302edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 301edo302edo303edo →
Prime factorization 2 × 151
Step size 3.97351¢
Fifth 177\302 (703.311¢)
Semitones (A1:m2) 31:21 (123.2¢ : 83.44¢)
Dual sharp fifth 177\302 (703.311¢)
Dual flat fifth 176\302 (699.338¢) (→88\151)
Dual major 2nd 51\302 (202.649¢)
Consistency limit 3
Distinct consistency limit 3

302 equal divisions of the octave (abbreviated 302edo), or 302-tone equal temperament (302tet), 302 equal temperament (302et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 302 equal parts of about 3.97 ¢ each. Each step of 302edo represents a frequency ratio of 21/302, or the 302nd root of 2.

Theory

Approximation of odd harmonics in 302edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +1.36 -0.88 +0.71 -1.26 +1.00 +1.86 +0.47 -1.64 +0.50 -1.91 -0.46
relative (%) +34 -22 +18 -32 +25 +47 +12 -41 +13 -48 -12
Steps
(reduced)
479
(177)
701
(97)
848
(244)
957
(51)
1045
(139)
1118
(212)
1180
(274)
1234
(26)
1283
(75)
1326
(118)
1366
(158)

Subsets and supersets

302 factors into 2 x 151, with subset edos 2, and 151. 906edo, which triples it, gives a good correction to the harmonic 3.

Interval table

see Table of 302edo intervals