366edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 365edo 366edo 367edo →
Prime factorization 2 × 3 × 61
Step size 3.27869¢ 
Fifth 214\366 (701.639¢) (→107\183)
Semitones (A1:m2) 34:28 (111.5¢ : 91.8¢)
Consistency limit 5
Distinct consistency limit 5

366 equal divisions of the octave (abbreviated 366edo or 366ed2), also called 366-tone equal temperament (366tet) or 366 equal temperament (366et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 366 equal parts of about 3.28 ¢ each. Each step represents a frequency ratio of 21/366, or the 366th root of 2.

Harmonics

Approximation of odd harmonics in 366edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.32 +0.57 -1.61 -0.63 -0.50 -1.18 +0.26 -0.04 +0.85 +1.35 +1.23
Relative (%) -9.6 +17.4 -49.2 -19.3 -15.2 -36.1 +7.8 -1.1 +25.9 +41.2 +37.6
Steps
(reduced)
580
(214)
850
(118)
1027
(295)
1160
(62)
1266
(168)
1354
(256)
1430
(332)
1496
(32)
1555
(91)
1608
(144)
1656
(192)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.