6079edo
Jump to navigation
Jump to search
Prime factorization
6079 (prime)
Step size
0.197401¢
Fifth
3556\6079 (701.958¢)
Semitones (A1:m2)
576:457 (113.7¢ : 90.21¢)
Consistency limit
29
Distinct consistency limit
29
Special properties
← 6078edo | 6079edo | 6080edo → |
6079 equal divisions of the octave (6079edo), or 6079-tone equal temperament (6079tet), 6079 equal temperament (6079et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 6079 equal parts of about 0.197 ¢ each. It is a very strong 11- and 13-limit system, with a lower 11- and 13-limit relative error than any smaller division. It is also a zeta peak edo and distinctly consistent through the 29-odd-limit. A basis for the 11-limit commas is {3294225/3294172, 14348907/14348180, 35156250/35153041, 100663296/100656875}, and for the 13-limit commas, {123201/123200, 1574640/1574573, 1664000/1663893, 1990656/1990625, 3294225/3294172}.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.0000 | +0.0026 | -0.0002 | +0.0177 | +0.0227 | +0.0053 | +0.0619 | -0.0299 | +0.0527 | +0.0658 | +0.0870 |
relative (%) | +0 | +1 | -0 | +9 | +12 | +3 | +31 | -15 | +27 | +33 | +44 | |
Steps (reduced) |
6079 (0) |
9635 (3556) |
14115 (1957) |
17066 (4908) |
21030 (2793) |
22495 (4258) |
24848 (532) |
25823 (1507) |
27499 (3183) |
29532 (5216) |
30117 (5801) |