Very high accuracy temperaments: Difference between revisions
m {{Technical data page}}<br><br> |
m Text replacement - "{{Technical data page}}<br><br>" to "{{Technical data page}}" |
||
Line 1: | Line 1: | ||
{{Technical data page}} | {{Technical data page}} | ||
Below are listed some very high accuracy temperaments ([[Tenney-Euclidean temperament measures|TE error]] < 0.005 cents/octave). | Below are listed some very high accuracy temperaments ([[Tenney-Euclidean temperament measures|TE error]] < 0.005 cents/octave). | ||
Revision as of 13:40, 13 April 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
Below are listed some very high accuracy temperaments (TE error < 0.005 cents/octave).
Rank-2 temperaments
Kwazy
Kwazy (118 & 612) tempers out the kwazy comma, [-53 10 16⟩. 7-limit extensions of the kwazy temperament include gwazy, bisupermajor, and crazy.
Subgroup: 2.3.5
Comma list: [-53 10 16⟩ = 9010162353515625 / 9007199254740992
Mapping: [⟨2 1 6], ⟨0 8 -5]]
- mapping generators: ~94921875/67108864, ~1125/1024
- CTE: ~94921875/67108864 = 1\2, ~1125/1024 = 162.7433
- POTE: ~94921875/67108864 = 1\2, ~1125/1024 = 162.742626
Optimal ET sequence: 22, 74, 96, 118, 376, 494, 612, 1342, 3296, 4638, 7934
Badness: 0.014091
Astro
Astro temperament tempers out the astro comma, [91 -12 -31⟩. 7-limit extensions of the astro temperament include kastro.
Subgroup: 2.3.5
Comma list: [91 -12 -31⟩
Mapping: [⟨1 5 1], ⟨0 -31 12]]
- mapping generators: ~2, ~[-38 5 13⟩
Optimal ET sequence: 9, 109, 118, 699, 817, 935, 1053, 1171, 13934, 15105, 16276, 17447, 18618, 19789, 20960, 22131, 23302, 24473, 25644, 26815, 27986c
Badness: 0.062778
Gaster
Subgroup: 2.3.5
Comma list: [-70 72 -19⟩
Mapping: [⟨1 11 38], ⟨0 -19 -72]]
- mapping generators: ~2, ~[19 -19 5⟩
Optimal ET sequence: 111, 224, 335, 559, 1342, 1901, 3243, 8387, 11630
Badness: 0.088530
Whoosh
Whoosh (152 & 289) tempers out the whoosh comma, [37 25 -33⟩. 7-limit extensions of the whoosh temperament include whoops.
Subgroup: 2.3.5
Comma list: [37 25 -33⟩
Mapping: [⟨1 17 14], ⟨0 -33 -25]]
- mapping generators: ~2, ~864/625
Optimal ET sequence: 15, 122, 137, 152, 289, 441, 730, 1171, 1901, 3072, 4243, 7315, 25017, 32332, 39647c
Badness: 0.025653
Monzismic
Monzismic (53 & 612) tempers out the monzisma, [54 -37 2⟩. For its 7-limit extension, see Ragismic microtemperaments #Monzismic.
Subgroup: 2.3.5
Comma list: [54 -37 2⟩ = 450359962737049600 / 450283905890997363
Mapping: [⟨1 0 -27], ⟨0 2 37]]
- mapping generators: ~2, ~[27 -18 1⟩
Optimal ET sequence: 53, 347, 400, 453, 506, 559, 612, 1171, 1783, 4737, 6520
Badness: 0.010391
Egads
Subgroup: 2.3.5
Comma list: [-36 -52 51⟩
Mapping: [⟨1 15 16], ⟨0 -51 -52]]
- mapping generators: ~2, ~6/5
Optimal ET sequence: 19, 365, 384, 403, 422, 441, 901, 1342, 1783, 3125, 4908, 45955, 50863, 55771, 60679, 65587, 70495, 75403, 80311, 85219, 90127
Badness: 0.041819
Hemiegads
Subgroup: 2.3.5.7
Comma list: 78125000/78121827, [-48 0 11 8⟩
Mapping: [⟨1 15 16 -16], ⟨0 -102 -104 143]]
Optimal tunings:
- CTE: ~2 = 1\1, ~36756909/33554432 = 157.8240
Optimal ET sequence: 38, 403, 441, 1802, 2243, 2684, 3125, 6691, 9816, 16507, 75844, 125365c
Badness: 0.0124
Fortune
Fortune tempers out the fortune comma, [-107 47 14⟩. It can be described as 612 & 2513 temperament, which tempers out 78125000/78121827 (euzenius comma) in the 7-limit; 151263/151250, 21437500/21434787, and 369140625/369098752 in the 11-limit.
Subgroup: 2.3.5
Comma list: [-107 47 14⟩
Mapping: [⟨1 13 -36], ⟨0 -14 47]]
- mapping generators: ~2, 7381125/4194304
Optimal ET sequence: 65, 352, 417, 482, 547, 612, 1901, 2513, 5638, 8151, 18815, 45781, 64596, 110377, 174973bc
Badness: 0.027876
7-limit
Subgroup: 2.3.5.7
Comma list: 78125000/78121827, [-52 17 12 -1⟩
Mapping: [⟨1 13 -36 -263], ⟨0 -14 47 326]]
Optimal tunings:
- CTE: ~2 = 1\1, ~8388608/7381125 = 221.5680
- POTE: ~2 = 1\1, ~8388608/7381125 = 221.568031
Optimal ET sequence: 612, 1901, 2513, 3125, 6862, 9987, 13112, 36211, 49323
Badness: 0.023704
11-limit
Subgroup: 2.3.5.7.11
Comma list: 151263/151250, 21437500/21434787, 369140625/369098752
Mapping: [⟨1 13 -36 -263 -573], ⟨0 -14 47 326 707]]
Optimal tunings:
- CTE: ~2 = 1\1, ~8388608/7381125 = 221.5681
- POTE: ~2 = 1\1, ~8388608/7381125 = 221.568139
Optimal ET sequence: 612, 2513, 3125, 3737, 8086, 19909d
Badness: 0.036641
Senior
Senior (171 & 1171) tempers out the senior comma, [-17 62 -35⟩. 7-limit extensions of the senior temperament include seniority.
Subgroup: 2.3.5
Comma list: [-17 62 -35⟩
Mapping: [⟨1 11 19], ⟨0 -35 -62]]
- mapping generators: ~2, ~[-6 23 -13⟩
Optimal ET sequence: 171, 658, 829, 1000, 1171, 2513, 6197, 39695, 45892, 52089, 58286, 64483, 70680
Badness: 0.021220
Gross
Gross (118 & 1783) tempers out the gross comma, [144 -22 -47⟩, by which a stack of 22 3rd harmonics and 47 5th harmonics falls short of 144 (gross) octaves.
Subgroup: 2.3.5
Comma list: [144 -22 -47⟩
Mapping: [⟨1 45 -18], ⟨0 -47 22]]
- mapping generators: ~2, ~[-45 7 15⟩
Optimal ET sequence: 13, 105, 118, 957, 1075, 1193, 1311, 1429, 1547, 1665, 1783, 3684, 5467, 36486, 41953, 47420, 52887, 63821, 69288, 74755, 144043c, 218798c
Badness: 0.046315
- Music
Quectismic
Subgroup: 2.3.5
Comma list: [554 -351 1⟩
Mapping: [⟨1 0 -554], ⟨0 1 351]]
- mapping generators: ~2, ~3
- CTE: ~2 = 1\1, ~3/2 = 701.9553
Optimal ET sequence: 306, 359c, 665, 2301, 2966, 3631, 4296, 46591, 50887, 55183, 59479, 63775, 68071, 72367, 76663, 80959, 85255, 89551
Badness: 0.372
Nanoquectismic
Subgroup: 2.3.5.7
Comma list: 43046721/43025920, [82 -19 -3 -16⟩
Mapping: [⟨1 0 -554 109], ⟨0 1 351 -67]]
Optimal tunings:
- CTE: ~2 = 1\1, ~3/2 = 701.955
Optimal ET sequence: 306, 665, 1636, 2301, 2966
Badness: 0.604
Conanoquectismic
Subgroup: 2.3.5.7
Comma list: [33 -26 12 -7⟩, [-32 13 17 -10⟩
Mapping: [⟨1 0 -554 -945], ⟨0 1 351 598]]
Optimal tunings:
- CTE: ~2 = 1\1, ~3/2 = 701.9548
Optimal ET sequence: 306d, 359cd, 665
Badness: 2.17
Counterquectismic
Subgroup: 2.3.5
Comma list: [-500 314 1⟩
Mapping: [⟨1 0 500], ⟨0 1 -314]]
- mapping generators: ~2, ~3
Optimal ET sequence: 306c, 359, 665, 2354, 3019, 3684, 11717, 15401, 19085, 34486
Badness: 0.510
Raider
Subgroup: 2.3.5
Comma list: [71 -99 37⟩
Mapping: [⟨1 28 73], ⟨0 -37 -99]]
- mapping generators: ~2, ~6561/4000
Optimal ET sequence: 388, 783, 1171, 1954, 3125, 4296, 5467, 7421, 9763, 14059, 18355, 22651, 26947, 31243, 35539, 66782, 102321, 137860
Badness: 0.012867
Pirate
Subgroup: 2.3.5
Comma list: [-90 -15 49⟩
Mapping: [⟨1 43 15], ⟨0 -49 -15]]
- Mapping generators: ~2, ~[-23 -4 13⟩
Optimal ET sequence: 84, 239, 323, 730, 1783, 2513, 4296, 15401, 19697, 23993, 52282, 76275, 128557, 204832 …
Badness: 0.005656
Atomic
Atomic extensions discussed elsewhere include minutes and hafnium.
Atomic does not temper out the schisma, so 3/2 is one schisma sharp of its 12edo value. In atomic, since twelve fifths are sharp of seven octaves by twelve schismas, the Pythagorean comma is twelve schismas, and hence 81/80, the Didymus comma, is eleven schismas. In fact eleven schismas is sharp of 81/80, and twelve schismas of the Pythaorean comma, by the microscopic interval of the atom, which atomic tempers out. Extremely accurate.
Subgroup: 2.3.5
Comma list: [161 -84 -12⟩
Mapping: [⟨12 0 161], ⟨0 1 -7]]
- mapping generators: ~[-67 35 5⟩, ~3
- CTE: ~[-67 35 5⟩ = 1\12, ~3/2 = 701.9552 (~32805/32768 = 1.9552)
- POTE: ~[-67 35 5⟩ = 1\12, ~3/2 = 701.955162 (~32805/32768 = 1.955162)
Optimal ET sequence: 12, …, 576, 588, 600, 612, 2460, 3072, 3684, 4296, 12276, 16572, 20868, 25164, 46032
Badness: 0.003803
7-limit
Subgroup: 2.3.5.7
Comma list: 250047/250000, [-55 30 2 1⟩
Mapping: [⟨12 0 161 338], ⟨0 1 -7 -16]]
Optimal tunings:
- CTE: ~30375/28672 = 1\12, ~3/2 = 701.9499 (or ~32805/32768 = 1.9499)
- POTE: ~30375/28672 = 1\12, ~3/2 = 701.949608 (or ~32805/32768 = 1.949608)
Optimal ET sequence: 12, …, 600, 612, 1236, 1848, 4308, 10464, 14772, 25236c, 40008ccd
Badness: 0.045818
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 151263/151250, 184549376/184528125
Mapping: [⟨12 0 161 338 517], ⟨0 1 -7 -16 -25]]
Optimal tunings:
- CTE: ~30375/28672 = 1\12, ~3/2 = 701.9485 (or ~32805/32768 = 1.9485)
- POTE: ~30375/28672 = 1\12, ~3/2 = 701.947988 (or ~32805/32768 = 1.947988)
Optimal ET sequence: 12, …, 600e, 612, 1236, 1848
Badness: 0.016029
Revopentic (2.3.7)
Subgroup: 2.3.7
Comma list: 11399736556781568/11398895185373143
Sval mapping: [⟨1 12 5], ⟨0 -19 -4]]
- mapping generators: ~2 = 1\1, 24576/16807
- CTE: ~2 = 1\1, ~24576/16807 = 657.792
Supporting ETs: 135, 436c, 571, 1277, 1848, 3125, 8098, 11223, 25571, 36794
Badness (Sintel's TE logflat): 0.070
Revopent
Revopent can be described as the 1848 & 3125 temperament.
Subgroup: 2.3.5.7
Comma list: 645700815/645657712, [51 -13 -1 -10⟩
Mapping: [⟨1 12 -155 5], ⟨0 -19 287 -4]]
Optimal tunings:
- CTE: ~24576/16807 = 657.792
Optimal ET sequence: 135, 436c, 571, 1277, 1848, 3125, 8098, 11223, 25571, 36794, 121605d
Badness: 0.263
Nanic
Subgroup: 2.3.7
Comma list: [109 -67 -1⟩
Sval mapping: [⟨1 0 109], ⟨0 1 -67]]
- sval mapping generators: ~2, ~3
Optimal ET sequence: 53, 200, 253, 306, 665, 971, 1277, 6691, 7968, 9245, 10522, 11799, 13076, 40505, 53581, 66657, 79733
Badness: 0.0138
Icarus
Named after a very distant star. Curiously, the names of two even more distant stars coincide with named temperaments, those being godzilla and mothra.
Subgroup: 3.5.7
Comma list: [-32 -64 71⟩
Mapping: [⟨1 35 32], ⟨0 -71 -64]]
- CTE: ~3 = 1\1<3/1>, ~[5 9 -10⟩ = 898.340
Optimal ET sequence: b163cd, b199c, b235, b271, b4643, b4914, …, b8708, b8979, b18229, b27208, b99853, b127061, b154269, b181477, b208685, b390162
Badness: 0.493 × 10-3
Rank-3 temperaments
Sasaquinbizo-atriyo (171 & 1106 & 3566)
Subgroup: 2.3.5.7
Comma list: [3 -24 3 10⟩ = 282475249000/282429536481
Mapping: [⟨1 0 9 -3], ⟨0 1 8 0], ⟨0 0 10 -3]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9624, ~6561/3430 = 1122.9387
Optimal ET sequence: 171, 764, 935, 1106, 1277, 2118, 2289, 2460, 3224, 3395, 3566, 26068, 26239, 29634, 29805, 33200, 33371, 36937, 40503, 44069
Badness: 0.281 × 10-3
Saquadtrizo-asepgu (171 & 2019 & 3566)
Subgroup: 2.3.5.7
Comma list: [0 -11 -7 12⟩ = 13841287201/13839609375
Mapping: [⟨1 0 0 0], ⟨0 1 7 5], ⟨0 0 -12 -7]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9584, ~16807/10125 = 877.2825
Optimal ET sequence: 171, 814, 985, 1034, 1205, 1376, 1547, 1718, 1848, 2019, 3224, 3395, 3566, 8980, 9151, 12717, 47131, 50697, 59848d, 63414d, 76131d
Badness: 0.135 × 10-3
Laquinzo-aquadquadgu (171 & 441 & 4973)
Subgroup: 2.3.5.7
Comma list: [-7 19 -16 5⟩ = 19534128475869/19531250000000
Mapping: [⟨1 0 3 11], ⟨0 1 4 9], ⟨0 0 5 16]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9501, ~250/189 = 484.2956
Optimal ET sequence: 171, 441, 612, 2696, 2795, 2867, 2966, 3137, 3308, 3407, 3479, 3578, 3749, 3920, 4091, 4190, 4361, 4532, 4703, 4802, 4973, 5144, 10117, 10558, 15531, 15702, 52079, 62637, 67781, 78339
Badness: 0.297 × 10-3
Laleruyo (171 & 1547 & 3125)
Subgroup: 2.3.5.7
Comma list: [-1 4 11 -11⟩ = 3955078125/3954653486
Mapping: [⟨1 3 0 1], ⟨0 -11 0 -4], ⟨0 0 1 1]]
Optimal tuning (CTE): ~2 = 1\1, ~375/343 = 154.3678, ~5/4 = 386.3070
Optimal ET sequence: 171, 863, 894, 1034, 1065, 1205, 1236, 1376, 1407, 1547, 1578, 1718, 2612, 2783, 2954, 3125, 12329, 15454, 18579, 21704, 40283, 61987
Badness: 0.114 × 10-3
Starscape or Latritriru-ayo
Subgroup: 2.3.5.7
Comma list: 645700815/645657712
Mapping: [⟨1 0 4 0], ⟨0 1 1 2], ⟨0 0 -9 -1]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9514, ~9/7 = 435.0709
Optimal ET sequence: 171, 742, 764, 935, 1106, 1277, 1677, 1848, 2019, 2783, 2954, 3125, 8098, 11223, 25571, 33840, 36794, 45063, 48188, 59411, 70634
Badness: 0.545 × 10-3
Sepbizo-asegu (171 & 3566 & 4973)
Subgroup: 2.3.5.7
Comma list: [-3 2 -17 14⟩ = 6104007655641/6103515625000
Mapping: [⟨1 0 13 16], ⟨0 1 10 12], ⟨0 0 -14 -17]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9548, ~31250/16807 = 1073.8021
Optimal ET sequence: 171, 894, 1065, 1236, 1407, 1578, 3053, 3224, 3395, 3566, 5144, 8368, 8539, 8710, 17249, 20815, 29525, 38064, 67589, 105653
Badness: 0.223 × 10-3
Euzenius or Sabiruquinyo
Subgroup: 2.3.5.7
Comma list: 78125000/78121827
Mapping: [⟨1 1 0 -5], ⟨0 2 0 -13], ⟨0 0 1 5]]
Optimal tuning (CTE): ~2 = 1\1, ~6250/5103 = 350.9787, ~5/4 = 386.3099
Optimal ET sequence: 171, 441, 612, 1730, 1901, 2072, 2171, 2342, 2513, 2684, 2783, 2954, 3125, 6520, 6691, 9816, 16336, 16507, 23027, 26152, 32843, 42659, 58995, 68811, 101654
Badness: 0.205 × 10-3
Nommismic or Quinla-zoyoyo
Subgroup: 2.3.5.7
Comma list: [-55 30 2 1⟩
Mapping: [⟨1 0 0 55], ⟨0 1 0 -30], ⟨0 0 1 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9516, ~5/4 = 386.3132
Optimal ET sequence: 612, 1236, 1277, 1848, 2513, 3125, 6862, 8098, 8710, 11835, 14960, 26795, 195663b, …
Badness: 0.366 × 10-3
Satwethezo-atritribigu (171 & 1547 & 4973)
Subgroup: 2.3.5.7
Comma list: [1 -15 -18 23⟩
Mapping: [⟨1 0 9 7], ⟨0 1 3 3], ⟨0 0 -23 -18]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9551, ~56953125/40353607 = 596.5022
Optimal ET sequence: 171, 863, 1034, 1205, 1376, 1547, 1718, 3255, 3426, 3597, 4460, 4631, 4802, 4973, 5144, 6520, 6691, 11664, 18355, 48374, 48545, 66900, 145464, …
Badness: 0.114 × 10-3
Technologismic or Trisa-quinbiru-agu (441 & 1848 & 3125)
Subgroup: 2.3.5.7
Comma list: [51 -13 -1 -10⟩
Mapping: [⟨1 0 1 5], ⟨0 1 7 -2], ⟨0 0 -10 1]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9553, ~63/32 = 1172.7374
Optimal ET sequence: 441, 966, 1277, 1407, 1718, 1848, 2684, 3125, 6691, 9816, 11664, 14789, 18355, 33144, 51499, 124478, 175977, …
Badness: 0.263 × 10-3
Quinbisa-quinbizo-alegu (1848 & 11664 & 21480)
Subgroup: 2.3.5.7
Comma list: [110 -71 -11 10⟩
Mapping: [⟨1 0 0 -11], ⟨0 1 9 17], ⟨0 0 -10 -11]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.955, ~32805/28672 = 233.128
Optimal ET sequence: 1848, 3737, 5585, 6079, 7927, 9816, 11664, 21480, 33144, 54624, 70025, 81689, 103169, …
Badness: 0.122 × 10-3