6L 17s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
m -todo:expand, already stub which is more accurate; add intervals
ArrowHead294 (talk | contribs)
mNo edit summary
Line 2: Line 2:
{{MOS intro}}
{{MOS intro}}


== Modes ==
== Scale properties ==
{{MOS modes}}
{{TAMNAMS use}}
 
{{MOS data}}
== Intervals ==
{{MOS intervals}}
 
== Tuning spectrum ==
{{Todo|review|inline=1|text=Review entries from past page revision and enter them into the scale tree.}}
 
{{Scale tree}}


== Scale tree ==
{{MOS tuning spectrum
| Depth = 7
| 4/1 = Quadrimage
| 16/3 = [[Baldy]] is optimal around here
}}


{{stub}}
{{stub}}

Revision as of 16:29, 3 March 2025

↖ 5L 16s ↑ 6L 16s 7L 16s ↗
← 5L 17s 6L 17s 7L 17s →
↙ 5L 18s ↓ 6L 18s 7L 18s ↘
┌╥┬┬╥┬┬┬╥┬┬┬╥┬┬┬╥┬┬┬╥┬┬┬┐
│║││║│││║│││║│││║│││║││││
│││││││││││││││││││││││││
└┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LssLsssLsssLsssLsssLsss
sssLsssLsssLsssLsssLssL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 19\23 to 5\6 (991.3 ¢ to 1000.0 ¢)
Dark 1\6 to 4\23 (200.0 ¢ to 208.7 ¢)
TAMNAMS information
Related to 5L 1s (machinoid)
With tunings 1:1 to 4:3 (ultrasoft)
Related MOS scales
Parent 6L 11s
Sister 17L 6s
Daughters 23L 6s, 6L 23s
Neutralized 12L 11s
2-Flought 29L 17s, 6L 40s
Equal tunings
Equalized (L:s = 1:1) 19\23 (991.3 ¢)
Supersoft (L:s = 4:3) 62\75 (992.0 ¢)
Soft (L:s = 3:2) 43\52 (992.3 ¢)
Semisoft (L:s = 5:3) 67\81 (992.6 ¢)
Basic (L:s = 2:1) 24\29 (993.1 ¢)
Semihard (L:s = 5:2) 53\64 (993.8 ¢)
Hard (L:s = 3:1) 29\35 (994.3 ¢)
Superhard (L:s = 4:1) 34\41 (995.1 ¢)
Collapsed (L:s = 1:0) 5\6 (1000.0 ¢)

6L 17s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 6 large steps and 17 small steps, repeating every octave. 6L 17s is a great-grandchild scale of 5L 1s, expanding it by 17 tones. Generators that produce this scale range from 991.3 ¢ to 1000 ¢, or from 200 ¢ to 208.7 ¢.

Scale properties

This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
MOS data is deprecated. Please use the following templates individually: MOS intervals, MOS genchain, and MOS mode degrees

Scale tree

Scale tree and tuning spectrum of 6L 17s
Generator(edo) Cents Step ratio Comments
Bright Dark L:s Hardness
19\23 991.304 208.696 1:1 1.000 Equalized 6L 17s
138\167 991.617 208.383 8:7 1.143
119\144 991.667 208.333 7:6 1.167
219\265 991.698 208.302 13:11 1.182
100\121 991.736 208.264 6:5 1.200
281\340 991.765 208.235 17:14 1.214
181\219 991.781 208.219 11:9 1.222
262\317 991.798 208.202 16:13 1.231
81\98 991.837 208.163 5:4 1.250
305\369 991.870 208.130 19:15 1.267
224\271 991.882 208.118 14:11 1.273
367\444 991.892 208.108 23:18 1.278
143\173 991.908 208.092 9:7 1.286
348\421 991.924 208.076 22:17 1.294
205\248 991.935 208.065 13:10 1.300
267\323 991.950 208.050 17:13 1.308
62\75 992.000 208.000 4:3 1.333 Supersoft 6L 17s
291\352 992.045 207.955 19:14 1.357
229\277 992.058 207.942 15:11 1.364
396\479 992.067 207.933 26:19 1.368
167\202 992.079 207.921 11:8 1.375
439\531 992.090 207.910 29:21 1.381
272\329 992.097 207.903 18:13 1.385
377\456 992.105 207.895 25:18 1.389
105\127 992.126 207.874 7:5 1.400
358\433 992.148 207.852 24:17 1.412
253\306 992.157 207.843 17:12 1.417
401\485 992.165 207.835 27:19 1.421
148\179 992.179 207.821 10:7 1.429
339\410 992.195 207.805 23:16 1.438
191\231 992.208 207.792 13:9 1.444
234\283 992.226 207.774 16:11 1.455
43\52 992.308 207.692 3:2 1.500 Soft 6L 17s
239\289 992.388 207.612 17:11 1.545
196\237 992.405 207.595 14:9 1.556
349\422 992.417 207.583 25:16 1.562
153\185 992.432 207.568 11:7 1.571
416\503 992.445 207.555 30:19 1.579
263\318 992.453 207.547 19:12 1.583
373\451 992.461 207.539 27:17 1.588
110\133 992.481 207.519 8:5 1.600
397\480 992.500 207.500 29:18 1.611
287\347 992.507 207.493 21:13 1.615
464\561 992.513 207.487 34:21 1.619
177\214 992.523 207.477 13:8 1.625
421\509 992.534 207.466 31:19 1.632
244\295 992.542 207.458 18:11 1.636
311\376 992.553 207.447 23:14 1.643
67\81 992.593 207.407 5:3 1.667 Semisoft 6L 17s
292\353 992.635 207.365 22:13 1.692
225\272 992.647 207.353 17:10 1.700
383\463 992.657 207.343 29:17 1.706
158\191 992.670 207.330 12:7 1.714
407\492 992.683 207.317 31:18 1.722
249\301 992.691 207.309 19:11 1.727
340\411 992.701 207.299 26:15 1.733
91\110 992.727 207.273 7:4 1.750
297\359 992.758 207.242 23:13 1.769
206\249 992.771 207.229 16:9 1.778
321\388 992.784 207.216 25:14 1.786
115\139 992.806 207.194 9:5 1.800
254\307 992.834 207.166 20:11 1.818
139\168 992.857 207.143 11:6 1.833
163\197 992.893 207.107 13:7 1.857
24\29 993.103 206.897 2:1 2.000 Basic 6L 17s
Scales with tunings softer than this are proper
149\180 993.333 206.667 13:6 2.167
125\151 993.377 206.623 11:5 2.200
226\273 993.407 206.593 20:9 2.222
101\122 993.443 206.557 9:4 2.250
279\337 993.472 206.528 25:11 2.273
178\215 993.488 206.512 16:7 2.286
255\308 993.506 206.494 23:10 2.300
77\93 993.548 206.452 7:3 2.333
284\343 993.586 206.414 26:11 2.364
207\250 993.600 206.400 19:8 2.375
337\407 993.612 206.388 31:13 2.385
130\157 993.631 206.369 12:5 2.400
313\378 993.651 206.349 29:12 2.417
183\221 993.665 206.335 17:7 2.429
236\285 993.684 206.316 22:9 2.444
53\64 993.750 206.250 5:2 2.500 Semihard 6L 17s
241\291 993.814 206.186 23:9 2.556
188\227 993.833 206.167 18:7 2.571
323\390 993.846 206.154 31:12 2.583
135\163 993.865 206.135 13:5 2.600
352\425 993.882 206.118 34:13 2.615
217\262 993.893 206.107 21:8 2.625
299\361 993.906 206.094 29:11 2.636
82\99 993.939 206.061 8:3 2.667
275\332 993.976 206.024 27:10 2.700
193\233 993.991 206.009 19:7 2.714
304\367 994.005 205.995 30:11 2.727
111\134 994.030 205.970 11:4 2.750
251\303 994.059 205.941 25:9 2.778
140\169 994.083 205.917 14:5 2.800
169\204 994.118 205.882 17:6 2.833
29\35 994.286 205.714 3:1 3.000 Hard 6L 17s
150\181 994.475 205.525 16:5 3.200
121\146 994.521 205.479 13:4 3.250
213\257 994.553 205.447 23:7 3.286
92\111 994.595 205.405 10:3 3.333
247\298 994.631 205.369 27:8 3.375
155\187 994.652 205.348 17:5 3.400
218\263 994.677 205.323 24:7 3.429
63\76 994.737 205.263 7:2 3.500
223\269 994.796 205.204 25:7 3.571
160\193 994.819 205.181 18:5 3.600
257\310 994.839 205.161 29:8 3.625
97\117 994.872 205.128 11:3 3.667
228\275 994.909 205.091 26:7 3.714
131\158 994.937 205.063 15:4 3.750
165\199 994.975 205.025 19:5 3.800
34\41 995.122 204.878 4:1 4.000 Superhard 6L 17s
Quadrimage
141\170 995.294 204.706 17:4 4.250
107\129 995.349 204.651 13:3 4.333
180\217 995.392 204.608 22:5 4.400
73\88 995.455 204.545 9:2 4.500
185\223 995.516 204.484 23:5 4.600
112\135 995.556 204.444 14:3 4.667
151\182 995.604 204.396 19:4 4.750
39\47 995.745 204.255 5:1 5.000
122\147 995.918 204.082 16:3 5.333 Baldy is optimal around here
83\100 996.000 204.000 11:2 5.500
127\153 996.078 203.922 17:3 5.667
44\53 996.226 203.774 6:1 6.000
93\112 996.429 203.571 13:2 6.500
49\59 996.610 203.390 7:1 7.000
54\65 996.923 203.077 8:1 8.000
5\6 1000.000 200.000 1:0 → ∞ Collapsed 6L 17s
This page is a stub. You can help the Xenharmonic Wiki by expanding it.