No-threes subgroup temperaments

From Xenharmonic Wiki
(Redirected from Ostara)
Jump to navigation Jump to search

This is a collection of subgroup temperaments which omit the prime harmonic of 3.

Llywelyn aka shoe

See also: Chromatic pairs #Shoe
See also: Llywelyn clan #Llywelyn aka shoe

Subgroup: 2.5.7

Comma list: 4194304/4117715

Sval mapping: [1 1 3], 0 7 -1]]

Mapping generators: 2, ~8/7

Gencom mapping: [1 0 1 3], 0 0 7 -1]]

Gencom: [2 8/7; 4194304/4117715]

Optimal tuning (POTE): ~8/7 = 226.910

Optimal ET sequence5, 11c, 16, 21, 37

2.5.7.11 subgroup

Subgroup: 2.5.7.11

Comma list: 176/175, 1310720/1294139

Sval mapping: [1 1 3 1], 0 7 -1 13]]

Gencom: [2 8/7; 176/175 1310720/1294139]

Gencom mapping: [1 0 1 3 1], 0 0 7 -1 13]]

Optimal tuning (POTE): ~8/7 = 227.114

Optimal ET sequence16, 21, 37

2.5.7.11.13 subgroup

Subgroup: 2.5.7.11.13

Comma list: 176/175, 640/637, 847/845

Sval mapping: [1 1 3 1 2], 0 7 -1 13 9]]

Gencom: [2 8/7; 176/175 640/637, 1304576/1294139]

Gencom mapping: [1 0 1 3 1 2], 0 0 7 -1 13 9]]

Optimal tuning (POTE): ~8/7 = 227.108

Optimal ET sequence16, 21, 37

2.5.7.11.13.17 subgroup

Subgroup: 2.5.7.11.13.17

Comma list: 176/175, 221/200, 640/637, 833/832

Sval mapping: [1 1 3 1 2 2], 0 7 -1 13 9 11]]

Gencom: [2 8/7; 176/175 221/200, 640/637, 833/832]

Gencom mapping: [1 0 1 3 1 2 2], 0 0 7 -1 13 9 11]]

Optimal tuning (POTE): ~8/7 = 227.242

Optimal ET sequence16, 21, 37

Didacus

See also: Hemimean clan #Didacus

Related temperaments: roulette, hemithirds

Subgroup: 2.5.7

Comma list: 3136/3125

Sval mapping: [1 2 2], 0 2 5]]

Gencom: [2 28/25; 3136/3125]

Gencom mapping: [1 0 2 2], 0 0 2 5]]

Optimal tuning (POTE): ~28/25 = 93.772

Optimal ET sequence6, 19, 25, 31, 37, 99, 130, 161, 353

RMS error: 0.2138 cents

Rainy

Three generators make an 8/7; five generators make a 5/4. This is the no-threes version of tertiaseptal.

Subgroup: 2.5.7

Comma list: 2100875/2097152

Sval mapping: [1 2 3], 0 5 -3]]

Gencom: [2 256/245; 2100875/2097152]

Gencom mapping: [1 0 2 3], 0 0 5 -3]]

Optimal tuning (POTE): ~256/245 = 77.205

Optimal ET sequence31, 47, 78, 109, 140, 171, 202, 233

RMS error: 0.0586 cents

Mercy

See also: Quince clan #Mercy

Two generators make an 8/7; seven generators make an 8/5. Mercy can be thought of as a way to conceptualize the 2.5.7.13.17.19 subgroup of 31edo, and is the no-threes or elevens version of miracle.

Subgroup: 2.5.7

Comma list: 823543/819200

Sval mapping: [1 3 3], 0 -7 -2]]

Gencom: [2 2744/2560; 823543/819200]

Gencom mapping: [1 0 3 3], 0 0 -7 -2]]

Optimal tuning (POTE): ~343/320 = 116.291

Optimal ET sequence10, 21, 31, 134, 165, 196, 227, 485d, 712d, 1197dd

2.5.7.13

Subgroup: 2.5.7.13

Comma list: 343/338, 640/637

Sval mapping: [1 3 3 4], 0 -7 -2 -3]]

Gencom: [2 14/13; 343/338 640/637]

Gencom mapping: [1 0 3 3 4], 0 0 -7 -2 -3]]

Optimal tuning (POTE): ~14/13 = 116.094

Optimal ET sequence10, 21, 31

2.5.7.13.17

Subgroup: 2.5.7.13.17

Comma list: 170/169, 224/221, 640/637

Sval mapping: [1 3 3 4 4], 0 -7 -2 -3 1]]

Gencom: [2 14/13; 170/169 224/221 640/637]

Gencom mapping: [1 0 3 3 4 4], 0 0 -7 -2 -3 1]]

Optimal tuning (POTE): ~14/13 = 115.769

Optimal ET sequence10, 21, 31

2.5.7.13.17.19

Subgroup: 2.5.7.13.17.19

Comma list: 170/169, 343/338, 640/637, 16384/16055

Sval mapping: [1 3 3 4 4 3], 0 -7 -2 -3 1 13]]

Gencom mapping: [1 0 3 3 4 4 3], 0 0 -7 -2 -3 1 13]]

Gencom: [2 14/13; 170/169 343/338 640/637 16384/16055]

Optimal tuning (POTE): ~14/13 = 115.716

Optimal ET sequence10, 21, 31, 52f

Pakkanen (rank 3)

Subgroup: 2.5.7.11

Comma list: 625/616

Sval mapping[1 0 0 -3], 0 1 0 4], 0 0 1 -1]]

mapping generators: ~2, ~5, ~11

Optimal tuning (TE): ~2/1 = 1200.6544, ~5/4 = 380.3004, ~11/8 = 551.9653

Optimal ET sequence6, 16, 22, 28, 29, 35, 41, 57, 63, 98c

Frostburn

See also: Magic family #Quadrimage

Subgroup: 2.5.7.11

Comma list: 245/242, 625/616

Sval mapping[1 3 4], 0 -4 -7]]

sval mapping generators: ~2, ~28/25

Optimal tuning (TE): ~2/1 = 1200.6817, ~28/25 = 205.0745

Optimal ET sequence6, 23de, 29, 35, 41

Yer (rank 3)

Subgroup: 2.11.13.17.19

Comma list: 209/208, 2057/2048

Sval mapping: [1 0 0 11 4], 0 1 0 -2 -1], 0 0 1 0 1]]

Optimal tuning (TE): ~2/1 = 1200.4457, ~11/8 = 548.4934, ~16/13 = 358.638

Optimal ET sequence13, 24, 33, 37, 46, 57, 70, 127

Yamablu

Yamablu, with a generator of ~17/13, is named for its tempering of the yama comma (209/208) and the blume comma (2057/2048), which also implies the blumeyer comma (2432/2431). The 13th Yamablu[13] scale is a linear-temperament version of Gjaeck.

Subgroup: 2.11.13.17.19

Comma list: 209/208, 2057/2048, 83521/83486

Sval mapping: [1 5 1 1 0], 0 -4 7 8 11]]

Optimal tuning (POTE): ~17/13 = 462.9606

Optimal ET sequence13, 44, 57, 70

RMS error: 0.4898 cents

Ostara

Ostara is a temperament that is derived from 93 & 524 solar calendar leap rule scale. It was initially defined by taking the 2.7.13.17.19 subgroup, but it can also be intepreted in general no-threes 19-limit.

Ostara can also refer to a collection of temperaments which temper out 16807/16796.

Subgroup: 2.5.7.11

Comma list: 8589934592/8544921875, 53710650917/53687091200

Mapping: [1 1 20 -49], 0 3 -39 119]]

Optimal tuning (POTE): ~5120/3773 = 529.003¢

Optimal ET sequence93, 431, 338, 524

2.5.7.11.13 subgroup

Subgroup: 2.5.7.11.13

Comma list: 1001/1000, 34420736/34328125, 5670699008/5661858125

Sval Mapping: [1 1 20 -49 35], 0 3 -39 119 -71]]

Optimal tuning (POTE): ~1664/1225 = 529.003¢

Optimal ET sequence93, 245e, 338, 431, 1386c

2.5.7.11.13.17 subgroup

Subgroup: 2.5.7.11.13.17

Sval Mapping: [1 1 20 -49 35 42], 0 3 -39 119 -71 -86]]

Comma list: 1001/1000, 32768/32725, 147968/147875, 537824/537251

Optimal tuning (POTE): ~1664/1225 = 529.003¢

Optimal ET sequence93, 338, 431, 955c, 1386cg

2.5.7.11.13.17.19 subgroup

Subgroup: 2.5.7.11.13.17.19

Sval Mapping: [1 1 20 -49 35 42], 0 3 -39 119 -71 -86]]

Comma list: 1001/1000, 2128/2125, 3328/3325, 16807/16796, 147968/147875

Optimal tuning (POTE): ~19/14 = 529.003¢

Pure onzonic

The 2.5.11.13 subgroup primarily contains temperaments developed for 1789edo, since it tempers out the jacobin comma 6656/6655, for which 2.5.11.13 is the subgroup, and the year 1789 is hallmark for the French revolution.

Subgroup: 2.5.11.13

Comma list: 6656/6655, [-119 -46 15 47

Mapping: [1 74 3 74], 0 -156 1 -153]]

Optimal tuning (POTE): ~11/8 = 551.370

Optimal ET sequence37, 1789

Tricesimoprimal miracloid

Described as the 52 & 1789 temperament in the 2.5.7.11.19.29.31 subgroup, with harmonics specifically selected for 52edo and 1789edo. Its generator is 31/29, which is also close to the secor. Since it is conceived as the temperament in the above specific subgroup, it makes no sense to name it for smaller subgroups. In terms of microtempering, a circle of 52 generators is essentially a barely noticeable well temperament for 52edo.

Subgroup: 2.5.7.11.19.29.31

Comma list: 10241/10240, 5858783/5856400, 4093705/4090624, 15109493/15089800, 102942875/102834688

Sval Mapping: [1 419 48 177 157 624 625], 0 -461 -50 -192 -169 -685 -686]]

Optimal tuning (CTE): ~58/31 = 1084.628

Optimal ET sequence52, 1737, 1789, ...

French decimal

Conceived upon the fact that 1789edo has an excellent 5/4, and uses it as the generator. This rings particularly true for the French attempts to decimalize a lot more things than we are used to today. Using the maximal evenness method of finding rank-2 temperaments, a 1525 & 1789 temperament is obtained.

Subgroup: 2.5.7

Comma basis: [372 -159 -1

Sval mapping: [1 2 54], 0 1 -159]]

Optimal tuning (CTE): ~5/4 = 386.360

Optimal ET sequence205, 264, 469, 733, 997, 1261, 1525, 1789, ...

2.5.7.11 subgroup

Subgroup: 2.5.7.11

Comma basis: [-49 8 17 -5, [45 -27 10 -3

Sval mapping: [1 2 54 -177], 0 1 -159 -539]]

Optimal tuning (CTE): ~5/4 = 386.361

Optimal ET sequence264, 733, ...

2.5.7.11.13 subgroup

Subgroup: 2.5.7.11.13

Comma basis: 28824005/28792192, 200126927/200000000, 6106906624/6103515625

Sval mapping: [1 2 54 -177 52], 0 1 -159 -539 173]]

Optimal tuning (CTE): ~5/4 = 386.361

Optimal ET sequence1525, 1789, ...

Mabon

Derived from a calendar leap cycle built for the autumn equinox, hence the name. Defined as the 11 & 62 temperament.

Subgroup: 2.9.7

Comma basis: 44957696/43046721

Sval mapping: [1 1 -3], 0 3 8]]

Optimal tuning (CTE): ~729/448 = 870.792

Optimal ET sequence7d, 11, 18d, 29, 40, 62, ...

2.9.7.11 subgroup

Subgroup: 2.9.7.11

Comma basis: 896/891, 1331/1296

Sval mapping: [1 1 -3 2], 0 3 8 2]]

Optimal tuning (CTE): ~16/11 = 870.966

Optimal ET sequence7d, 11, 40, 51, 62

Bastille

Main article: Bastille

Described as the 2.5.7 subgroup 1407 & 1789 temperament, and named after an eponymous historical event which took place on July 14, 1789 (14/07/1789). Extensions discussed elsewhere include pure bastille.

Subgroup: 2.5.7

Comma list: [1426 -596 -15

Sval mapping: [1 -4 254], 0 -15 596]]

Optimal tuning (CTE): ~[381 0 -159 -4 = 694.243

Optimal ET sequence382, 1025, 1407, 1789, 3196, ...

Shipwreck

Subgroup: 2.7.53

Comma list: 1048576/1042139

Gencom: [2 64/53; 1048576/1042139]

Mapping: [1 0 6], 0 3 -1]]]

POTE generator: ~64/53 = 323.034

Optimal ET sequence4, 7, 11, 15, 26, 141, 167, 193p, 219p, 245p

Movila

This temperament has a structure very similar to mavila but is somewhat more accurate because the generator is a flat 11/8 rather than a sharp 4/3. The major third is still ~5/4, but the minor third is now ~64/55 instead of ~6/5.

Subgroup: 2.5.11

Comma list: 1331/1280

Mapping: [1 1 3], 0 3 1]]

Optimal tuning (CTE): ~2 = 1/1, ~11/8 = 529.846

Optimal ET sequence7, 9, 16, 25, 41e, 66ee

Mavericks

Subgroup: 2.13.19

Comma list: 47525504/47045881

Mapping: [1 1 2], 0 6 5]]

Optimal tuning (CTE): ~2 = 1\1, ~26/19 = 539.886

Optimal ET sequence7fh, 9, 11, 20

Vengeance

Another lower-error replica of mavila, with the fifth being ~25/17 instead of ~3/2.

Subgroup: 2.5.17

Comma list: 78608/78125

Sval mapping[1 1 1], 0 3 7]]

Optimal tuning (CTE): ~2 = 1\1, ~34/25 = 529.095

Supporting ETs: 34, 9, 25, 16, 7g, 43, 5cg, 11g, 41g, 52, 23g, 20cg

Superquintal

Subgroup: 2.5.13

Comma list: 64000000/62748517

Sval mapping[1 5 6], 0 -7 -6]]

Mapping generators, ~2, ~13/10

Optimal tuning (CTE): ~2 = 1\1, ~13/10 = 459.281

Supporting ETs: 13, 34, 21, 8, 47, 5cf, 81, 55, 60, 18cf, 29cf, 73c, 11cf, 76cf

Insect

Subgroup: 2.5.11

Comma list: 33275/32768

Sval mapping[1 0 5], 0 3 -2]]

Mapping generators, ~2, ~55/32

Optimal tuning (CTE): ~2 = 1\1, ~55/32 = 928.032

Supporting ETs: 22, 9, 13, 31, 5, 35, 53, 40, 17, 75, 57, 14, 48, 79

Supraminor

Subgroup: 2.7.17

Comma list: 2024782584832/2015993900449

Sval mapping[1 0 1], 0 10 11]]

Mapping generators, ~2, ~17/14

Optimal tuning (CTE): ~2 = 1\1, ~17/14 = 336.858

Trader

Subgroup: 2.5.13

Comma list: 26/25

Sval mapping[1 2 3], 0 1 2]]

Mapping generators, ~2, ~5/4

Optimal tuning (CTE): ~2 = 1\1, ~5/4 = 407.079