235edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 234edt235edt236edt →
Prime factorization 5 × 47
Step size 8.09343¢ 
Octave 148\235edt (1197.83¢)
Consistency limit 2
Distinct consistency limit 2

235 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 235edt or 235ed3), is a nonoctave tuning system that divides the interval of 3/1 into 235 equal parts of about 8.09 ¢ each. Each step represents a frequency ratio of 31/235, or the 235th root of 3.

Harmonics

Approximation of harmonics in 235edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.17 +0.00 +3.75 -2.18 -2.17 -1.96 +1.57 +0.00 +3.75 +0.61 +3.75
Relative (%) -26.8 +0.0 +46.3 -26.9 -26.8 -24.2 +19.5 +0.0 +46.3 +7.5 +46.3
Steps
(reduced)
148
(148)
235
(0)
297
(62)
344
(109)
383
(148)
416
(181)
445
(210)
470
(0)
493
(23)
513
(43)
532
(62)
Approximation of harmonics in 235edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.76 +3.96 -2.18 -0.60 -0.34 -2.17 +1.35 +1.57 -1.96 -1.56 +2.41
Relative (%) +34.1 +48.9 -26.9 -7.4 -4.2 -26.8 +16.6 +19.4 -24.2 -19.3 +29.8
Steps
(reduced)
549
(79)
565
(95)
579
(109)
593
(123)
606
(136)
618
(148)
630
(160)
641
(171)
651
(181)
661
(191)
671
(201)

Harmonics

Approximation of harmonics in 235edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.17 +0.00 +3.75 -2.18 -2.17 -1.96 +1.57 +0.00 +3.75 +0.61 +3.75
Relative (%) -26.8 +0.0 +46.3 -26.9 -26.8 -24.2 +19.5 +0.0 +46.3 +7.5 +46.3
Steps
(reduced)
148
(148)
235
(0)
297
(62)
344
(109)
383
(148)
416
(181)
445
(210)
470
(0)
493
(23)
513
(43)
532
(62)
Approximation of harmonics in 235edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.76 +3.96 -2.18 -0.60 -0.34 -2.17 +1.35 +1.57 -1.96 -1.56 +2.41
Relative (%) +34.1 +48.9 -26.9 -7.4 -4.2 -26.8 +16.6 +19.4 -24.2 -19.3 +29.8
Steps
(reduced)
549
(79)
565
(95)
579
(109)
593
(123)
606
(136)
618
(148)
630
(160)
641
(171)
651
(181)
661
(191)
671
(201)