11L 3s
↖ 10L 2s | ↑ 11L 2s | 12L 2s ↗ |
← 10L 3s | 11L 3s | 12L 3s → |
↙ 10L 4s | ↓ 11L 4s | 12L 4s ↘ |
┌╥╥╥╥┬╥╥╥╥┬╥╥╥┬┐ │║║║║│║║║║│║║║││ ││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLsLLLLsLLLL
11L 3s, also called the Ketradektriatoh scale, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 11 large steps and 3 small steps, repeating every octave. 11L 3s is a grandchild scale of 3L 5s, expanding it by 6 tones. Generators that produce this scale range from 428.6 ¢ to 436.4 ¢, or from 763.6 ¢ to 771.4 ¢.
The 11L 3s MOS scale was named the "Ketradektriatoh scale" by Osmiorisbendi
This is a type of scale which denotes the use of a scale placed between 11edo and 14edo.
It employs a ratio generator between 41/32 and 9/7 (25edo being the middle size of the Ketradektriatoh spectrum, in the 2:1 relation).
This results in a variant of tetradecatonic scale which conforms by this scheme: LLLLsLLLLsLLLs.
Scale tree
The table below shows an extension of edos which supports the Ketradektriatoh scale, with respect to the principal generator and their results for each L/s sizes:
4\11 | 436.364 | 109.091 | 0 | |||||||
29\80 | 435 | 105 | 15 | |||||||
25\69 | 434.783 | 104.348 | 17.391 | |||||||
21\58 | 434.483 | 103.448 | 20.69 | |||||||
17\47 | 434.043 | 102.128 | 25.532 | |||||||
30\83 | 433.735 | 101.208 | 28.916 | |||||||
73\202 | 433.663 | 100.990 | 29.703 | Since here are the optimal range Lufsur mode (?) | ||||||
43\119 | 433.613 | 100.840 | 30.252 | |||||||
433.459 | 100.377 | 31.95 | ||||||||
13\36 | 433.333 | 100 | 33.333 | |||||||
433.048 | 99.144 | 36.473 | ||||||||
35\97 | 432.99 | 98.969 | 37.113 | |||||||
432.933 | 98.799 | 37.738 | ||||||||
22\61 | 432.787 | 98.361 | 39.344 | |||||||
9\25 | 432 | 96 | 48 | Boundary of propriety;
generators smaller than this are proper | ||||||
431.417 | 94.25 | 54.4155 | ||||||||
23\64 | 431.25 | 93.75 | 56.25 | |||||||
431.1185 | 93.355 | 57.697 | ||||||||
37\103 | 431.068 | 93.204 | 58.25 | |||||||
430.984 | 92.952 | 58.175 | ||||||||
14\39 | 430.769 | 92.308 | 61.538 | |||||||
47\131 | 430.534 | 91.603 | 64.122 | |||||||
80\223 | 430.493 | 91.480 | 64.575 | Until here are the optimal range Fuslur mode (?) | ||||||
33\92 | 430.435 | 91.304 | 65.217 | |||||||
19\53 | 430.189 | 90.566 | 67.925 | |||||||
24\67 | 429.851 | 89.552 | 71.642 | |||||||
29\81 | 429.63 | 88.889 | 74.074 | |||||||
34\95 | 429.474 | 88.421 | 75.7895 | |||||||
5\14 | 428.571 | 85.714 | 85.714 |
As an EDO subset
EDO | Subset | Special properties |
25 | 2 2 2 1 2 2 2 2 1 2 2 2 2 1 | Middle range |
36 | 3 3 3 1 3 3 3 3 1 3 3 3 3 1 | Lusfur range |
39 | 3 3 3 2 3 3 3 3 2 3 3 3 3 2 | Fuslur range |
47 | 4 4 4 1 4 4 4 4 1 4 4 4 4 1 | |
50 | 4 4 4 2 4 4 4 4 2 4 4 4 4 2 | |
53 | 4 4 4 3 4 4 4 4 3 4 4 4 4 3 | |
58 | 5 5 5 1 5 5 5 5 1 5 5 5 5 1 | |
61 | 5 5 5 2 5 5 5 5 2 5 5 5 5 2 | Split-φ |
64 | 5 5 5 3 5 5 5 5 3 5 5 5 5 3 | φ |
67 | 5 5 5 4 5 5 5 5 4 5 5 5 5 4 | |
69 | 6 6 6 1 6 6 6 6 1 6 6 6 6 1 | |
81 | 6 6 6 5 6 6 6 6 5 6 6 6 6 5 | |
80 | 7 7 7 1 7 7 7 7 1 7 7 7 7 1 | |
83 | 7 7 7 2 7 7 7 7 2 7 7 7 7 2 | |
86 | 7 7 7 3 7 7 7 7 3 7 7 7 7 3 | |
89 | 7 7 7 4 7 7 7 7 4 7 7 7 7 4 | |
92 | 7 7 7 5 7 7 7 7 5 7 7 7 7 5 | |
95 | 7 7 7 6 7 7 7 7 6 7 7 7 7 6 | |
91 | 8 8 8 1 8 8 8 8 1 8 8 8 8 1 | |
97 | 8 8 8 3 8 8 8 8 3 8 8 8 8 3 | Split-φ |
103 | 8 8 8 5 8 8 8 8 5 8 8 8 8 5 | φ |
109 | 8 8 8 7 8 8 8 8 7 8 8 8 8 7 | |
102 | 9 9 9 1 9 9 9 9 1 9 9 9 9 1 | |
105 | 9 9 9 2 9 9 9 9 2 9 9 9 9 2 | |
111 | 9 9 9 4 9 9 9 9 4 9 9 9 9 4 | |
114 | 9 9 9 5 9 9 9 9 5 9 9 9 9 5 | |
120 | 9 9 9 7 9 9 9 9 7 9 9 9 9 7 | |
123 | 9 9 9 8 9 9 9 9 8 9 9 9 9 8 | |
113 | 10 10 10 1 10 10 10 10 1 10 10 10 10 1 | |
119 | 10 10 10 3 10 10 10 10 3 10 10 10 10 3 | |
131 | 10 10 10 7 10 10 10 10 7 10 10 10 10 7 | |
137 | 10 10 10 9 10 10 10 10 9 10 10 10 10 9 | |
124 | 11 11 11 1 11 11 11 11 1 11 11 11 11 1 | |
127 | 11 11 11 2 11 11 11 11 2 11 11 11 11 2 | |
130 | 11 11 11 3 11 11 11 11 3 11 11 11 11 3 | |
133 | 11 11 11 4 11 11 11 11 4 11 11 11 11 4 | |
136 | 11 11 11 5 11 11 11 11 5 11 11 11 11 5 | |
139 | 11 11 11 6 11 11 11 11 6 11 11 11 11 6 | |
142 | 11 11 11 7 11 11 11 11 7 11 11 11 11 7 | |
145 | 11 11 11 8 11 11 11 11 8 11 11 11 11 8 | |
148 | 11 11 11 9 11 11 11 11 9 11 11 11 11 9 | |
151 | 11 11 11 10 11 11 11 11 10 11 11 11 11 10 | |
135 | 12 12 12 1 12 12 12 12 1 12 12 12 12 1 | |
147 | 12 12 12 5 12 12 12 12 5 12 12 12 12 5 | |
153 | 12 12 12 7 12 12 12 12 7 12 12 12 12 7 | |
165 | 12 12 12 11 12 12 12 12 11 12 12 12 12 11 | |
146 | 13 13 13 1 13 13 13 13 1 13 13 13 13 1 | |
149 | 13 13 13 2 13 13 13 13 2 13 13 13 13 2 | |
152 | 13 13 13 3 13 13 13 13 3 13 13 13 13 3 | |
155 | 13 13 13 4 13 13 13 13 4 13 13 13 13 4 | |
158 | 13 13 13 5 13 13 13 13 5 13 13 13 13 5 | Split-φ |
161 | 13 13 13 6 13 13 13 13 6 13 13 13 13 6 | |
164 | 13 13 13 7 13 13 13 13 7 13 13 13 13 7 | |
167 | 13 13 13 8 13 13 13 13 8 13 13 13 13 8 | φ |
170 | 13 13 13 9 13 13 13 13 9 13 13 13 13 9 | |
173 | 13 13 13 10 13 13 13 13 10 13 13 13 13 10 | |
176 | 13 13 13 11 13 13 13 13 11 13 13 13 13 11 | |
179 | 13 13 13 12 13 13 13 13 12 13 13 13 13 12 | |
157 | 14 14 14 1 14 14 14 14 1 14 14 14 14 1 | |
163 | 14 14 14 3 14 14 14 14 3 14 14 14 14 3 | |
169 | 14 14 14 5 14 14 14 14 5 14 14 14 14 5 | |
181 | 14 14 14 9 14 14 14 14 9 14 14 14 14 9 | |
187 | 14 14 14 11 14 14 14 14 11 14 14 14 14 11 | |
193 | 14 14 14 13 14 14 14 14 13 14 14 14 14 13 | |
168 | 15 15 15 1 15 15 15 15 1 15 15 15 15 1 | |
171 | 15 15 15 2 15 15 15 15 2 15 15 15 15 2 | |
177 | 15 15 15 4 15 15 15 15 4 15 15 15 15 4 | |
186 | 15 15 15 7 15 15 15 15 7 15 15 15 15 7 | |
189 | 15 15 15 8 15 15 15 15 8 15 15 15 15 8 | |
198 | 15 15 15 11 15 15 15 15 11 15 15 15 15 11 | |
204 | 15 15 15 13 15 15 15 15 13 15 15 15 15 13 | |
207 | 15 15 15 14 15 15 15 15 14 15 15 15 15 14 | |
179 | 16 16 16 1 16 16 16 16 1 16 16 16 16 1 | |
185 | 16 16 16 3 16 16 16 16 3 16 16 16 16 3 | |
191 | 16 16 16 5 16 16 16 16 5 16 16 16 16 5 | |
197 | 16 16 16 7 16 16 16 16 7 16 16 16 16 7 | |
203 | 16 16 16 9 16 16 16 16 9 16 16 16 16 9 | |
209 | 16 16 16 11 16 16 16 16 11 16 16 16 16 11 | |
215 | 16 16 16 13 16 16 16 16 13 16 16 16 16 13 | |
221 | 16 16 16 15 16 16 16 16 15 16 16 16 16 15 | |
190 | 17 17 17 1 17 17 17 17 1 17 17 17 17 1 | |
193 | 17 17 17 2 17 17 17 17 2 17 17 17 17 2 | |
196 | 17 17 17 3 17 17 17 17 3 17 17 17 17 3 | |
199 | 17 17 17 4 17 17 17 17 4 17 17 17 17 4 | |
202 | 17 17 17 5 17 17 17 17 5 17 17 17 17 5 | Top limit for Lusfur range |
205 | 17 17 17 6 17 17 17 17 6 17 17 17 17 6 | |
208 | 17 17 17 7 17 17 17 17 7 17 17 17 17 7 | |
211 | 17 17 17 8 17 17 17 17 8 17 17 17 17 8 | |
214 | 17 17 17 9 17 17 17 17 9 17 17 17 17 9 | |
217 | 17 17 17 10 17 17 17 17 10 17 17 17 17 10 | |
220 | 17 17 17 11 17 17 17 17 11 17 17 17 17 11 | |
223 | 17 17 17 12 17 17 17 17 12 17 17 17 17 12 | Top limit for Fuslur range |
226 | 17 17 17 13 17 17 17 17 13 17 17 17 17 13 | |
229 | 17 17 17 14 17 17 17 17 14 17 17 17 17 14 | |
232 | 17 17 17 15 17 17 17 17 15 17 17 17 17 15 | |
235 | 17 17 17 16 17 17 17 17 16 17 17 17 17 16 |