Opossum

From Xenharmonic Wiki
Jump to navigation Jump to search

Opossum is an alternative extension to porcupine. It is defined by tempering out 28/27 and 126/125.

See Porcupine family #Opossum for technical data.

Interval chain

In the following table, odd harmonics 1–11 and their inverses are in bold.

# Cents* Approximate ratios*
0 0.0 1/1
1 160.0 10/9, 11/10, 12/11, 15/14
2 320.0 6/5, 11/9
3 480.0 4/3, 9/7
4 640.0 10/7, 16/11, 22/15
5 800.0 8/5, 11/7
6 960.0 12/7, 16/9
7 1120.0 40/21, 48/25, 64/33
8 80.0 16/15, 36/35
9 240.0 8/7

* In 15edo tuning, octave reduced

Tunings

Least-squares tunings
Target Generator Eigenmonzo
5-odd-limit ~10/9 = 162.996 ¢ 262144/234375
7-odd-limit ~10/9 = 158.732 ¢ [0 -5 3 19
9-odd-limit ~12/11 = 159.481 ¢ [0 3 2 22
11-odd-limit ~12/11 = 159.564 ¢ [-27 2 1 9 -1
13-odd-limit ~12/11 = 158.421 ¢ [0 15 6 34 -1 -15
15-odd-limit ~12/11 = 159.377 ¢ [0 32 23 35 -5 -21

Tuning spectrum

Edo
generator
Unchanged interval
(eigenmonzo)
Generator (¢) Comments
15/14 119.443
13/12 138.573
13/11 144.605
9/7 145.028
1\8 150.000 8d val, lower bound of 7-odd-limit diamond monotone
11/6 150.637
13/10 151.405
13/7 153.100
7/5 154.372
7/6 155.522
11/7 156.498
3\23 156.522 23bcf val
5/3 157.821
5\38 157.895 38bceff val
7\53 158.491 53bcefff val
15/13 158.710
7/4 159.019 7-, 9-, 11-, 13- and 15-odd-limit minimax
13/9 159.154
2\15 160.000 Upper bound of 7-odd-limit diamond monotone
9- and 11-odd-limit diamond monotone (singleton)
11/8 162.171
5/4 162.737 5-odd-limit minimax
15/8 163.966
11/10 165.004
15/11 165.762
3/2 166.015
11/9 173.704
13/8 179.736
9/5 182.404