366edo
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 61
Step size
3.27869¢
Fifth
214\366 (701.639¢) (→107\183)
Semitones (A1:m2)
34:28 (111.5¢ : 91.8¢)
Consistency limit
5
Distinct consistency limit
5
← 365edo | 366edo | 367edo → |
366 equal divisions of the octave (abbreviated 366edo or 366ed2), also called 366-tone equal temperament (366tet) or 366 equal temperament (366et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 366 equal parts of about 3.28 ¢ each. Each step represents a frequency ratio of 21/366, or the 366th root of 2.
Harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.32 | +0.57 | -1.61 | -0.63 | -0.50 | -1.18 | +0.26 | -0.04 | +0.85 | +1.35 | +1.23 |
Relative (%) | -9.6 | +17.4 | -49.2 | -19.3 | -15.2 | -36.1 | +7.8 | -1.1 | +25.9 | +41.2 | +37.6 | |
Steps (reduced) |
580 (214) |
850 (118) |
1027 (295) |
1160 (62) |
1266 (168) |
1354 (256) |
1430 (332) |
1496 (32) |
1555 (91) |
1608 (144) |
1656 (192) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |