# Hemimean clan

(Redirected from Decipentic)

The hemimean clan tempers out the hemimean comma, 3136/3125, with monzo [6 0 -5 2. The head of this clan is the 2.5.7 subgroup temperament didacus, generated by a tempered hemithird of 28/25. Two generator steps make 5/4 and five make 7/4.

The second comma of the comma list determines which 7-limit family member we are looking at. These extensions, in general, split the syntonic comma into two, each for 126/125~225/224, as 3136/3125 = (126/125)/(225/224). Hemiwürschmidt adds 2401/2400; hemithirds adds 1029/1024; spell adds 49/48. These all use the same nominal generator as didacus.

Septimal passion adds 64/63, splitting the hemithird into a further two. Septimal meantone adds 81/80 as well as 126/125 and 225/224, splitting an octave plus the hemithird into two perfect fifths. Sycamore adds 686/675, splitting the hemithird into three. Semisept adds 1728/1715, splitting an octave plus the hemithird into three. Mohavila adds 135/128, whereas cohemimabila adds 65536/64827, both splitting two octaves plus the hemithird into three. Emka adds 84035/82944, splitting two octaves plus the hemithird into four. Bidia adds 2048/2025 with a 1/4-octave period. Misty adds 5120/5103 with a 1/3-octave period. Bischismic adds 32805/32768 with a semioctave period. Hexe adds 50/49 with a 1/6-octave period. Clyde adds 245/243 with a generator of ~9/7, five of which make the original. Parakleismic adds 4375/4374 with a generator of ~6/5. Arch adds 5250987/5242880 with a generator of ~64/63. For these seven generators make the original. Sengagen adds 420175/419904 with a generator of ~686/675, splitting the hemithird into eight. Subpental adds 19683/19600 with a generator of ~56/45, nine of which make the original.

Temperaments considered below are hemiwürschmidt, hemithirds, spell, semisept, emka, decipentic, sengagen, subpental, mowglic, and undetrita. A notable subgroup extension of didacus is roulette. Discussed elsewhere are

## Didacus

Subgroup: 2.5.7

Comma list: 3136/3125

Sval mapping[1 0 -3], 0 2 5]]

sval mapping generators: ~2, ~56/25

Gencom mapping[1 0 0 -3], 0 0 2 5]]

Gencom: [2 56/25; 3136/3125]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.772

### Rectified hebrew

Rectified hebrew (37 & 56) is derived from the calendar by the same name. It is leap year pattern takes a stack of 18 Metonic cycle diatonic major scales and truncates the 19th one down to its generator, 11. It adds harmonic 13 through tempering out 4394/4375 and spliting the generator of didacus in three.

Subgroup: 2.5.7.13

Comma list: 3136/3125, 4394/4375

Sval mapping: [1 2 2 3], 0 6 15 13]]

sval mapping generators: ~2, ~26/25

Optimal tuning (POTE): ~2 = 1\1, ~26/25 = 64.6086

## Hemiwürschmidt

Hemiwürschmidt (sometimes spelled hemiwuerschmidt) is not only one of the more accurate extensions of didacus, but also the most important extension of 5-limit würschmidt, even with the rather large complexity for the fifth. It tempers out 2401/2400, 3136/3125, and 6144/6125. 68edo, 99edo and 130edo can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, ⟨⟨16 2 5 40 -39 -49 -48 28 …]].

Subgroup: 2.3.5.7

Comma list: 2401/2400, 3136/3125

Mapping[1 15 4 7], 0 -16 -2 -5]]

Wedgie⟨⟨16 2 5 -34 -37 6]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.898

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 3136/3125

Mapping: [1 15 4 7 37], 0 -16 -2 -5 -40]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.840

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 351/350, 441/440, 3584/3575

Mapping: [1 15 4 7 37 -29], 0 -16 -2 -5 -40 39]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.829

#### Hemithir

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 196/195, 275/273

Mapping: [1 15 4 7 37 -3], 0 -16 -2 -5 -40 8]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.918

### Hemiwur

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 1375/1372

Mapping: [1 15 4 7 11], 0 -16 -2 -5 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.884

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 196/195, 275/273

Mapping: [1 15 4 7 11 -3], 0 -16 -2 -5 -9 8]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 194.004

#### Hemiwar

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 105/104, 121/120, 1375/1372

Mapping: [1 15 4 7 11 23], 0 -16 -2 -5 -9 -23]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.698

This has been documented in Graham Breed's temperament finder as semihemiwürschmidt, but quadrawürschmidt arguably makes more sense.

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 3136/3125

Mapping: [1 15 4 7 24], 0 -32 -4 -10 -49]]

mapping generators: ~2, ~147/110

Optimal tuning (POTE): ~2 = 1\1, ~147/110 = 503.0404

### Semihemiwür

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3136/3125, 9801/9800

Mapping: [2 14 6 9 -10], 0 -16 -2 -5 25]]

mapping generators: ~99/70, ~495/392

Optimal tuning (POTE): ~99/70 = 1\2, ~28/25 = 193.9021

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 1716/1715, 3136/3125

Mapping: [2 14 6 9 -10 25], 0 -16 -2 -5 25 -26]]

Optimal tuning (POTE): ~99/70 = 1\2, ~28/25 = 193.9035

##### Semihemiwürat

Subgroup: 2.3.5.7.11.13.17

Comma list: 289/288, 442/441, 561/560, 676/675, 1632/1625

Mapping: [2 14 6 9 -10 25 19], 0 -16 -2 -5 25 -26 -16]]

Optimal tuning (POTE): ~17/12 = 1\2, ~28/25 = 193.9112

###### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 289/288, 442/441, 456/455, 476/475, 561/560, 627/625

Mapping: [2 14 6 9 -10 25 19 20], 0 -16 -2 -5 25 -26 -16 -17]]

Optimal tuning (POTE): ~17/12 = 1\2, ~19/17 = 193.9145

##### Semihemiwüram

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 676/675, 715/714, 1001/1000, 1225/1224

Mapping: [2 14 6 9 -10 25 -4], 0 -16 -2 -5 25 -26 18]]

Optimal tuning (POTE): ~99/70 = 1\2, ~28/25 = 193.9112

###### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 256/255, 286/285, 400/399, 476/475, 495/494, 1225/1224

Mapping: [2 14 6 9 -10 25 -4 -3], 0 -16 -2 -5 25 -26 18 17]]

Optimal tuning (POTE): ~99/70 = 1\2, ~19/17 = 193.9428

## Hemithirds

Subgroup: 2.3.5.7

Comma list: 1029/1024, 3136/3125

Mapping[1 4 2 2], 0 -15 2 5]]

Wedgie⟨⟨15 -2 -5 -38 -50 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.244

eigenmonzo (unchanged-interval) basis: 2.7/3
eigenmonzo (unchanged-interval) basis: 2.9/7

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 441/440, 3136/3125

Mapping: [1 4 2 2 7], 0 -15 2 5 -22]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.227

Minimax tuning:

• 11-odd-limit: ~28/25 = [5/27 0 0 1/27 -1/27
Eigenmonzo (unchanged-interval) basis: 2.11/7

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 385/384, 625/624

Mapping: [1 4 2 2 7 0], 0 -15 2 5 -22 23]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 193.166

## Spell

Subgroup: 2.3.5.7

Comma list: 49/48, 3125/3072

Mapping[1 0 2 2], 0 10 2 5]]

Wedgie⟨⟨10 2 5 -20 -20 6]]

Optimal tuning (POTE): ~2 = 1\1, ~28/25 = 189.927

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 56/55, 125/121

Mapping: [1 0 2 2 3], 0 10 2 5 3]]

Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 190.285

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 56/55, 78/77, 125/121

Mapping: [1 0 2 2 3 4], 0 10 2 5 3 -2]]

Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 189.928

#### Cantrip

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 56/55, 91/90, 125/121

Mapping: [1 0 2 2 3 1], 0 10 2 5 3 17]]

Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 190.360

## Semisept

For the 5-limit version of this temperament, see High badness temperaments #Semisept.

The minimal generator of semisept is half a tempered septimal major sixth (12/7), hence the name. Three such generator steps minus an octave give the hemithird, and six give the classical major third. It can be described as the 31 & 80 temperament, and as one may expect, 111edo makes for a great tuning.

Subgroup: 2.3.5.7

Comma list: 1728/1715, 3136/3125

Mapping[1 12 6 12], 0 -17 -6 -15]]

mapping generators: ~2, ~75/49

Wedgie⟨⟨17 6 15 -30 -24 18]]

Optimal tuning (POTE): ~2 = 1\1, ~75/49 = 735.155

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 540/539, 1331/1323

Mapping: [1 12 6 12 20], 0 -17 -6 -15 -27]]

Optimal tuning (POTE): ~2 = 1\1, ~55/36 = 735.125

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 351/350, 540/539, 1375/1372

Mapping: [1 12 6 12 20 -11], 0 -17 -6 -15 -27 24]]

Optimal tuning (POTE): ~2 = 1\1, ~55/36 = 735.126

##### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 176/175, 256/255, 351/350, 640/637, 715/714

Mapping: [1 12 6 12 20 -11 -10], 0 -17 -6 -15 -27 24 23]]

Optimal tuning (POTE): ~2 = 1\1, ~26/17 = 735.125

##### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 176/175, 286/285, 351/350, 476/475, 540/539, 1331/1323

Mapping: [1 12 6 12 20 -11 -10 -8], 0 -17 -6 -15 -27 24 23 20]]

Optimal tuning (POTE): ~2 = 1\1, ~26/17 = 735.116

##### 23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 176/175, 253/252, 286/285, 345/343, 351/350, 391/390, 460/459

Mapping: [1 12 6 12 20 -11 -10 -8 18], 0 -17 -6 -15 -27 24 23 20 -22]]

Optimal tuning (POTE): ~2 = 1\1, ~26/17 = 735.106

#### Semishly

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 176/175, 196/195, 275/273

Mapping: [1 12 6 12 20 8], 0 -17 -6 -15 -27 -7]]

Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 464.980

## Emka

For the 5-limit version of this temperament, see High badness temperaments #Emka.

Emka tempers out [-50 -8 27 in the 5-limit. This temperament can be described as 37 & 50 temperament, which tempers out the hemimean and 84035/82944 (quinzo-ayo). Alternative extension emkay (87 & 224) tempers out the same 5-limit comma as the emka, but with the horwell (65625/65536) rather than the hemimean tempered out.

Subgroup: 2.3.5.7

Comma list: 3136/3125, 84035/82944

Mapping[1 14 6 12], 0 -27 -8 -20]]

mapping generators: ~2, ~48/35

Wedgie⟨⟨27 8 20 -50 -44 24]]

Optimal tuning (POTE): ~2 = 1\1, ~48/35 = 551.782

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 2401/2376, 3136/3125

Mapping: [1 14 6 12 3], 0 -27 -8 -20 1]]

Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 551.765

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 364/363, 385/384, 625/624

Mapping: [1 14 6 12 3 6], 0 -27 -8 -20 1 -5]]

Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 551.758

## Decipentic

The generator for the decipentic temperament (43 & 56) is the tenth root of the 5th harmonic (5/1), 51/10, tuned between 75/64 and 20/17 (close to 27/23). Aside from the hemimean comma, this temperament tempers out the bronzisma, 2097152/2083725. 99edo is a good tuning for decipentic, with generator 23\99, and mos scales of 9, 13, 17, 30, 43 or 56 notes are available.

Subgroup: 2.3.5.7

Comma list: 3136/3125, 2097152/2083725

Mapping[1 6 0 -3], 0 -19 10 25]]

Wedgie⟨⟨19 -10 -25 -60 -93 -30]]

Optimal tuning (POTE): ~2 = 1\1, ~75/64 = 278.800

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 1344/1331, 3136/3125

Mapping: [1 6 0 -3 3], 0 -19 10 25 2]]

Optimal tuning (POTE): ~2 = 1\1, ~75/64 = 278.799

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 441/440, 832/825, 975/968

Mapping: [1 6 0 -3 3 3], 0 -19 10 25 2 3]]

Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 278.802

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 169/168, 221/220, 256/255, 273/272, 375/374

Mapping: [1 6 0 -3 3 3 2], 0 -19 10 25 2 3 9]]

Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 278.798

#### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 169/168, 210/209, 221/220, 256/255, 273/272, 286/285

Mapping: [1 6 0 -3 3 3 2 1], 0 -19 10 25 2 3 9 14]]

Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 278.790

### Quasijerome

Subgroup: 2.3.5.7.11

Comma list: 3136/3125, 15488/15435, 16384/16335

Mapping: [1 6 0 -3 3], 0 -38 20 50 47]]

Optimal tuning (POTE): ~2 = 1\1, ~896/825 = 139.403

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 3136/3125, 15488/15435

Mapping: [1 6 0 -3 3 8], 0 -38 20 50 47 -37]]

Optimal tuning (POTE): ~2 = 1\1, ~13/12 = 139.403

## Sengagen

Subgroup: 2.3.5.7

Comma list: 3136/3125, 420175/419904

Mapping[1 1 2 2], 0 29 16 40]]

Wedgie⟨⟨29 16 40 -42 -18 48]]

Optimal tuning (POTE): ~2 = 1\1, ~686/675 = 24.217

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 1344/1331, 3136/3125

Mapping: [1 1 2 2 3], 0 29 16 40 23]]

Optimal tuning (POTE): ~2 = 1\1, ~99/98 = 24.235

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 540/539, 975/968, 1344/1331

Mapping: [1 1 2 2 3 4], 0 29 16 40 23 -15]]

Optimal tuning (POTE): ~2 = 1\1, ~99/98 = 24.181

#### Sengage

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 196/195, 364/363, 625/624

Mapping: [1 1 2 2 3 3], 0 29 16 40 23 35]]

Optimal tuning (POTE): ~2 = 1\1, ~99/98 = 24.234

## Mowglic

The mowglic temperament (19 & 161) is an extension of the mowgli temperament which tempers out the hemimean comma and the secanticornisma (177147/175000, laruquingu) in the 7-limit.

Subgroup: 2.3.5.7

Comma list: 3136/3125, 177147/175000

Mapping[1 0 0 -3], 0 15 22 55]]

Wedgie⟨⟨15 22 55 0 45 66]]

Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 126.706

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 3136/3125, 72171/71680

Mapping: [1 0 0 -3 8], 0 15 22 55 -43]]

Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 126.711

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 540/539, 1701/1690, 3136/3125

Mapping: [1 0 0 -3 8 -2], 0 15 22 55 -43 54]]

Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 126.705

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 540/539, 833/832, 1701/1690, 3136/3125

Mapping: [1 0 0 -3 8 -2 10], 0 15 22 55 -43 54 -56]]

Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 126.703

### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 351/350, 476/475, 495/494, 513/512, 540/539, 1701/1690

Mapping: [1 0 0 -3 8 -2 10 9], 0 15 22 55 -43 54 -56 -45]]

Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 126.705

### 23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 276/275, 351/350, 476/475, 495/494, 513/512, 529/528, 540/539

Mapping: [1 0 0 -3 8 -2 10 9 6], 0 15 22 55 -43 54 -56 -45 -14]]

Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 126.703

### 29-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29

Comma list: 261/260, 276/275, 351/350, 476/475, 495/494, 513/512, 529/528, 540/539

Mapping: [1 0 0 -3 8 -2 10 9 6 0], 0 15 22 55 -43 54 -56 -45 -14 46]]

Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 126.704

### 31-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29.31

Comma list: 261/260, 276/275, 351/350, 435/434, 476/475, 495/494, 513/512, 529/528, 540/539

Mapping: [1 0 0 -3 8 -2 10 9 6 0 2], 0 15 22 55 -43 54 -56 -45 -14 46 28]]

Optimal tuning (POTE): ~2 = 1\1, ~14/13 = 126.703

## Tremka

The name tremka was initially used for no-sevens version of 50 & 111 (especially in the 2.3.5.11.13 subgroup), but extending to full 13-limit or higher prime limit does no significant tuning damage, so for that we keep the 2.3.5.11.13 label tremka.

Subgroup: 2.3.5.7

Comma list: 3136/3125, 2125764/2100875

Mapping[1 -4 -2 -8], 0 31 24 60]]

Wedgie⟨⟨31 24 60 -34 8 72]]

Optimal tuning (POTE): ~2 = 1\1, ~4375/3888 = 216.173

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 3136/3125, 35937/35840

Mapping: [1 -4 -2 -8 4], 0 31 24 60 -3]]

Optimal tuning (POTE): ~2 = 1\1, ~112/99 = 216.168

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 540/539, 847/845, 3136/3125

Mapping: [1 -4 -2 -8 4 1], 0 31 24 60 -3 15]]

Optimal tuning (POTE): ~2 = 1\1, ~112/99 = 216.172

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 351/350, 540/539, 561/560, 847/845, 1089/1088

Mapping: [1 -4 -2 -8 4 1 -6], 0 31 24 60 -3 15 56]]

Optimal tuning (POTE): ~2 = 1\1, ~17/15 = 216.172

### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 324/323, 351/350, 456/455, 476/455, 495/494, 540/539

Mapping: [1 -4 -2 -8 4 1 -6 -8], 0 31 24 60 -3 15 56 68]]

Optimal tuning (POTE): ~2 = 1\1, ~17/15 = 216.170

## Undetrita

The undetrita temperament (111 & 118) tempers out the hemimean comma (3136/3125) and skeetsma (14348907/14336000) in the 7-limit; 3025/3024, 3388/3375, and 8019/8000 in the 11-limit. This temperament is related to 11edt, and the name undetrita is a play on the words undecimus (Latin for "eleventh") and tritave (3rd harmonic). It is also related to the twentcufo temperament, which is no-sevens version of 111 & 118.

Subgroup: 2.3.5.7

Comma list: 3136/3125, 14348907/14336000

Mapping[1 0 -2 -8], 0 11 30 75]]

Wedgie⟨⟨11 30 75 22 88 90]]

Optimal tuning (POTE): ~2 = 1\1, ~448/405 = 172.917

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 3136/3125, 8019/8000

Mapping: [1 0 -2 -8 0], 0 11 30 75 24]]

Optimal tuning (POTE): ~2 = 1\1, ~400/363 = 172.912

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 729/728, 1001/1000, 3025/3024

Mapping: [1 0 -2 -8 0 5], 0 11 30 75 24 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~72/65 = 172.930

#### Undetritoid

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 1573/1568, 2080/2079, 3136/3125

Mapping: [1 0 -2 -8 0 -11], 0 11 30 75 24 102]]

Optimal tuning (POTE): ~2 = 1\1, ~400/363 = 172.933

## Isra

Isra results from taking every other generator of septimal meantone. It is named after the Isrāʾ (iss-RAH) night journey in the Qur'an, because it is similar to luna.

Subgroup: 2.9.5.7

Comma list: 81/80, 126/125

Sval mapping[1 0 -4 -13], 0 1 2 5]]

sval mapping generators: ~2, ~9

Optimal tuning (POTE): ~2 = 1\1, ~9/8 = 192.9898

### Tutone

Tutone is every other step of undecimal meantone.

Subgroup: 2.9.5.7.11

Comma list: 81/80, 99/98, 126/125

Sval mapping[1 0 -4 -13 -25], 0 1 2 5 9]]

Gencom mapping[1 3/2 2 2 2], 0 1/2 2 5 9]]

gencom: [2 9/8; 81/80 99/98 126/125]

Optimal tuning (POTE): ~2 = 1\1, ~9/8 = 193.937