Opossum
Jump to navigation
Jump to search
Opossum is an alternative extension to porcupine. It is defined by tempering out 28/27 and 126/125.
See Porcupine family #Opossum for technical data.
Interval chain
In the following table, odd harmonics 1–11 and their inverses are in bold.
# | Cents* | Approximate ratios* |
---|---|---|
0 | 0.0 | 1/1 |
1 | 160.0 | 10/9, 11/10, 12/11, 15/14 |
2 | 320.0 | 6/5, 11/9 |
3 | 480.0 | 4/3, 9/7 |
4 | 640.0 | 10/7, 16/11, 22/15 |
5 | 800.0 | 8/5, 11/7 |
6 | 960.0 | 12/7, 16/9 |
7 | 1120.0 | 40/21, 48/25, 64/33 |
8 | 80.0 | 16/15, 36/35 |
9 | 240.0 | 8/7 |
* In 15edo tuning, octave reduced
Tunings
Target | Generator | Eigenmonzo |
---|---|---|
5-odd-limit | ~10/9 = 162.996 ¢ | 262144/234375 |
7-odd-limit | ~10/9 = 158.732 ¢ | [0 -5 3 19⟩ |
9-odd-limit | ~12/11 = 159.481 ¢ | [0 3 2 22⟩ |
11-odd-limit | ~12/11 = 159.564 ¢ | [-27 2 1 9 -1⟩ |
13-odd-limit | ~12/11 = 158.421 ¢ | [0 15 6 34 -1 -15⟩ |
15-odd-limit | ~12/11 = 159.377 ¢ | [0 32 23 35 -5 -21⟩ |
Tuning spectrum
Edo generator |
Unchanged interval (eigenmonzo) |
Generator (¢) | Comments |
---|---|---|---|
15/14 | 119.443 | ||
13/12 | 138.573 | ||
13/11 | 144.605 | ||
9/7 | 145.028 | ||
1\8 | 150.000 | 8d val, lower bound of 7-odd-limit diamond monotone | |
11/6 | 150.637 | ||
13/10 | 151.405 | ||
13/7 | 153.100 | ||
7/5 | 154.372 | ||
7/6 | 155.522 | ||
11/7 | 156.498 | ||
3\23 | 156.522 | 23bcf val | |
5/3 | 157.821 | ||
5\38 | 157.895 | 38bceff val | |
7\53 | 158.491 | 53bcefff val | |
15/13 | 158.710 | ||
7/4 | 159.019 | 7-, 9-, 11-, 13- and 15-odd-limit minimax | |
13/9 | 159.154 | ||
2\15 | 160.000 | Upper bound of 7-odd-limit diamond monotone 9- and 11-odd-limit diamond monotone (singleton) | |
11/8 | 162.171 | ||
5/4 | 162.737 | 5-odd-limit minimax | |
15/8 | 163.966 | ||
11/10 | 165.004 | ||
15/11 | 165.762 | ||
3/2 | 166.015 | ||
11/9 | 173.704 | ||
13/8 | 179.736 | ||
9/5 | 182.404 |