Diaschismic rank-3 family

From Xenharmonic Wiki
(Redirected from Varda)
Jump to navigation Jump to search
This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The diaschismic rank-3 family of rank-3 temperaments tempers out the diaschisma, 2048/2025. If nothing else is tempered out we have a 7-limit planar temperament, with an 11-limit comma we get an 11-limit temperament, and so forth.

Rank-3 diaschismic

Subgroup: 2.3.5.7

Comma list: 2048/2025

Mapping[2 0 11 0], 0 1 -2 0], 0 0 0 1]]

mapping generators: ~45/32, ~3, ~7

Optimal tunings:

  • WE: ~45/32 = 599.4107 ¢, ~3/2 = 704.2059 ¢, ~7/4 = 971.1782 ¢
error map: -1.179 +1.072 +1.150 -0.005]
  • CWE: ~45/32 = 600.0000 ¢, ~3/2 = 704.9585 ¢, ~7/4 = 971.2952 ¢
error map: 0.000 +3.003 +3.769 +2.469]

Optimal ET sequence10, 12, 22, 34d, 46, 58, 68, 80, 126, 206cd, 332bccd

Badness (Sintel): 1.95

Varda

Varda tempers out 176/175, 896/891 as well as 9801/9800, and is the main extension of rank-3 diaschismic to the 11-limit. Notice the identity 2048/2025 = (176/175)⋅(896/891). In the natural 13-limit extension, 351/350, 352/351 and 364/363 are further tempered out, and in the 17-limit, 136/135, 256/255 and 289/288.

Subgroup: 2.3.5.7.11

Comma list: 176/175, 896/891

Mapping[2 0 11 0 14], 0 1 -2 0 -4], 0 0 0 1 1]]

Mapping to lattice: [0 1 -2 2 -2], 0 0 0 -1 -1]]

Lattice basis:

3/2, 9/7
Angle (3/2, 9/7) = 82.289 degrees

Optimal tunings:

  • WE: ~45/32 = 599.4084 ¢, ~3/2 = 703.9071 ¢, ~7/4 = 971.8498 ¢
error map: -1.183 +0.769 +1.731 +0.657 -1.013]
  • CWE: ~45/32 = 600.0000 ¢, ~3/2 = 704.6576 ¢, ~7/4 = 971.9790 ¢
error map: 0.000 +2.703 +4.371 +3.153 +2.031]

Minimax tuning:

[[1 0 0 0 0, [11/8 1/2 -1/4 0 0, [11/4 -1 1/2 0 0, [-1/8 3/2 -5/4 0 1, [11/8 -1/2 -1/4 0 1]
unchanged-interval (eigenmonzo) basis: 2.9/5.11/3

Optimal ET sequence12, 22, 34d, 46, 58, 68, 80, 126, 184c, 206cd, 264bccde

Badness (Sintel): 0.875

Scales
28/27, 16/15, 11/10, 9/8, 32/27, 6/5, 5/4, 9/7, 4/3, 15/11, 45/32, 22/15, 3/2, 14/9, 8/5, 5/3, 27/16, 16/9, 20/11, 15/8, 27/14, 2
  • Varda[24] hobbit transversal
28/27, 16/15, 11/10, 9/8, 7/6, 6/5, 40/33, 5/4, 9/7, 4/3, 15/11, 45/32, 16/11, 3/2, 14/9, 8/5, 33/20, 27/16, 7/4, 16/9, 20/11, 15/8, 27/14, 2

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 351/350, 364/363

Mapping: [2 0 11 0 14 24], 0 1 -2 0 -4 -7], 0 0 0 1 1 1]]

Optimal tunings:

  • WE: ~45/32 = 599.4000 ¢, ~3/2 = 703.5375 ¢, ~7/4 = 971.9244 ¢
  • CWE: ~45/32 = 600.0000 ¢, ~3/2 = 704.2888 ¢, ~7/4 = 972.0576 ¢

Optimal ET sequence: 12f, 22, 34d, 46, 58, 80, 104c, 138cde, 242ccde

Badness (Sintel): 0.908

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 136/135, 176/175, 256/255, 351/350

Mapping: [2 0 11 0 14 24 5], 0 1 -2 0 -4 -7 1], 0 0 0 1 1 1 0]]

Optimal tunings:

  • WE: ~17/12 = 599.5734 ¢, ~3/2 = 703.8639 ¢, ~7/4 = 971.4469 ¢
  • CWE: ~17/12 = 600.0000 ¢, ~3/2 = 704.3790 ¢, ~7/4 = 971.6313 ¢

Optimal ET sequence: 12f, 22, 34d, 46, 58, 80, 104c, 126, 138cde

Badness (Sintel): 0.841

Julius

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 325/324, 896/891

Mapping: [2 0 11 0 14 -18], 0 1 -2 0 -4 8], 0 0 0 1 1 0]]

Optimal tunings:

  • WE: ~45/32 = 599.5350 ¢, ~3/2 = 704.6999 ¢, ~7/4 = 972.2975 ¢
  • CWE: ~45/32 = 600.0000 ¢, ~3/2 = 705.1906 ¢, ~7/4 = 972.3332 ¢

Optimal ET sequence: 12, 22f, 34d, 46, 68, 80, 148d, 228bcd

Badness (Sintel): 1.66

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 136/135, 176/175, 256/255, 325/324

Mapping: [2 0 11 0 14 -18 5], 0 1 -2 0 -4 8 1], 0 0 0 1 1 0 0]]

Optimal tunings:

  • WE: ~17/12 = 599.6247 ¢, ~3/2 = 704.7816 ¢, ~7/4 = 971.8531 ¢
  • CWE: ~17/12 = 600.0000 ¢, ~3/2 = 705.1801 ¢, ~7/4 = 971.9669 ¢

Optimal ET sequence: 12, 22f, 34d, 46, 68, 80, 126, 148d

Badness (Sintel): 1.18

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 136/135, 176/175, 190/189, 256/255, 286/285

Mapping: [2 0 11 0 14 -18 5 -13], 0 1 -2 0 -4 8 1 5], 0 0 0 1 1 0 0 1]]

Optimal tunings:

  • WE: ~17/12 = 599.6179 ¢, ~3/2 = 704.8484 ¢, ~7/4 = 972.3437 ¢
  • CWE: ~17/12 = 600.0000 ¢, ~3/2 = 705.2584 ¢, ~7/4 = 972.4875 ¢

Optimal ET sequence: 12, 22fh, 34dh, 46, 68, 80, 148d, 228bcd

Badness (Sintel): 1.22

Augustus

Subgroup: 2.3.5.7.11

Comma list: 385/384, 1232/1215

Mapping[2 0 11 0 3], 0 1 -2 0 3], 0 0 0 1 -1]]

Optimal tunings:

  • WE: ~45/32 = 599.7497 ¢, ~3/2 = 705.5140 ¢, ~7/4 = 967.5010 ¢
error map: -0.501 +3.058 +0.906 -2.326 -3.528]
  • CWE: ~45/32 = 600.0000 ¢, ~3/2 = 705.7687 ¢, ~7/4 = 967.8291 ¢
error map: 0.000 +3.814 +2.149 -0.997 -1.841]

Minimax tuning:

[[1 0 0 0 0, [11/8 1/2 -1/4 0 0, [11/4 -1 1/2 0 0, [45/16 3/4 -3/8 1/2 -1/2, [45/16 3/4 -3/8 -1/2 1/2]
unchanged-interval (eigenmonzo) basis: 2.9/5.11/7

Optimal ET sequence10, 12e, 22, 46, 68, 114, 170b

Badness (Sintel): 1.90

Tiberius

Subgroup: 2.3.5.7.11

Comma list: 441/440, 2048/2025

Mapping[2 0 11 0 -17], 0 1 -2 0 4], 0 0 0 1 2]]

Optimal tunings:

  • WE: ~45/32 = 599.4432 ¢, ~3/2 = 703.7469 ¢, ~7/4 = 968.7525 ¢
error map: -0.501 +3.058 +0.906 -2.326 -3.528]
  • CWE: ~45/32 = 600.0000 ¢, ~3/2 = 704.4801 ¢, ~7/4 = 968.9703 ¢
error map: 0.000 +3.814 +2.149 -0.997 -1.841]

Minimax tuning:

[[1 0 0 0 0, [11/8 1/2 -1/4 0 0, [11/4 -1 1/2 0 0, [0 0 0 1 0, [-3 2 -1 2 0]
unchanged-interval (eigenmonzo) basis: 2.9/5.7

Optimal ET sequence10, 12, 22e, 34e, 36e, 44d, 46, 58, 104c, 160, 162ce, 172ce, 218ce

Badness (Sintel): 2.05

Claudius

Subgroup: 2.3.5.7.11

Comma list: 540/539, 2048/2025

Mapping[2 0 11 0 15], 0 1 -2 0 1], 0 0 0 1 -2]]

Optimal tunings:

  • WE: ~45/32 = 599.2988 ¢, ~3/2 = 703.9668 ¢, ~7/4 = 972.7468 ¢
error map: -1.402 +0.609 +0.845 +1.116 +0.845]
  • CWE: ~45/32 = 600.0000 ¢, ~3/2 = 704.7949 ¢, ~7/4 = 974.0012 ¢
error map: 0.000 +2.840 +4.097 +5.175 +5.475]

Minimax tuning:

[[1 0 0 0 0, [9/7 0 -3/7 2/7 1/7, [41/14 0 6/7 -4/7 -2/7, [41/14 0 -1/7 3/7 -2/7, [41/14 0 -1/7 -4/7 5/7]
unchanged-interval (eigenmonzo) basis: 2.7/5.11/5

Optimal ET sequence10, 12e, 22, 46e, 48c, 58, 80, 138cde, 218cde, 286bcddeee, 366bccdddeee

Badness (Sintel): 2.37