773edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 772edo 773edo 774edo →
Prime factorization 773 (prime)
Step size 1.55239 ¢ 
Fifth 452\773 (701.682 ¢)
Semitones (A1:m2) 72:59 (111.8 ¢ : 91.59 ¢)
Consistency limit 7
Distinct consistency limit 7

773 equal divisions of the octave (abbreviated 773edo or 773ed2), also called 773-tone equal temperament (773tet) or 773 equal temperament (773et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 773 equal parts of about 1.55 ¢ each. Each step represents a frequency ratio of 21/773, or the 773rd root of 2.

Theory

773edo is consistent to the 7-odd-limit. Using the patent val, it tempers out 2401/2400, 32805/32768, 137781/137500 and 766656/765625 in the 11-limit. It supports counterultrakleismic.

Prime harmonics

Approximation of prime harmonics in 773edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.273 +0.232 -0.133 -0.218 -0.683 +0.607 +0.546 +0.445 -0.340 +0.631
Relative (%) +0.0 -17.6 +15.0 -8.5 -14.1 -44.0 +39.1 +35.2 +28.7 -21.9 +40.6
Steps
(reduced)
773
(0)
1225
(452)
1795
(249)
2170
(624)
2674
(355)
2860
(541)
3160
(68)
3284
(192)
3497
(405)
3755
(663)
3830
(738)

Subsets and supersets

773edo is the 137th prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-1225 773 [773 1225]] +0.0862 0.0862 5.55
2.3.5 32805/32768, [65 85 -86 [773 1225 1795]] +0.0241 0.1125 7.25
2.3.5.7 2401/2400, 32805/32768, [20 22 -20 -3 [773 1225 1795 2170]] +0.0299 0.0979 6.31
2.3.5.7.11 2401/2400, 32805/32768, 137781/137500, 766656/765625 [773 1225 1795 2170 2674]] +0.0365 0.0886 5.71

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 113\773 175.420 448/405 Sesquiquartififths
1 321\773 498.318 4/3 Helmholtz

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct