7315edo
Jump to navigation
Jump to search
Prime factorization
5 × 7 × 11 × 19
Step size
0.164046¢
Fifth
4279\7315 (701.955¢) (→389\665)
Semitones (A1:m2)
693:550 (113.7¢ : 90.23¢)
Consistency limit
27
Distinct consistency limit
27
← 7314edo | 7315edo | 7316edo → |
7315 equal divisions of the octave (7315edo), or 7315-tone equal temperament (7315tet), 7315 equal temperament (7315et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 7315 equal parts of about 0.164 ¢ each.
Theory
This EDO is consistent up to the 27-odd-limit, which is rather impressive.
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.0000 | -0.0001 | +0.0157 | +0.0326 | +0.0423 | +0.0465 | +0.0343 | +0.0673 | +0.0237 | -0.0215 | +0.0089 |
relative (%) | +0 | -0 | +10 | +20 | +26 | +28 | +21 | +41 | +14 | -13 | +5 | |
Steps (reduced) |
7315 (0) |
11594 (4279) |
16985 (2355) |
20536 (5906) |
25306 (3361) |
27069 (5124) |
29900 (640) |
31074 (1814) |
33090 (3830) |
35536 (6276) |
36240 (6980) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it.