Starling temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
m Update linking
 
(32 intermediate revisions by 9 users not shown)
Line 1: Line 1:
This page discusses miscellaneous rank-2 temperaments tempering out [[126/125]], the starling comma or septimal semicomma.  
{{Technical data page}}
This page discusses miscellaneous [[rank-2 temperament]]s tempering out [[126/125]], the starling comma or septimal semicomma.  


Temperaments discussed in families and clans are:
Temperaments discussed in families and clans are:
* ''[[Pater]]'', {16/15, 126/125} → [[Father family #Pater|Father family]]
* ''[[Pater]]'' (+16/15) → [[Father family #Pater|Father family]]
* ''[[Flat]]'', {21/20, 25/24} → [[Dicot family #Flat|Dicot family]]
* ''[[Flattie]]'' (+21/20) → [[Dicot family #Flattie|Dicot family]]
* ''[[Opossum]]'', {28/27, 126/125} → [[Trienstonic clan #Opossum|Trienstonic clan]]
* ''[[Opossum]]'' (+28/27) → [[Trienstonic clan #Opossum|Trienstonic clan]]
* ''[[Diminished]]'', {36/35, 50/49} → [[Dimipent family #Diminished|Dimipent family]] / [[Jubilismic clan #Diminished|jubilismic clan]]
* [[Diminished (temperament)|Diminished]] (+36/35) → [[Diminished family #Septimal diminished|Diminished family]]
* [[Keemun]], {49/48, 126/125} → [[Kleismic family #Keemun|Kleismic family]]
* [[Keemun]] (+49/48) → [[Kleismic family #Keemun|Kleismic family]]
* ''[[Augene]]'', {64/63, 126/125} → [[Augmented family #Augene|Augmented family]]
* [[Augene]] (+64/63) → [[Augmented family #Augene|Augmented family]]
* [[Meantone]], {81/80, 126/125} → [[Meantone family #Septimal meantone|Meantone family]]
* [[Meantone]] (+81/80) → [[Meantone family #Septimal meantone|Meantone family]]
* [[Mavila]], {126/125, 135/128} → [[Pelogic family #Mavila|Pelogic family]]
* [[Mavila]] (+135/128) → [[Pelogic family #Mavila|Pelogic family]]
* [[Sensi]], {126/125, 245/243}, [[Sensipent family #Sensi|Sensipent family]] / [[Sensamagic clan #Sensi|sensamagic clan]]
* [[Sensi]] (+245/243), [[Sensipent family #Sensi|Sensipent family]]
* ''[[Gilead]]'', {126/125, 343/324} → [[Shibboleth family #Gilead|Shibboleth family]]
* [[Muggles]] (+525/512) → [[Magic family #Muggles|Magic family]]
* [[Muggles]], {126/125, 525/512} → [[Magic family #Muggles|Magic family]]
* [[Valentine]] (+1029/1024) → [[Gamelismic clan #Valentine|Gamelismic clan]]
* ''[[Diaschismic]]'', {126/125, 2048/2025} → [[Diaschismic family #Diaschismic|Diaschismic family]]
* ''[[Diaschismic]]'' (+2048/2025) → [[Diaschismic family #Septimal diaschismic|Diaschismic family]]
* ''[[Wollemia]]'', {126/125, 2240/2187} → [[Tetracot family #Wollemia|Tetracot family]]
* ''[[Wollemia]]'' (+2240/2187) → [[Tetracot family #Wollemia|Tetracot family]]
* ''[[Unicorn]]'', {126/125, 10976/10935} → [[Unicorn family #Unicorn|Unicorn family]]
* ''[[Unicorn]]'' (+10976/10935) → [[Unicorn family #Unicorn|Unicorn family]]
* ''[[Coblack]]'', {126/125, 16807/16384} → [[Trisedodge family #Coblack|Trisedodge family]] / [[Cloudy clan #Coblack|cloudy clan]]
* ''[[Coblack]]'' (+16807/16384) → [[Trisedodge family #Coblack|Trisedodge family]] / [[Cloudy clan #Coblack|cloudy clan]]
* ''[[Grackle]]'', {126/125, 32805/32768} → [[Schismatic family #Grackle|Schismatic family]]
* ''[[Grackle]]'' (+32805/32768) → [[Schismatic family #Grackle|Schismatic family]]
* ''[[Worschmidt]]'', {126/125, 33075/32768} → [[Würschmidt family #Worschmidt|Würschmidt family]]
* ''[[Worschmidt]]'' (+33075/32768) → [[Würschmidt family #Worschmidt|Würschmidt family]]
* ''[[Passionate]]'', {126/125, 131072/127575} → [[Passion family #Passionate|Passion family]]
* ''[[Thuja]]'' (+65536/64827) → [[Buzzardsmic clan #Thuja|Buzzardsmic clan]]
* ''[[Vishnean]]'', {126/125, 540225/524288} → [[Vishnuzmic family #Vishnean|Vishnuzmic family]]
* ''[[Passionate]]'' (+131072/127575) → [[Passion family #Passionate|Passion family]]
* ''[[Ditonic]]'', {126/125, 8751645/8388608} → [[Ditonmic family #Ditonic|Ditonmic family]]
* ''[[Vishnean]]'' (+540225/524288) → [[Vishnuzmic family #Vishnean|Vishnuzmic family]]
* ''[[Muscogee]]'', {126/125, 33756345/33554432} → [[Mabila family #Muscogee|Mabila family]]
* ''[[Ditonic]]'' (+8751645/8388608) → [[Ditonmic family #Ditonic|Ditonmic family]]
* ''[[Muscogee]]'' (+33756345/33554432) → [[Mabila family #Muscogee|Mabila family]]


Since (6/5)<sup>3</sup> = 126/125 × 12/7, these temperaments tend to have a relatively small complexity for 6/5. They also possess the [[starling tetrad]], the 6/5-6/5-6/5-7/6 versions of the diminished seventh chord. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before [[12edo|12EDO]] established itself as the standard tuning, it is arguably more authentic to tune it as three stacked minor thirds and an augmented second, which is what it is in meantone, than as the modern version of four stacked very flat minor thirds.  
Since {{nowrap|(6/5)<sup>3</sup> {{=}} 126/125 × 12/7}}, these temperaments tend to have a relatively small complexity for 6/5. They also possess the [[starling tetrad]], the 6/5–6/5–6/5–7/6 versions of the diminished seventh chord. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before [[12edo]] established itself as the standard tuning, it is actually three stacked minor thirds and an augmented second, contrary to the popular belief that it is four stacked minor thirds.  


== Myna ==
== Myna ==
Line 30: Line 32:
{{Main| Myna }}
{{Main| Myna }}


In addition to 126/125, myna tempers out [[1728/1715]], the orwell comma, and [[2401/2400]], the breedsma. It can also be described as the 27&amp;31 temperament. It has 6/5 as a generator, and [[58edo|58EDO]] can be used as a tuning, with [[89edo|89EDO]] being a better one, and fans of round amounts in cents may like [[120edo|120EDO]]. It is also possible to tune myna with pure fifths by taking 6<sup>1/10</sup> as the generator. Myna extends naturally but with much increased complexity to the 11 and 13 limits.
7-limit myna is naturally found by establishing a structure of thirds, by making [[7/6]] - [[6/5]] - [[49/40]] - [[5/4]] - [[9/7]] all equidistant (the distances between which are [[36/35]], [[49/48]], and [[50/49]]). 11-limit myna then arises from equating this neutral third to [[11/9]]. Myna's characteristic feature is that the pental thirds are tuned outwards so that the chroma between them ([[25/24]]) is twice the size of the interval between the pental and septimal thirds ([[36/35]]), leaving space for a neutral third in between. In that sense, it is opposed to [[keemic temperaments]], where the chroma between the pental thirds is the same as the distance between the pental and septimal thirds.


Subgroup: 2.3.5.7
In terms of commas tempered, in addition to 126/125, myna adds [[1728/1715]], the orwell comma, and [[2401/2400]], the breedsma. It can also be described as the {{nowrap|27 &amp; 31}} temperament. It has 6/5 as a generator, and [[58edo]] can be used as a tuning, with [[89edo]] being a better one, and fans of round amounts in cents may like [[120edo]]. It is also possible to tune myna with pure fifths by taking 6<sup>1/10</sup> as the generator. Myna extends naturally but with much increased complexity to the 11 and 13 limits.
 
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 1728/1715
[[Comma list]]: 126/125, 1728/1715


[[Mapping]]: [{{val| 1 9 9 8 }}, {{val| 0 -10 -9 -7 }}]
{{Mapping|legend=1| 1 9 9 8 | 0 -10 -9 -7 }}


Mapping generators: ~2, ~5/3
: mapping generators: ~2, ~5/3


{{Multival|legend=1| 10 9 7 -9 -17 -9 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 310.146
 
[[POTE generator]]: ~6/5 = 310.146


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* 7- and [[9-odd-limit]]: ~6/5 = {{monzo| 1/10 1/10 0 0}}
* 7- and [[9-odd-limit]]: ~6/5 = {{monzo| 1/10 1/10 0 0}}
: [{{monzo| 1 0 0 0 }}, {{monzo| 0 1 0 0 }}, {{monzo| 9/10 9/10 0 0 }}, {{monzo| 17/10 7/10 0 0 }}]
: {{monzo list| 1 0 0 0 | 0 1 0 0 | 9/10 9/10 0 0 | 17/10 7/10 0 0 }}
: [[Eigenmonzo]]s (unchanged intervals): 2, 3
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3


{{Val list|legend=1| 27, 31, 58, 89 }}
{{Optimal ET sequence|legend=1| 27, 31, 58, 89 }}


[[Badness]]: 0.027044
[[Badness]]: 0.027044
Line 58: Line 60:
Comma list: 126/125, 176/175, 243/242
Comma list: 126/125, 176/175, 243/242


Mapping: [{{val| 1 9 9 8 22 }}, {{val| 0 -10 -9 -7 -25 }}]
Mapping: {{mapping| 1 9 9 8 22 | 0 -10 -9 -7 -25 }}


POTE generator: ~6/5 = 310.144
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.144


Optimal GPV sequence: {{Val list| 27e, 31, 58, 89 }}
{{Optimal ET sequence|legend=1| 27e, 31, 58, 89 }}


Badness: 0.016842
Badness: 0.016842
Line 71: Line 73:
Comma list: 126/125, 144/143, 176/175, 196/195
Comma list: 126/125, 144/143, 176/175, 196/195


Mapping: [{{val| 1 9 9 8 22 0 }}, {{val| 0 -10 -9 -7 -25 5 }}]
Mapping: {{mapping| 1 9 9 8 22 0 | 0 -10 -9 -7 -25 5 }}


POTE generator: ~6/5 = 310.276
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.276


Optimal GPV sequence: {{Val list| 27e, 31, 58 }}
{{Optimal ET sequence|legend=1| 27e, 31, 58 }}


Badness: 0.017125
Badness: 0.017125
Line 84: Line 86:
Comma list: 78/77, 91/90, 126/125, 176/175
Comma list: 78/77, 91/90, 126/125, 176/175


Mapping: [{{val| 1 9 9 8 22 20 }}, {{val| 0 -10 -9 -7 -25 -22 }}]
Mapping: {{mapping| 1 9 9 8 22 20 | 0 -10 -9 -7 -25 -22 }}


POTE generator: ~6/5 = 310.381
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.381


Optimal GPV sequence: {{Val list| 27e, 31f, 58f }}
{{Optimal ET sequence|legend=1| 27e, 31f, 58f }}


Badness: 0.027568
Badness: 0.027568
Line 97: Line 99:
Comma list: 66/65, 105/104, 126/125, 540/539
Comma list: 66/65, 105/104, 126/125, 540/539


Mapping: [{{val| 1 9 9 8 22 23 }}, {{val| 0 -10 -9 -7 -25 -26 }}]
Mapping: {{mapping| 1 9 9 8 22 23 | 0 -10 -9 -7 -25 -26 }}


POTE generator: ~6/5 = 309.804
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 309.804


Optimal GPV sequence: {{Val list| 27eff, 31 }}
{{Optimal ET sequence|legend=1| 27eff, 31 }}


Badness: 0.029868
Badness: 0.029868
Line 110: Line 112:
Comma list: 99/98, 126/125, 385/384
Comma list: 99/98, 126/125, 385/384


Mapping: [{{val| 1 9 9 8 -1 }}, {{val| 0 -10 -9 -7 6 }}]
Mapping: {{mapping| 1 9 9 8 -1 | 0 -10 -9 -7 6 }}


POTE generator: ~6/5 = 309.737
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 309.737


Optimal GPV sequence: {{Val list| 27, 31 }}
{{Optimal ET sequence|legend=1| 27, 31 }}


Badness: 0.033434
Badness: 0.033434
Line 123: Line 125:
Comma list: 56/55, 100/99, 1728/1715
Comma list: 56/55, 100/99, 1728/1715


Mapping: [{{val| 1 9 9 8 2 }}, {{val| 0 -10 -9 -7 2 }}]
Mapping: {{mapping| 1 9 9 8 2 | 0 -10 -9 -7 2 }}


POTE generator: ~6/5 = 310.853
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.853


Optimal GPV sequence: {{Val list| 4, 23bc, 27e }}
{{Optimal ET sequence|legend=1| 4, 23bc, 27e }}


Badness: 0.048687
Badness: 0.048687
== Valentine ==
{{Main| Valentine }}
Valentine tempers out 1029/1024 and 6144/6125 as well as 126/125, so it also fits under the heading of the gamelismic clan. It has a generator of 21/20, which can be stripped of its 2 and taken as 3×7/5. In this respect it resembles miracle, with a generator of 3×5/7, and casablanca, with a generator of 5×7/3. These three generators are the simplest in terms of the relationship of tetrads in the [[The Seven Limit Symmetrical Lattices|lattice of 7-limit tetrads]]. Valentine can also be described as the 31&amp;46 temperament, and [[77edo|77EDO]], [[108edo|108EDO]] or [[185edo|185EDO]] make for excellent tunings, which also happen to be excellent tunings for starling temperament, the 126/125 planar temperament. Hence 7-limit valentine can be used whenever starling is wanted, with the extra tempering out of 1029/1024 having no discernible effect on tuning accuracy. Another tuning for valentine uses (3/2)<sup>1/9</sup> as a generator, giving pure 3/2 fifths. Valentine extends naturally to the 11-limit as {{multival| 9 5 -3 7 … }}, tempering out 121/120 and 441/440; 46EDO has a valentine generator 3\46 which is only 0.0117 cents sharp of the minimax generator, (11/7)<sup>1/10</sup>.
Valentine is very closely related to [[Carlos Alpha]], the rank one nonoctave temperament of Wendy Carlos, as the generator chain of valentine is the same thing as Carlos Alpha. Indeed, the way Carlos uses Alpha in ''Beauty in the Beast'' suggests that she really intended Alpha to be the same thing as valentine, and that it is misdescribed as a rank one temperament. Carlos tells us that "[t]he melodic motions of Alpha are amazingly exotic and fresh, like you've never heard before", and since Alpha lives inside valentine this comment carries over and applies to it if you stick close melodically to generator steps, which is almost impossible not to do since the generator step is so small. MOS of 15, 16, 31 and 46 notes are available to explore these exotic and fresh melodies, or the less exotic ones you might cook up otherwise.
Subgroup: 2.3.5
[[Comma list]]: 1990656/1953125
[[Mapping]]: [{{val| 1 1 2 }}, {{val| 0 9 5 }}]
[[POTE generator]]: ~25/24 = 78.039
{{Val list|legend=1| 15, 31, 46, 77, 123 }}
[[Badness]]: 0.122765
=== 7-limit ===
Subgroup: 2.3.5.7
[[Comma list]]: 126/125, 1029/1024
[[Mapping]]: [{{val| 1 1 2 3 }}, {{val| 0 9 5 -3 }}]
Mapping generators: ~2, ~21/20
[[POTE generator]]: ~21/20 = 77.864
[[Minimax tuning]]:
* [[7-odd-limit]]: ~21/20 = {{monzo| 1/6 1/12 0 -1/12 }}
: [{{monzo| 1 0 0 0 }}, {{monzo| 5/2 3/4 0 -3/4 }}, {{monzo| 17/6 5/12 0 -5/12 }}, {{monzo| 5/2 -1/4 0 1/4 }}]
: [[Eigenmonzo]]s (unchanged intervals): 2, 7/6
* [[9-odd-limit]]: ~21/20 = {{monzo| 1/21 2/21 0 -1/21}}
: [{{monzo| 1 0 0 0 }}, {{monzo| 10/7 6/7 0 -3/7 }}, {{monzo| 47/21 10/21 0 -5/21 }}, {{monzo| 20/7 -2/7 0 1/7 }}]
: [[Eigenmonzo]]s (unchanged intervals): 2, 9/7
[[Algebraic generator]]: smaller root of ''x''<sup>2</sup> - 89''x'' + 92, or (89 - sqrt (7553))/2, at 77.8616 cents.
{{Val list|legend=1| 15, 31, 46, 77, 185, 262cd }}
[[Badness]]: 0.031056
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 121/120, 126/125, 176/175
Mapping: [{{val| 1 1 2 3 3 }}, {{val| 0 9 5 -3 7 }}]
Mapping generators: ~2, ~21/20
POTE generator: ~21/20 = 77.881
Minimax tuning:
* [[11-odd-limit]]: ~21/20 = {{monzo| 0 0 0 -1/10 1/10 }}
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 0 0 -9/10 9/10 }}, {{monzo| 2 0 0 -1/2 1/2 }}, {{monzo| 3 0 0 3/10 -3/10 }}, {{monzo| 3 0 0 -7/10 7/10 }}]
: Eigenmonzos (unchanged intervals): 2, 11/7
Algebraic generator: positive root of 4''x''<sup>3</sup> + 15''x''<sup>2</sup> - 21, or else Gontrand2, the smallest positive root of 4''x''<sup>7</sup> - 8''x''<sup>6</sup> + 5.
Optimal GPV sequence: {{Val list| 15, 31, 46, 77, 262cdee, 339cdeee }}
Badness: 0.016687
==== Dwynwen ====
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 121/120, 126/125, 176/175
Mapping: [{{val| 1 1 2 3 3 2 }}, {{val| 0 9 5 -3 7 26 }}]
POTE generator: ~21/20 = 78.219
Optimal GPV sequence: {{Val list| 15, 31f, 46 }}
Badness: 0.023461
==== Lupercalia ====
Subgroup: 2.3.5.7.11.13
Comma list: 66/65, 105/104, 121/120, 126/125
Mapping: [{{val| 1 1 2 3 3 3 }}, {{val| 0 9 5 -3 7 11 }}]
POTE generator: ~21/20 = 77.709
Optimal GPV sequence: {{Val list| 15, 31, 77ff, 108eff, 139efff }}
Badness: 0.021328
==== Valentino ====
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 126/125, 176/175, 196/195
Mapping: [{{val| 1 1 2 3 3 5 }}, {{val| 0 9 5 -3 7 -20 }}]
POTE generator: ~21/20 = 77.958
Optimal GPV sequence: {{Val list| 15f, 31, 46, 77 }}
Badness: 0.020665
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 126/125, 154/153, 176/175, 196/195
Mapping: [{{val| 1 1 2 3 3 5 5 }}, {{val| 0 9 5 -3 7 -20 -14 }}]
POTE generator: ~21/20 = 78.003
Optimal GPV sequence: {{Val list| 15f, 31, 46, 77, 123e, 200ceg }}
Badness: 0.016768
==== Semivalentine ====
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 126/125, 169/168, 176/175
Mapping: [{{val| 2 2 4 6 6 7 }}, {{val| 0 9 5 -3 7 3 }}]
POTE generator: ~21/20 = 77.839
Optimal GPV sequence: {{Val list| 16, 30, 46, 62, 108ef }}
Badness: 0.032749
==== Hemivalentine ====
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 126/125, 176/175, 343/338
Mapping: [{{val| 1 1 2 3 3 4 }}, {{val| 0 18 10 -6 14 -9 }}]
POTE generator: ~40/39 = 39.044
Optimal GPV sequence: {{Val list| 30, 31, 61, 92f, 123f }}
Badness: 0.047059
=== Hemivalentino ===
Subgroup: 2.3.5.7.11
Comma list: 126/125, 243/242, 1029/1024
Mapping: [{{val| 1 1 2 3 2 }}, {{val| 0 18 10 -6 45 }}]
POTE generator: ~45/44 = 38.921
Optimal GPV sequence: {{Val list| 31, 92e, 123, 154, 185 }}
Badness: 0.061275
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Comma list: 126/125, 196/195, 243/242, 1029/1024
Mapping: [{{val| 1 1 2 3 2 5 }}, {{val| 0 18 10 -6 45 -40 }}]
POTE generator: ~45/44 = 38.948
Optimal GPV sequence: {{Val list| 31, 92e, 123, 154 }}
Badness: 0.057919
==== Hemivalentoid ====
Subgroup: 2.3.5.7.11.13
Comma list: 126/125, 144/143, 243/242, 343/338
Mapping: [{{val| 1 1 2 3 2 4 }}, {{val| 0 18 10 -6 45 -9 }}]
POTE generator: ~40/39 = 38.993
Optimal GPV sequence: {{Val list| 31, 92ef, 123f }}
Badness: 0.057931


== Nusecond ==
== Nusecond ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Nusecond]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Nusecond]].''


Nusecond tempers out 2430/2401 and 16875/16807 in addition to 126/125, and may be described as 31&amp;70. It has a neutral second generator of 49/45, two of which make up a 6/5 minor third since 2430/2401 is tempered out. [[31edo|31EDO]] can be used as a tuning, or [[132edo|132EDO]] with a val which is the sum of the [[patent val]]s for 31 and 101. Because 49/45 is flat of 12/11 by only 540/539, nusecond is more naturally thought of as an 11-limit temperament with a combined 12/11 and 11/10 as a generator, tempering out 99/98, 121/120 and 540/539. Because of all the neutral seconds, an exotic Middle Eastern sound comes naturally to nusecond. MOS of 15, 23, or 31 notes are enough to give fuller effect to the harmony, but the 8-note MOS might also be considered from the melodic point of view.
Nusecond tempers out 2430/2401 and 16875/16807 in addition to 126/125, and may be described as {{nowrap|31 &amp; 70}}. It has a neutral second generator of 49/45, two of which make up a 6/5 minor third since 2430/2401 is tempered out. [[31edo]] can be used as a tuning, or [[132edo]] with a val which is the sum of the [[patent val]]s for 31 and 101. Because 49/45 is flat of 12/11 by only 540/539, nusecond is more naturally thought of as an 11-limit temperament with a combined 12/11 and 11/10 as a generator, tempering out 99/98, 121/120 and 540/539. Because of all the neutral seconds, an exotic Middle Eastern sound comes naturally to nusecond. Mosses of 15, 23, or 31 notes are enough to give fuller effect to the harmony, but the 8-note mos might also be considered from the melodic point of view.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 2430/2401
[[Comma list]]: 126/125, 2430/2401


[[Mapping]]: [{{val| 1 3 4 5 }}, {{val| 0 -11 -13 -17 }}]
{{Mapping|legend=1| 1 3 4 5 | 0 -11 -13 -17 }}


Mapping generators: ~2, ~49/45
: mapping generators: ~2, ~49/45


{{Multival|legend=1| 11 13 17 -5 -4 3 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/45 = 154.579
 
[[POTE generator]]: ~49/45 = 154.579


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit]]: ~49/45 = {{monzo| 4/13 0 -1/13 }}
* [[7-odd-limit]]: ~49/45 = {{monzo| 4/13 0 -1/13 }}
: [{{monzo| 1 0 0 0 }}, {{monzo| -5/13 0 11/13 0 }}, {{monzo| 0 0 1 0 }}, {{monzo| -3/13 0 17/13 0 }}]
: {{monzo list| 1 0 0 0 | -5/13 0 11/13 0 | 0 0 1 0 | -3/13 0 17/13 0 }}
: [[Eigenmonzo]]s (unchanged intervals): 2, 5
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
* [[9-odd-limit]]: ~49/45 = {{monzo| 3/11 -1/11 }}
* [[9-odd-limit]]: ~49/45 = {{monzo| 3/11 -1/11 }}
: [{{monzo| 1 0 0 0 }}, {{monzo| 0 1 0 0 }}, {{monzo| 5/11 13/11 0 0 }}, {{monzo| 4/11 17/11 0 0 }}]
: {{monzo list| 1 0 0 0 | 0 1 0 0 | 5/11 13/11 0 0 | 4/11 17/11 0 0 }}
: [[Eigenmonzo]]s (unchanged intervals): 2, 3
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3


{{Val list|legend=1| 8d, 23d, 31, 101, 132c, 163c }}
{{Optimal ET sequence|legend=1| 8d, 23d, 31, 101, 132c, 163c }}


[[Badness]]: 0.050389
[[Badness]]: 0.050389
Line 348: Line 165:
Comma list: 99/98, 121/120, 126/125
Comma list: 99/98, 121/120, 126/125


Mapping: [{{val| 1 3 4 5 5 }}, {{val| 0 -11 -13 -17 -12 }}]
Mapping: {{mapping| 1 3 4 5 5 | 0 -11 -13 -17 -12 }}


Mapping generators: ~2, ~11/10
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 154.645
 
POTE generator: ~11/10 = 154.645


Minimax tuning:  
Minimax tuning:  
* [[11-odd-limit]]: ~11/10 = {{monzo| 1/10 -1/5 0 0 1/10 }}
* [[11-odd-limit]]: ~11/10 = {{monzo| 1/10 -1/5 0 0 1/10 }}
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 19/10 11/5 0 0 -11/10 }}, {{monzo| 27/10 13/5 0 0 -13/10 }}, {{monzo| 33/10 17/5 0 0 -17/10 }}, {{monzo| 19/5 12/5 0 0 -6/5 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 19/10 11/5 0 0 -11/10 }}, {{monzo| 27/10 13/5 0 0 -13/10 }}, {{monzo| 33/10 17/5 0 0 -17/10 }}, {{monzo| 19/5 12/5 0 0 -6/5 }}]
: Eigenmonzos (unchanged intervals): 2, 11/9
: unchanged-interval (eigenmonzo) basis: 2.11/9


Algebraic generator: positive root of 15''x''<sup>2</sup> - 10''x'' - 7, or (5 + sqrt (130))/15, at 154.6652 cents. The recurrence converges very quickly.
Algebraic generator: positive root of 15''x''<sup>2</sup> - 10''x'' - 7, or (5 + sqrt (130))/15, at 154.6652 cents. The recurrence converges very quickly.


Optimal GPV sequence: {{Val list| 8d, 23de, 31, 101, 132ce, 163ce, 194cee }}
{{Optimal ET sequence|legend=1| 8d, 23de, 31, 101, 132ce, 163ce, 194cee }}


Badness: 0.025621
Badness: 0.025621
Line 370: Line 185:
Comma list: 66/65, 99/98, 121/120, 126/125
Comma list: 66/65, 99/98, 121/120, 126/125


Mapping: [{{val| 1 3 4 5 5 5 }}, {{val| 0 -11 -13 -17 -12 -10 }}]
Mapping: {{mapping| 1 3 4 5 5 5 | 0 -11 -13 -17 -12 -10 }}


POTE generator: ~11/10 = 154.478
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 154.478


Optimal GPV sequence: {{Val list| 8d, 23de, 31, 70f, 101ff }}
{{Optimal ET sequence|legend=1| 8d, 23de, 31, 70f, 101ff }}


Badness: 0.023323
Badness: 0.023323
Line 382: Line 197:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Oolong]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Oolong]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 117649/116640
[[Comma list]]: 126/125, 117649/116640


[[Mapping]]: [{{val| 1 6 7 8 }}, {{val| 0 -17 -18 -20 }}]
{{Mapping|legend=1| 1 6 7 8 | 0 -17 -18 -20 }}
 
{{Multival|legend=1| 17 18 20 -11 -16 -4 }}


[[POTE generator]]: ~6/5 = 311.679
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 311.679


{{Val list|legend=1| 27, 50, 77 }}
{{Optimal ET sequence|legend=1| 27, 50, 77 }}


[[Badness]]: 0.073509
[[Badness]]: 0.073509
Line 401: Line 214:
Comma list: 126/125, 176/175, 26411/26244
Comma list: 126/125, 176/175, 26411/26244


Mapping: [{{val| 1 6 7 8 18 }}, {{val| 0 -17 -18 -20 -56 }}]
Mapping: {{mapping| 1 6 7 8 18 | 0 -17 -18 -20 -56 }}


POTE generator: ~6/5 = 311.587
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 311.587


Optimal GPV sequence: {{Val list| 27e, 77, 104c, 181c }}
{{Optimal ET sequence|legend=1| 27e, 77, 104c, 181c }}


Badness: 0.056915
Badness: 0.056915
Line 414: Line 227:
Comma list: 126/125, 176/175, 196/195, 13013/12960
Comma list: 126/125, 176/175, 196/195, 13013/12960


Mapping: [{{val| 1 6 7 8 18 5 }}, {{val| 0 -17 -18 -20 -56 -5 }}]
Mapping: {{mapping| 1 6 7 8 18 5 | 0 -17 -18 -20 -56 -5 }}


POTE generator: ~6/5 = 311.591
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 311.591


Optimal GPV sequence: {{Val list| 27e, 77, 104c, 181c }}
{{Optimal ET sequence|legend=1| 27e, 77, 104c, 181c }}


Badness: 0.035582
Badness: 0.035582
Line 425: Line 238:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Vines]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Vines]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 84035/82944
[[Comma list]]: 126/125, 84035/82944


[[Mapping]]: [{{val| 2 7 8 8 }}, {{val| 0 -8 -7 -5 }}]
{{Mapping|legend=1| 2 7 8 8 | 0 -8 -7 -5 }}


[[POTE generator]]: ~6/5 = 312.602
[[Optimal tuning]] ([[POTE]]): 1\2, ~6/5 = 312.602


{{Val list|legend=1| 42, 46, 96d, 142d, 238dd }}
{{Optimal ET sequence|legend=1| 42, 46, 96d, 142d, 238dd }}


[[Badness]]: 0.078049
[[Badness]]: 0.078049
Line 442: Line 255:
Comma list: 126/125, 385/384, 2401/2376
Comma list: 126/125, 385/384, 2401/2376


Mapping: [{{val| 2 7 8 8 5 }}, {{val| 0 -8 -7 -5 4 }}]
Mapping: {{mapping| 2 7 8 8 5 | 0 -8 -7 -5 4 }}


POTE generator: ~6/5 = 312.601
Optimal tuning (POTE): 1\2, ~6/5 = 312.601


Optimal GPV sequence: {{Val list| 42, 46, 96d, 142d, 238dd }}
{{Optimal ET sequence|legend=1| 42, 46, 96d, 142d, 238dd }}


Badness: 0.044499
Badness: 0.044499
Line 455: Line 268:
Comma list: 126/125, 196/195, 364/363, 385/384
Comma list: 126/125, 196/195, 364/363, 385/384


Mapping: [{{val| 2 7 8 8 5 5 }}, {{val| 0 -8 -7 -5 4 5 }}]
Mapping: {{mapping| 2 7 8 8 5 5 | 0 -8 -7 -5 4 5 }}


POTE generator: ~6/5 = 312.564
Optimal tuning (POTE): 1\2, ~6/5 = 312.564


Optimal GPV sequence: {{Val list| 42, 46, 96d, 238ddf }}
{{Optimal ET sequence|legend=1| 42, 46, 96d, 238ddf }}


Badness: 0.029693
Badness: 0.029693
Line 466: Line 279:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Kumonga]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Kumonga]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 12288/12005
[[Comma list]]: 126/125, 12288/12005


[[Mapping]]: [{{val| 1 4 4 3 }}, {{val| 0 -13 -9 -1 }}]
{{Mapping|legend=1| 1 4 4 3 | 0 -13 -9 -1 }}
 
{{Multival|legend=1| 13 9 1 -16 -35 -23 }}


[[POTE generator]]: ~8/7 = 222.797
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 222.797


{{Val list|legend=1| 16, 27, 43, 70, 167ccdd }}
{{Optimal ET sequence|legend=1| 16, 27, 43, 70, 167ccdd }}


[[Badness]]: 0.087500
[[Badness]]: 0.087500
Line 485: Line 296:
Comma list: 126/125, 176/175, 864/847
Comma list: 126/125, 176/175, 864/847


Mapping: [{{val| 1 4 4 3 7 }}, {{val| 0 -13 -9 -1 -19 }}]
Mapping: {{mapping| 1 4 4 3 7 | 0 -13 -9 -1 -19 }}


POTE generator: ~8/7 = 222.898
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 222.898


Optimal GPV sequence: {{Val list| 16, 27e, 43, 70e }}
{{Optimal ET sequence|legend=1| 16, 27e, 43, 70e }}


Badness: 0.043336
Badness: 0.043336
Line 498: Line 309:
Comma list: 78/77, 126/125, 144/143, 176/175
Comma list: 78/77, 126/125, 144/143, 176/175


Mapping: [{{val| 1 4 4 3 7 5 }}, {{val| 0 -13 -9 -1 -19 -7 }}]
Mapping: {{mapping| 1 4 4 3 7 5 | 0 -13 -9 -1 -19 -7 }}


POTE generator: ~8/7 = 222.961
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 222.961


Optimal GPV sequence: {{Val list| 16, 27e, 43, 70e, 113cdee }}
{{Optimal ET sequence|legend=1| 16, 27e, 43, 70e, 113cdee }}


Badness: 0.028920
Badness: 0.028920
== Thuja ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Thuja]].''
Subgroup: 2.3.5.7
[[Comma list]]: 126/125, 65536/64827
[[Mapping]]: [{{val| 1 -4 0 7 }}, {{val| 0 12 5 -9 }}]
{{Multival|legend=1| 12 5 -9 -20 -48 -35 }}
[[POTE generator]]: ~175/128 = 558.605
{{Val list|legend=1| 15, 43, 58 }}
[[Badness]]: 0.088441
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 126/125, 176/175, 1344/1331
Mapping: [{{val| 1 -4 0 7 3 }}, {{val| 0 12 5 -9 1 }}]
POTE generator: ~11/8 = 558.620
Optimal GPV sequence: {{Val list| 15, 43, 58 }}
Badness: 0.033078
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 126/125, 144/143, 176/175, 364/363
Mapping: [{{val| 1 -4 0 7 3 -7 }}, {{val| 0 12 5 -9 1 23 }}]
POTE generator: ~11/8 = 558.589
Optimal GPV sequence: {{Val list| 15, 43, 58 }}
Badness: 0.022838
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
Comma list: 126/125, 144/143, 176/175, 221/220, 256/255
Mapping: [{{val| 1 -4 0 7 3 -7 12 }}, {{val| 0 12 5 -9 1 23 -17 }}]
POTE generator: ~11/8 = 558.509
Optimal GPV sequence: {{Val list| 15, 43, 58 }}
Badness: 0.022293
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 96/95, 126/125, 144/143, 153/152, 176/175, 221/220
Mapping: [{{val| 1 -4 0 7 3 -7 12 1 }}, {{val| 0 12 5 -9 1 23 -17 7 }}]
POTE generator: ~11/8 = 558.504
Optimal GPV sequence: {{Val list| 15, 43, 58h }}
Badness: 0.018938
=== 23-limit ===
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 96/95, 126/125, 144/143, 153/152, 176/175, 221/220, 231/230
Mapping: [{{val| 1 -4 0 7 3 -7 12 1 5 }}, {{val| 0 12 5 -9 1 23 -17 7 -1 }}]
POTE generator: ~11/8 = 558.522
Optimal GPV sequence: {{Val list| 15, 43, 58hi }}
Badness: 0.016581
=== 29-limit ===
The ''raison d'etre'' of this entry is the simple and accurate approximation of factor twenty-nine, the 2.5.11.21.29 subgroup being of especially good accuracy and simplicity.
Subgroup: 2.3.5.7.11.13.17.19.23.29
Comma list: 96/95, 116/115, 126/125, 144/143, 153/152, 176/175, 221/220, 231/230
Mapping: [{{val| 1 -4 0 7 3 -7 12 1 5 3 }}, {{val| 0 12 5 -9 1 23 -17 7 -1 4 }}]
POTE generator: ~11/8 = 558.520
Optimal GPV sequence: {{Val list| 15, 43, 58hi }}
Badness: 0.013762


== Cypress ==
== Cypress ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Cypress]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Cypress]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 19683/19208
[[Comma list]]: 126/125, 19683/19208


[[Mapping]]: [{{val| 1 7 10 15 }}, {{val| 0 -12 -17 -27 }}]
{{Mapping|legend=1| 1 7 10 15 | 0 -12 -17 -27 }}


{{Multival|legend=1| 12 17 27 -1 9 15 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~135/98 = 541.828


[[POTE generator]]: ~135/98 = 541.828
{{Optimal ET sequence|legend=1| 11cd, 20cd, 31, 206bcd, 237bcd, 268bcd, 299bcd, 330bbcd }}
 
{{Val list|legend=1| 11cd, 20cd, 31, 206bcd, 237bcd, 268bcd, 299bcd, 330bbcd }}


[[Badness]]: 0.099801
[[Badness]]: 0.099801
Line 625: Line 337:
Comma list: 99/98, 126/125, 243/242
Comma list: 99/98, 126/125, 243/242


Mapping: [{{val| 1 7 10 15 17 }}, {{val| 0 -12 -17 -27 -30 }}]
Mapping: {{mapping| 1 7 10 15 17 | 0 -12 -17 -27 -30 }}


POTE generator: ~15/11 = 541.772
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 541.772


Optimal GPV sequence: {{Val list| 11cdee, 20cde, 31, 144cd, 175cd, 206bcde, 237bcde }}
{{Optimal ET sequence|legend=1| 11cdee, 20cde, 31, 144cd, 175cd, 206bcde, 237bcde }}


Badness: 0.042719
Badness: 0.042719
Line 636: Line 348:
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 66/65, 99/98. 126/125, 243/242
Comma list: 66/65, 99/98, 126/125, 243/242


Mapping: [{{val| 1 7 10 15 17 15 }}, {{val| 0 -12 -17 -27 -30 -25 }}]
Mapping: {{mapping| 1 7 10 15 17 15 | 0 -12 -17 -27 -30 -25 }}


POTE generator: ~15/11 = 541.778
Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 541.778


Optimal GPV sequence: {{Val list| 11cdeef, 20cdef, 31 }}
{{Optimal ET sequence|legend=1| 11cdeef, 20cdef, 31 }}


Badness: 0.037849
Badness: 0.037849


== Bisemidim ==
== Bisemidim ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 118098/117649
[[Comma list]]: 126/125, 118098/117649


[[Mapping]]: [{{val| 2 1 2 2 }}, {{val| 0 9 11 15 }}]
{{Mapping|legend=1| 2 1 2 2 | 0 9 11 15 }}
 
{{Multival|legend=1| 18 22 30 -7 -3 8 }}


[[POTE generator]]: ~35/27 = 455.445
[[Optimal tuning]] ([[POTE]]): ~343/243 = 1\2, ~35/27 = 455.445


{{Val list|legend=1| 50, 58, 108, 166c, 408ccc }}
{{Optimal ET sequence|legend=1| 50, 58, 108, 166c, 408ccc }}


[[Badness]]: 0.097786
[[Badness]]: 0.097786
Line 666: Line 376:
Comma list: 126/125, 540/539, 1344/1331
Comma list: 126/125, 540/539, 1344/1331


Mapping: [{{val| 2 1 2 2 5 }}, {{val| 0 9 11 15 8 }}]
Mapping: {{mapping| 2 1 2 2 5 | 0 9 11 15 8 }}


POTE generator: ~35/27 = 455.373
Optimal tuning (POTE): ~99/70 = 1\2, ~35/27 = 455.373


Optimal GPV sequence: {{Val list| 50, 58, 108, 166ce, 224cee }}
{{Optimal ET sequence|legend=1| 50, 58, 108, 166ce, 224cee }}


Badness: 0.041190
Badness: 0.041190
Line 679: Line 389:
Comma list: 126/125, 144/143, 196/195, 364/363
Comma list: 126/125, 144/143, 196/195, 364/363


Mapping: [{{val| 2 1 2 2 5 5 }}, {{val| 0 9 11 15 8 10 }}]
Mapping: {{mapping| 2 1 2 2 5 5 | 0 9 11 15 8 10 }}


POTE generator: ~35/27 = 455.347
Optimal tuning (POTE): ~55/39 = 1\2, ~13/10 = 455.347


Optimal GPV sequence: {{Val list| 50, 58, 166cef, 224ceeff }}
{{Optimal ET sequence|legend=1| 50, 58, 166cef, 224ceeff }}


Badness: 0.023877
Badness: 0.023877
Line 690: Line 400:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Casablanca]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Casablanca]].''


Aside from 126/125, casablanca tempers out the no-threes comma 823543/819200 and also 589824/588245, and may also be described as 31&amp;73. 74\135 or 91\166 supply good tunings for the generator, and 20 and 31 note MOS are available.
Aside from 126/125, casablanca tempers out the no-threes comma 823543/819200 and also 589824/588245, and may also be described as {{nowrap|31 &amp; 73}}. 74\135 or 91\166 supply good tunings for the generator, and 20- and 31-note mosses are available.
 
It may not seem like casablanca has much to offer, but peering under the hood a bit harder suggests otherwise. For one thing, the ~35/24 generator is particularly interesting; like 15/14 and 21/20, it represents an interval between one vertex of a [[hexany]] and the opposite vertex, which makes it particularly simple with regard to the cubic lattice of tetrads. For another, if we add 385/384 to the list of commas, 35/24 is identified with 16/11, and casablanca is revealed as an 11-limit temperament with a very low complexity for 11 and not too high a one for 7; we might compare 1, 4, 14, 19, the generator steps to 11, 7, 5 and 3 respectively, with 1, 4, 10, 18, the steps to 3, 5, 7 and 11 in 11-limit meantone.


It may not seem like casablanca has much to offer, but peering under the hood a bit harder suggests otherwise. For one thing, the 35/24 generator is particularly interesting; like 15/14 and 21/20, it represents an interval between one vertex of a [[hexany]] and the opposite vertex, which makes it particularly simple with regard to the cubic lattice of tetrads. For another, if we add 385/384 to the list of commas, 35/24 is identified with 16/11, and casablanca is revealed as an 11-limit temperament with a very low complexity for 11 and not too high a one for 7; we might compare 1, 4, 14, 19, the generator steps to 11, 7, 5 and 3 respectively, with 1, 4, 10, 18, the steps to 3, 5, 7 and 11 in 11-limit meantone.
Marrakesh, named by [[Herman Miller]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_19166.html#19186 Yahoo! Tuning Group | ''A rose by any other name . . .'']</ref>, is a more accurate 11-limit extension where the generator is identified with 22/15 as opposed to 16/11 in casablanca.  


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 589824/588245
[[Comma list]]: 126/125, 589824/588245


[[Mapping]]: [{{val| 1 12 10 5 }}, {{val| 0 -19 -14 -4 }}]
{{Mapping|legend=1| 1 12 10 5 | 0 -19 -14 -4 }}


{{Multival|legend=1| 19 14 4 -22 -47 -30 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/24 = 657.818


[[POTE generator]]: ~35/24 = 657.818
{{Optimal ET sequence|legend=1| 11b, 20b, 31, 104c, 135c, 166c }}
 
{{Val list|legend=1| 11b, 20b, 31, 104c, 135c, 166c }}


[[Badness]]: 0.101191
[[Badness]]: 0.101191
Line 713: Line 423:
Comma list: 126/125, 385/384, 2420/2401
Comma list: 126/125, 385/384, 2420/2401


Mapping: [{{val| 1 12 10 5 4 }}, {{val| 0 -19 -14 -4 -1 }}]
Mapping: {{mapping| 1 12 10 5 4 | 0 -19 -14 -4 -1 }}


POTE generator: ~16/11 = 657.923
Optimal tuning (POTE): ~2 = 1\1, ~16/11 = 657.923


Optimal GPV sequence: {{Val list| 11b, 20b, 31 }}
{{Optimal ET sequence|legend=1| 11b, 20b, 31 }}


Badness: 0.067291
Badness: 0.067291
Line 726: Line 436:
Comma list: 126/125, 196/195, 385/384, 2420/2401
Comma list: 126/125, 196/195, 385/384, 2420/2401


Mapping: [{{val| 1 12 10 5 4 7 }}, {{val| 0 -19 -14 -4 -1 -6 }}]
Mapping: {{mapping| 1 12 10 5 4 7 | 0 -19 -14 -4 -1 -6 }}


POTE generator: ~16/11 = 657.854
Optimal tuning (POTE): ~2 = 1\1, ~16/11 = 657.854


Optimal GPV sequence: {{Val list| 11b, 20b, 31 }}
{{Optimal ET sequence|legend=1| 11b, 20b, 31 }}


=== Marrakesh ===
=== Marrakesh ===
Line 737: Line 447:
Comma list: 126/125, 176/175, 14641/14580
Comma list: 126/125, 176/175, 14641/14580


Mapping: [{{val| 1 12 10 5 21 }}, {{val| 0 -19 -14 -4 -32 }}]
Mapping: {{mapping| 1 12 10 5 21 | 0 -19 -14 -4 -32 }}


POTE generator: ~22/15 = 657.791
Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.791


Optimal GPV sequence: {{Val list| 31, 73, 104c, 135c }}
{{Optimal ET sequence|legend=1| 31, 73, 104c, 135c }}


Badness: 0.040539
Badness: 0.040539
Line 750: Line 460:
Comma list: 126/125, 176/175, 196/195, 14641/14580
Comma list: 126/125, 176/175, 196/195, 14641/14580


Mapping: [{{val| 1 12 10 5 21 -10 }}, {{val| 0 -19 -14 -4 -32 25 }}]
Mapping: {{mapping| 1 12 10 5 21 -10 | 0 -19 -14 -4 -32 25 }}


POTE generator: ~22/15 = 657.756
Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.756


Optimal GPV sequence: {{Val list| 31, 73, 104c, 135c, 239ccf }}
{{Optimal ET sequence|legend=1| 31, 73, 104c, 135c, 239ccf }}


Badness: 0.040774
Badness: 0.040774
Line 763: Line 473:
Comma list: 126/125, 144/143, 176/175, 1540/1521
Comma list: 126/125, 144/143, 176/175, 1540/1521


Mapping: [{{val| 1 12 10 5 21 7 }}, {{val| 0 -19 -14 -4 -32 -6 }}]
Mapping: {{mapping| 1 12 10 5 21 7 | 0 -19 -14 -4 -32 -6 }}


POTE generator: ~22/15 = 657.700
Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.700


Optimal GPV sequence: {{Val list| 31, 104cff, 135cff }}
{{Optimal ET sequence|legend=1| 31, 104cff, 135cff }}


Badness: 0.041395
Badness: 0.041395


== Amigo ==
== Amigo ==
{{see also| High badness temperaments #Magus }}
{{See also| High badness temperaments #Magus }}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 2097152/2083725
[[Comma list]]: 126/125, 2097152/2083725


[[Mapping]]: [{{val| 1 -2 2 9 }}, {{val| 0 11 1 -19 }}]
{{Mapping|legend=1| 1 -2 2 9 | 0 11 1 -19 }}


{{Multival|legend=1| 11 1 -19 -24 -61 -47 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 391.094


[[POTE generator]]: ~5/4 = 391.094
{{Optimal ET sequence|legend=1| 43, 46, 89, 135c, 359cc }}
 
{{Val list|legend=1| 43, 46, 89, 135c, 359cc }}


[[Badness]]: 0.110873
[[Badness]]: 0.110873
Line 793: Line 501:
Comma list: 126/125, 176/175, 16384/16335
Comma list: 126/125, 176/175, 16384/16335


Mapping: [{{val| 1 -2 2 9 9 }}, {{val| 0 11 1 -19 -17 }}]
Mapping: {{mapping| 1 -2 2 9 9 | 0 11 1 -19 -17 }}


POTE generator: ~5/4 = 391.075
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.075


Optimal GPV sequence: {{Val list| 43, 46, 89, 135c, 224c }}
{{Optimal ET sequence|legend=1| 43, 46, 89, 135c, 224c }}


Badness: 0.043438
Badness: 0.043438
Line 806: Line 514:
Comma list: 126/125, 169/168, 176/175, 364/363
Comma list: 126/125, 169/168, 176/175, 364/363


Mapping: [{{val| 1 -2 2 9 9 5 }}, {{val| 0 11 1 -19 -17 -4 }}]
Mapping: {{mapping| 1 -2 2 9 9 5 | 0 11 1 -19 -17 -4 }}


POTE generator: ~5/4 = 391.073
Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.073


Optimal GPV sequence: {{Val list| 43, 46, 89, 135cf, 224cf }}
{{Optimal ET sequence|legend=1| 43, 46, 89, 135cf, 224cf }}


Badness: 0.030666
Badness: 0.030666
== Gilead ==
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 126/125, 343/324
{{Mapping|legend=1| 1 4 5 6 | 0 -9 -10 -12 }}
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~6/5 = 321.109
* [[POTE]]: ~2 = 1\1, ~6/5 = 321.423
{{Optimal ET sequence|legend=1| 11cd, 15, 41dd, 56dd }}
[[Badness]]: 0.115292


== Supersensi ==
== Supersensi ==
Supersensi (8d &amp; 43) has supermajor third as a generator like [[sensi]], but the no-fives comma 17496/16807 rather than 245/243 tempered out.
Supersensi ({{nowrap|8d &amp; 43}}) has supermajor third as a generator like [[sensi]], but the no-fives comma 17496/16807 rather than 245/243 tempered out.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 17496/16807
[[Comma list]]: 126/125, 17496/16807


[[Mapping]]: [{{val| 1 -4 -4 -5 }}, {{val| 0 15 17 21 }}]
{{Mapping|legend=1| 1 -4 -4 -5 | 0 15 17 21 }}
 
{{Multival|legend=1| 15 17 21 -8 -9 1 }}


[[POTE generator]]: ~343/270 = 446.568
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~343/270 = 446.568


{{Val list|legend=1| 8d, 35, 43 }}
{{Optimal ET sequence|legend=1| 8d, 35, 43 }}


[[Badness]]: 0.148531
[[Badness]]: 0.148531
Line 836: Line 557:
Comma list: 99/98, 126/125, 864/847
Comma list: 99/98, 126/125, 864/847


Mapping: [{{val| 1 -4 -4 -5 -1 }}, {{val| 0 15 17 21 12 }}]
Mapping: {{mapping| 1 -4 -4 -5 -1 | 0 15 17 21 12 }}


POTE generator: ~72/55 = 446.616
Optimal tuning (POTE): ~2 = 1\1, ~72/55 = 446.616


Optimal GPV sequence: {{Val list| 8d, 35, 43 }}
{{Optimal ET sequence|legend=1| 8d, 35, 43 }}


Badness: 0.059449
Badness: 0.059449
Line 849: Line 570:
Comma list: 78/77, 99/98, 126/125, 144/143
Comma list: 78/77, 99/98, 126/125, 144/143


Mapping: [{{val| 1 -4 -4 -5 -1 -3 }}, {{val| 0 15 17 21 12 18 }}]
Mapping: {{mapping| 1 -4 -4 -5 -1 -3 | 0 15 17 21 12 18 }}


POTE generator: ~13/10 = 446.598
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 446.598


Optimal GPV sequence: {{Val list| 8d, 35f, 43 }}
{{Optimal ET sequence|legend=1| 8d, 35f, 43 }}


Badness: 0.035258
Badness: 0.035258
Line 862: Line 583:
Comma list: 78/77, 99/98, 120/119, 126/125, 144/143
Comma list: 78/77, 99/98, 120/119, 126/125, 144/143


Mapping: [{{val| 1 -4 -4 -5 -1 -3 0 }}, {{val| 0 15 17 21 12 18 11 }}]
Mapping: {{mapping| 1 -4 -4 -5 -1 -3 0 | 0 15 17 21 12 18 11 }}


POTE generator: ~13/10 = 446.631
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 446.631


Optimal GPV sequence: {{Val list| 8d, 35f, 43 }}
{{Optimal ET sequence|legend=1| 8d, 35f, 43 }}


Badness: 0.025907
Badness: 0.025907


== Cobalt ==
== Cobalt ==
The name of ''cobalt temperament'' comes from Cobalt, the 27th element.
The name of the cobalt temperament comes from the 27th element.


Cobalt (27 &amp; 81) has a period of 1/27 octave and tempers out 126/125 and 540/539, as well as the [[Starling family #Aplonis|aplonis temperament]].  
Cobalt ({{nowrap|27 &amp; 81}}) has a period of 1/27 octave and tempers out 126/125 and 540/539, as well as the [[Starling family #Aplonis|aplonis temperament]].  


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 126/125, 40353607/40310784
[[Comma list]]: 126/125, 40353607/40310784


[[Mapping]]: [{{val|27 43 63 76}}, {{val|0 -1 -1 -1}}]
{{Mapping|legend=1| 27 43 63 76 | 0 -1 -1 -1 }}


[[POTE generator]]: ~3/2 = 701.244
[[Optimal tuning]] ([[POTE]]): 1\27, ~3/2 = 701.244


{{Val list|legend=1| 27, 81, 108, 135c, 243c }}
{{Optimal ET sequence|legend=1| 27, 81, 108, 135c, 243c }}


[[Badness]]: 0.173308
[[Badness]]: 0.173308
Line 892: Line 613:
Comma list: 126/125, 540/539, 21609/21296
Comma list: 126/125, 540/539, 21609/21296


Mapping: [{{val|27 43 63 76 94}}, {{val|0 -1 -1 -1 -2}}]
Mapping: {{mapping| 27 43 63 76 94 | 0 -1 -1 -1 -2 }}


POTE generator: ~3/2 = 700.001
Optimal tuning (POTE): 1\27, ~3/2 = 700.001


Optimal GPV sequence: {{Val list| 27e, 81, 108 }}
{{Optimal ET sequence|legend=1| 27e, 81, 108 }}


Badness: 0.078060
Badness: 0.078060
Line 905: Line 626:
Comma list: 126/125, 144/143, 196/195, 21609/21296
Comma list: 126/125, 144/143, 196/195, 21609/21296


Mapping: [{{val|27 43 63 76 94 100}}, {{val|0 -1 -1 -1 -2 0}}]
Mapping: {{mapping| 27 43 63 76 94 100 | 0 -1 -1 -1 -2 0 }}


POTE generator: ~3/2 = 700.867
Optimal tuning (POTE): 1\27, ~3/2 = 700.867


Optimal GPV sequence: {{Val list| 27e, 81, 108, 243ceef }}
{{Optimal ET sequence|legend=1| 27e, 81, 108, 243ceef }}


Badness: 0.057145
Badness: 0.057145
Line 918: Line 639:
Comma list: 126/125, 144/143, 189/187, 196/195, 1452/1445
Comma list: 126/125, 144/143, 189/187, 196/195, 1452/1445


Mapping: [{{val|27 43 63 76 94 100 111}}, {{val|0 -1 -1 -1 -2 0 -2}}]
Mapping: {{mapping| 27 43 63 76 94 100 111 | 0 -1 -1 -1 -2 0 -2 }}


POTE generator: ~3/2 = 700.397
Optimal tuning (POTE): 1\27, ~3/2 = 700.397


Optimal GPV sequence: {{Val list| 27eg, 81, 108g }}
{{Optimal ET sequence|legend=1| 27eg, 81, 108g }}


Badness: 0.042106
Badness: 0.042106
Line 931: Line 652:
Comma list: 126/125, 144/143, 171/170, 189/187, 196/195, 969/968
Comma list: 126/125, 144/143, 171/170, 189/187, 196/195, 969/968


Mapping: [{{val|27 43 63 76 94 100 111 115}}, {{val|0 -1 -1 -1 -2 0 -2 -1}}]
Mapping: {{mapping| 27 43 63 76 94 100 111 115 | 0 -1 -1 -1 -2 0 -2 -1 }}


POTE generator: ~3/2 = 700.429
Optimal tuning (POTE): 1\27, ~3/2 = 700.429


Optimal GPV sequence: {{Val list| 27eg, 81, 108g }}
{{Optimal ET sequence|legend=1| 27eg, 81, 108g }}


Badness: 0.030415
Badness: 0.030415
Line 944: Line 665:
Comma list: 126/125, 144/143, 196/195, 221/220, 12005/11968
Comma list: 126/125, 144/143, 196/195, 221/220, 12005/11968


Mapping: [{{val|27 43 63 76 94 100 111}}, {{val|0 -1 -1 -1 -2 0 -3}}]
Mapping: {{mapping| 27 43 63 76 94 100 111 | 0 -1 -1 -1 -2 0 -3 }}


POTE generator: ~3/2 = 701.595
Optimal tuning (POTE): 1\27, ~3/2 = 701.595


Optimal GPV sequence: {{Val list| 27eg, 81gg, 108, 135ce }}
{{Optimal ET sequence|legend=1| 27eg, 81gg, 108, 135ce }}


Badness: 0.047163
Badness: 0.047163
Line 957: Line 678:
Comma list: 126/125, 144/143, 196/195, 210/209, 221/220, 1088/1083
Comma list: 126/125, 144/143, 196/195, 210/209, 221/220, 1088/1083


Mapping: [{{val|27 43 63 76 94 100 111 115}}, {{val|0 -1 -1 -1 -2 0 -3 -1}}]
Mapping: {{mapping| 27 43 63 76 94 100 111 115 | 0 -1 -1 -1 -2 0 -3 -1 }}


POTE generator: ~3/2 = 701.673
Optimal tuning (POTE): 1\27, ~3/2 = 701.673


Optimal GPV sequence: {{Val list| 27eg, 81gg, 108, 135ceh }}
{{Optimal ET sequence|legend=1| 27eg, 81gg, 108, 135ceh }}


Badness: 0.034176
Badness: 0.034176
Line 970: Line 691:
Comma list: 126/125, 169/168, 540/539, 975/968
Comma list: 126/125, 169/168, 540/539, 975/968


Mapping: [{{val|27 43 63 76 94 100}}, {{val|0 -1 -1 -1 -2 -1}}]
Mapping: {{mapping| 27 43 63 76 94 100 | 0 -1 -1 -1 -2 -1 }}


POTE generator: ~3/2 = 699.179
Optimal tuning (POTE): 1\27, ~3/2 = 699.179


Optimal GPV sequence: {{Val list| 27e, 54bdef, 81f, 108f }}
{{Optimal ET sequence|legend=1| 27e, 54bdef, 81f, 108f }}


Badness: 0.052732
Badness: 0.052732


[[Category:Temperament collections]]
[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]
[[Category:Starling temperaments| ]] <!-- main article -->
[[Category:Starling temperaments| ]] <!-- main article -->
[[Category:Myna]]
[[Category:Myna]]
[[Category:Rank 2]]
[[Category:Rank 2]]

Latest revision as of 12:40, 21 August 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

This page discusses miscellaneous rank-2 temperaments tempering out 126/125, the starling comma or septimal semicomma.

Temperaments discussed in families and clans are:

Since (6/5)3 = 126/125 × 12/7, these temperaments tend to have a relatively small complexity for 6/5. They also possess the starling tetrad, the 6/5–6/5–6/5–7/6 versions of the diminished seventh chord. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before 12edo established itself as the standard tuning, it is actually three stacked minor thirds and an augmented second, contrary to the popular belief that it is four stacked minor thirds.

Myna

For the 5-limit version of this temperament, see High badness temperaments #Mynic.

7-limit myna is naturally found by establishing a structure of thirds, by making 7/6 - 6/5 - 49/40 - 5/4 - 9/7 all equidistant (the distances between which are 36/35, 49/48, and 50/49). 11-limit myna then arises from equating this neutral third to 11/9. Myna's characteristic feature is that the pental thirds are tuned outwards so that the chroma between them (25/24) is twice the size of the interval between the pental and septimal thirds (36/35), leaving space for a neutral third in between. In that sense, it is opposed to keemic temperaments, where the chroma between the pental thirds is the same as the distance between the pental and septimal thirds.

In terms of commas tempered, in addition to 126/125, myna adds 1728/1715, the orwell comma, and 2401/2400, the breedsma. It can also be described as the 27 & 31 temperament. It has 6/5 as a generator, and 58edo can be used as a tuning, with 89edo being a better one, and fans of round amounts in cents may like 120edo. It is also possible to tune myna with pure fifths by taking 61/10 as the generator. Myna extends naturally but with much increased complexity to the 11 and 13 limits.

Subgroup: 2.3.5.7

Comma list: 126/125, 1728/1715

Mapping[1 9 9 8], 0 -10 -9 -7]]

mapping generators: ~2, ~5/3

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.146

Minimax tuning:

[[1 0 0 0, [0 1 0 0, [9/10 9/10 0 0, [17/10 7/10 0 0]
unchanged-interval (eigenmonzo) basis: 2.3

Optimal ET sequence27, 31, 58, 89

Badness: 0.027044

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 176/175, 243/242

Mapping: [1 9 9 8 22], 0 -10 -9 -7 -25]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.144

Optimal ET sequence27e, 31, 58, 89

Badness: 0.016842

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 144/143, 176/175, 196/195

Mapping: [1 9 9 8 22 0], 0 -10 -9 -7 -25 5]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.276

Optimal ET sequence27e, 31, 58

Badness: 0.017125

Minah

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 91/90, 126/125, 176/175

Mapping: [1 9 9 8 22 20], 0 -10 -9 -7 -25 -22]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.381

Optimal ET sequence27e, 31f, 58f

Badness: 0.027568

Maneh

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 105/104, 126/125, 540/539

Mapping: [1 9 9 8 22 23], 0 -10 -9 -7 -25 -26]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 309.804

Optimal ET sequence27eff, 31

Badness: 0.029868

Myno

Subgroup: 2.3.5.7.11

Comma list: 99/98, 126/125, 385/384

Mapping: [1 9 9 8 -1], 0 -10 -9 -7 6]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 309.737

Optimal ET sequence27, 31

Badness: 0.033434

Coleto

Subgroup: 2.3.5.7.11

Comma list: 56/55, 100/99, 1728/1715

Mapping: [1 9 9 8 2], 0 -10 -9 -7 2]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.853

Optimal ET sequence4, 23bc, 27e

Badness: 0.048687

Nusecond

For the 5-limit version of this temperament, see High badness temperaments #Nusecond.

Nusecond tempers out 2430/2401 and 16875/16807 in addition to 126/125, and may be described as 31 & 70. It has a neutral second generator of 49/45, two of which make up a 6/5 minor third since 2430/2401 is tempered out. 31edo can be used as a tuning, or 132edo with a val which is the sum of the patent vals for 31 and 101. Because 49/45 is flat of 12/11 by only 540/539, nusecond is more naturally thought of as an 11-limit temperament with a combined 12/11 and 11/10 as a generator, tempering out 99/98, 121/120 and 540/539. Because of all the neutral seconds, an exotic Middle Eastern sound comes naturally to nusecond. Mosses of 15, 23, or 31 notes are enough to give fuller effect to the harmony, but the 8-note mos might also be considered from the melodic point of view.

Subgroup: 2.3.5.7

Comma list: 126/125, 2430/2401

Mapping[1 3 4 5], 0 -11 -13 -17]]

mapping generators: ~2, ~49/45

Optimal tuning (POTE): ~2 = 1\1, ~49/45 = 154.579

Minimax tuning:

[[1 0 0 0, [-5/13 0 11/13 0, [0 0 1 0, [-3/13 0 17/13 0]
unchanged-interval (eigenmonzo) basis: 2.5
[[1 0 0 0, [0 1 0 0, [5/11 13/11 0 0, [4/11 17/11 0 0]
unchanged-interval (eigenmonzo) basis: 2.3

Optimal ET sequence8d, 23d, 31, 101, 132c, 163c

Badness: 0.050389

11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 121/120, 126/125

Mapping: [1 3 4 5 5], 0 -11 -13 -17 -12]]

Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 154.645

Minimax tuning:

[[1 0 0 0 0, [19/10 11/5 0 0 -11/10, [27/10 13/5 0 0 -13/10, [33/10 17/5 0 0 -17/10, [19/5 12/5 0 0 -6/5]
unchanged-interval (eigenmonzo) basis: 2.11/9

Algebraic generator: positive root of 15x2 - 10x - 7, or (5 + sqrt (130))/15, at 154.6652 cents. The recurrence converges very quickly.

Optimal ET sequence8d, 23de, 31, 101, 132ce, 163ce, 194cee

Badness: 0.025621

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 99/98, 121/120, 126/125

Mapping: [1 3 4 5 5 5], 0 -11 -13 -17 -12 -10]]

Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 154.478

Optimal ET sequence8d, 23de, 31, 70f, 101ff

Badness: 0.023323

Oolong

For the 5-limit version of this temperament, see High badness temperaments #Oolong.

Subgroup: 2.3.5.7

Comma list: 126/125, 117649/116640

Mapping[1 6 7 8], 0 -17 -18 -20]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 311.679

Optimal ET sequence27, 50, 77

Badness: 0.073509

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 176/175, 26411/26244

Mapping: [1 6 7 8 18], 0 -17 -18 -20 -56]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 311.587

Optimal ET sequence27e, 77, 104c, 181c

Badness: 0.056915

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 176/175, 196/195, 13013/12960

Mapping: [1 6 7 8 18 5], 0 -17 -18 -20 -56 -5]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 311.591

Optimal ET sequence27e, 77, 104c, 181c

Badness: 0.035582

Vines

For the 5-limit version of this temperament, see High badness temperaments #Vines.

Subgroup: 2.3.5.7

Comma list: 126/125, 84035/82944

Mapping[2 7 8 8], 0 -8 -7 -5]]

Optimal tuning (POTE): 1\2, ~6/5 = 312.602

Optimal ET sequence42, 46, 96d, 142d, 238dd

Badness: 0.078049

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 385/384, 2401/2376

Mapping: [2 7 8 8 5], 0 -8 -7 -5 4]]

Optimal tuning (POTE): 1\2, ~6/5 = 312.601

Optimal ET sequence42, 46, 96d, 142d, 238dd

Badness: 0.044499

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 196/195, 364/363, 385/384

Mapping: [2 7 8 8 5 5], 0 -8 -7 -5 4 5]]

Optimal tuning (POTE): 1\2, ~6/5 = 312.564

Optimal ET sequence42, 46, 96d, 238ddf

Badness: 0.029693

Kumonga

For the 5-limit version of this temperament, see High badness temperaments #Kumonga.

Subgroup: 2.3.5.7

Comma list: 126/125, 12288/12005

Mapping[1 4 4 3], 0 -13 -9 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 222.797

Optimal ET sequence16, 27, 43, 70, 167ccdd

Badness: 0.087500

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 176/175, 864/847

Mapping: [1 4 4 3 7], 0 -13 -9 -1 -19]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 222.898

Optimal ET sequence16, 27e, 43, 70e

Badness: 0.043336

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 126/125, 144/143, 176/175

Mapping: [1 4 4 3 7 5], 0 -13 -9 -1 -19 -7]]

Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 222.961

Optimal ET sequence16, 27e, 43, 70e, 113cdee

Badness: 0.028920

Cypress

For the 5-limit version of this temperament, see High badness temperaments #Cypress.

Subgroup: 2.3.5.7

Comma list: 126/125, 19683/19208

Mapping[1 7 10 15], 0 -12 -17 -27]]

Optimal tuning (POTE): ~2 = 1\1, ~135/98 = 541.828

Optimal ET sequence11cd, 20cd, 31, 206bcd, 237bcd, 268bcd, 299bcd, 330bbcd

Badness: 0.099801

11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 126/125, 243/242

Mapping: [1 7 10 15 17], 0 -12 -17 -27 -30]]

Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 541.772

Optimal ET sequence11cdee, 20cde, 31, 144cd, 175cd, 206bcde, 237bcde

Badness: 0.042719

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 99/98, 126/125, 243/242

Mapping: [1 7 10 15 17 15], 0 -12 -17 -27 -30 -25]]

Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 541.778

Optimal ET sequence11cdeef, 20cdef, 31

Badness: 0.037849

Bisemidim

Subgroup: 2.3.5.7

Comma list: 126/125, 118098/117649

Mapping[2 1 2 2], 0 9 11 15]]

Optimal tuning (POTE): ~343/243 = 1\2, ~35/27 = 455.445

Optimal ET sequence50, 58, 108, 166c, 408ccc

Badness: 0.097786

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 540/539, 1344/1331

Mapping: [2 1 2 2 5], 0 9 11 15 8]]

Optimal tuning (POTE): ~99/70 = 1\2, ~35/27 = 455.373

Optimal ET sequence50, 58, 108, 166ce, 224cee

Badness: 0.041190

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 144/143, 196/195, 364/363

Mapping: [2 1 2 2 5 5], 0 9 11 15 8 10]]

Optimal tuning (POTE): ~55/39 = 1\2, ~13/10 = 455.347

Optimal ET sequence50, 58, 166cef, 224ceeff

Badness: 0.023877

Casablanca

For the 5-limit version of this temperament, see High badness temperaments #Casablanca.

Aside from 126/125, casablanca tempers out the no-threes comma 823543/819200 and also 589824/588245, and may also be described as 31 & 73. 74\135 or 91\166 supply good tunings for the generator, and 20- and 31-note mosses are available.

It may not seem like casablanca has much to offer, but peering under the hood a bit harder suggests otherwise. For one thing, the ~35/24 generator is particularly interesting; like 15/14 and 21/20, it represents an interval between one vertex of a hexany and the opposite vertex, which makes it particularly simple with regard to the cubic lattice of tetrads. For another, if we add 385/384 to the list of commas, 35/24 is identified with 16/11, and casablanca is revealed as an 11-limit temperament with a very low complexity for 11 and not too high a one for 7; we might compare 1, 4, 14, 19, the generator steps to 11, 7, 5 and 3 respectively, with 1, 4, 10, 18, the steps to 3, 5, 7 and 11 in 11-limit meantone.

Marrakesh, named by Herman Miller in 2011[1], is a more accurate 11-limit extension where the generator is identified with 22/15 as opposed to 16/11 in casablanca.

Subgroup: 2.3.5.7

Comma list: 126/125, 589824/588245

Mapping[1 12 10 5], 0 -19 -14 -4]]

Optimal tuning (POTE): ~2 = 1\1, ~35/24 = 657.818

Optimal ET sequence11b, 20b, 31, 104c, 135c, 166c

Badness: 0.101191

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 385/384, 2420/2401

Mapping: [1 12 10 5 4], 0 -19 -14 -4 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~16/11 = 657.923

Optimal ET sequence11b, 20b, 31

Badness: 0.067291

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 196/195, 385/384, 2420/2401

Mapping: [1 12 10 5 4 7], 0 -19 -14 -4 -1 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~16/11 = 657.854

Optimal ET sequence11b, 20b, 31

Marrakesh

Subgroup: 2.3.5.7.11

Comma list: 126/125, 176/175, 14641/14580

Mapping: [1 12 10 5 21], 0 -19 -14 -4 -32]]

Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.791

Optimal ET sequence31, 73, 104c, 135c

Badness: 0.040539

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 176/175, 196/195, 14641/14580

Mapping: [1 12 10 5 21 -10], 0 -19 -14 -4 -32 25]]

Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.756

Optimal ET sequence31, 73, 104c, 135c, 239ccf

Badness: 0.040774

Murakuc

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 144/143, 176/175, 1540/1521

Mapping: [1 12 10 5 21 7], 0 -19 -14 -4 -32 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.700

Optimal ET sequence31, 104cff, 135cff

Badness: 0.041395

Amigo

Subgroup: 2.3.5.7

Comma list: 126/125, 2097152/2083725

Mapping[1 -2 2 9], 0 11 1 -19]]

Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.094

Optimal ET sequence43, 46, 89, 135c, 359cc

Badness: 0.110873

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 176/175, 16384/16335

Mapping: [1 -2 2 9 9], 0 11 1 -19 -17]]

Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.075

Optimal ET sequence43, 46, 89, 135c, 224c

Badness: 0.043438

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 169/168, 176/175, 364/363

Mapping: [1 -2 2 9 9 5], 0 11 1 -19 -17 -4]]

Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.073

Optimal ET sequence43, 46, 89, 135cf, 224cf

Badness: 0.030666

Gilead

Subgroup: 2.3.5.7

Comma list: 126/125, 343/324

Mapping[1 4 5 6], 0 -9 -10 -12]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~6/5 = 321.109
  • POTE: ~2 = 1\1, ~6/5 = 321.423

Optimal ET sequence11cd, 15, 41dd, 56dd

Badness: 0.115292

Supersensi

Supersensi (8d & 43) has supermajor third as a generator like sensi, but the no-fives comma 17496/16807 rather than 245/243 tempered out.

Subgroup: 2.3.5.7

Comma list: 126/125, 17496/16807

Mapping[1 -4 -4 -5], 0 15 17 21]]

Optimal tuning (POTE): ~2 = 1\1, ~343/270 = 446.568

Optimal ET sequence8d, 35, 43

Badness: 0.148531

11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 126/125, 864/847

Mapping: [1 -4 -4 -5 -1], 0 15 17 21 12]]

Optimal tuning (POTE): ~2 = 1\1, ~72/55 = 446.616

Optimal ET sequence8d, 35, 43

Badness: 0.059449

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 99/98, 126/125, 144/143

Mapping: [1 -4 -4 -5 -1 -3], 0 15 17 21 12 18]]

Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 446.598

Optimal ET sequence8d, 35f, 43

Badness: 0.035258

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 78/77, 99/98, 120/119, 126/125, 144/143

Mapping: [1 -4 -4 -5 -1 -3 0], 0 15 17 21 12 18 11]]

Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 446.631

Optimal ET sequence8d, 35f, 43

Badness: 0.025907

Cobalt

The name of the cobalt temperament comes from the 27th element.

Cobalt (27 & 81) has a period of 1/27 octave and tempers out 126/125 and 540/539, as well as the aplonis temperament.

Subgroup: 2.3.5.7

Comma list: 126/125, 40353607/40310784

Mapping[27 43 63 76], 0 -1 -1 -1]]

Optimal tuning (POTE): 1\27, ~3/2 = 701.244

Optimal ET sequence27, 81, 108, 135c, 243c

Badness: 0.173308

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 540/539, 21609/21296

Mapping: [27 43 63 76 94], 0 -1 -1 -1 -2]]

Optimal tuning (POTE): 1\27, ~3/2 = 700.001

Optimal ET sequence27e, 81, 108

Badness: 0.078060

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 144/143, 196/195, 21609/21296

Mapping: [27 43 63 76 94 100], 0 -1 -1 -1 -2 0]]

Optimal tuning (POTE): 1\27, ~3/2 = 700.867

Optimal ET sequence27e, 81, 108, 243ceef

Badness: 0.057145

Cobaltous

Subgroup: 2.3.5.7.11.13.17

Comma list: 126/125, 144/143, 189/187, 196/195, 1452/1445

Mapping: [27 43 63 76 94 100 111], 0 -1 -1 -1 -2 0 -2]]

Optimal tuning (POTE): 1\27, ~3/2 = 700.397

Optimal ET sequence27eg, 81, 108g

Badness: 0.042106

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 126/125, 144/143, 171/170, 189/187, 196/195, 969/968

Mapping: [27 43 63 76 94 100 111 115], 0 -1 -1 -1 -2 0 -2 -1]]

Optimal tuning (POTE): 1\27, ~3/2 = 700.429

Optimal ET sequence27eg, 81, 108g

Badness: 0.030415

Cobaltic

Subgroup: 2.3.5.7.11.13.17

Comma list: 126/125, 144/143, 196/195, 221/220, 12005/11968

Mapping: [27 43 63 76 94 100 111], 0 -1 -1 -1 -2 0 -3]]

Optimal tuning (POTE): 1\27, ~3/2 = 701.595

Optimal ET sequence27eg, 81gg, 108, 135ce

Badness: 0.047163

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 126/125, 144/143, 196/195, 210/209, 221/220, 1088/1083

Mapping: [27 43 63 76 94 100 111 115], 0 -1 -1 -1 -2 0 -3 -1]]

Optimal tuning (POTE): 1\27, ~3/2 = 701.673

Optimal ET sequence27eg, 81gg, 108, 135ceh

Badness: 0.034176

Cobaltite

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 169/168, 540/539, 975/968

Mapping: [27 43 63 76 94 100], 0 -1 -1 -1 -2 -1]]

Optimal tuning (POTE): 1\27, ~3/2 = 699.179

Optimal ET sequence27e, 54bdef, 81f, 108f

Badness: 0.052732