.603 64.122
80\223 430.493 91.480 64.575 Until here are the optimal range Fuslur mode (?)
33\92 430.435 91.304 65.217
19\53 430.189 90.566 67.925
24\67 429.851 89.552 71.642
29\81 429.63 88.889 74.074
34\95 429.474 88.421 75.7895
5\14 428.571 85.714 85.714