Prime factorization
|
23 × 3 × 11
|
Step size
|
4.54545¢
|
Fifth
|
154\264 (700¢) (→7\12)
|
Semitones (A1:m2)
|
22:22 (100¢ : 100¢)
|
Dual sharp fifth
|
155\264 (704.545¢)
|
Dual flat fifth
|
154\264 (700¢) (→7\12)
|
Dual major 2nd
|
45\264 (204.545¢) (→15\88)
|
Consistency limit
|
7
|
Distinct consistency limit
|
7
|
264 equal divisions of the octave (264edo), or 264-tone equal temperament (264tet), 264 equal temperament (264et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 264 equal parts of about 4.55 ¢ each.
Theory
Approximation of prime intervals in 264 EDO
Prime number
|
2
|
3
|
5
|
7
|
11
|
13
|
17
|
19
|
Error
|
absolute (¢)
|
+0.00
|
-1.96
|
+0.05
|
-0.64
|
-1.32
|
+0.38
|
-0.41
|
-2.06
|
relative (%)
|
+0
|
-43
|
+1
|
-14
|
-29
|
+8
|
-9
|
-45
|
Steps (reduced)
|
264 (0)
|
418 (154)
|
613 (85)
|
741 (213)
|
913 (121)
|
977 (185)
|
1079 (23)
|
1121 (65)
|