1065edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1064edo1065edo1066edo →
Prime factorization 3 × 5 × 71
Step size 1.12676¢
Fifth 623\1065 (701.972¢)
Semitones (A1:m2) 101:80 (113.8¢ : 90.14¢)
Consistency limit 21
Distinct consistency limit 21

1065 equal divisions of the octave (1065edo), or 1065-tone equal temperament (1065tet), 1065 equal temperament (1065et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 1065 equal parts of about 1.13 ¢ each. It is consistent to the 21-odd-limit and is a zeta peak integer edo.

Some 19-limit commas it tempers out:

  • Monzisma
  • Squarschmidt ([61, 4, -29)
  • Landscape comma (250047/250000)
  • [3, 3, -3, 0, 1, 0, 0, -1⟩ (2376/2375)
  • [-3, 2, -2, 0, 0, -1, 2, 0⟩ (2601/2600)
  • [1, -2, -2, 1, 1, -1, 0, 1⟩ (2926/2925)
  • [-4, -3, 2, -1, 2, 0, 0, 0⟩ (3025/3024)
  • [1, 1, 1, -2, 0, -1, -1, 2⟩ (10830/10829)
  • [8, -1, 1, 0, 1, -1, 0, -2⟩ (14080/14079)
  • [-2, -3, 1, -1, 0, 2, 1, -1⟩ (14365/14364)

Prime harmonics

Approximation of prime harmonics in 1065edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.0000 +0.0168 +0.1652 +0.1882 -0.3320 +0.0357 -0.1667 -0.0482 +0.4580 +0.2820 -0.2468
relative (%) +0 +1 +15 +17 -29 +3 -15 -4 +41 +25 -22
Steps
(reduced)
1065
(0)
1688
(623)
2473
(343)
2990
(860)
3684
(489)
3941
(746)
4353
(93)
4524
(264)
4818
(558)
5174
(914)
5276
(1016)