User:Ganaram inukshuk/Sandbox: Difference between revisions
→Scale tree formatting: sideways text test |
→Scale tree formatting: binary tree in-table? |
||
Line 157: | Line 157: | ||
Advanced table may need custom html? | Advanced table may need custom html? | ||
{| class="wikitable center-all" | |||
{| class="wikitable" | ! colspan="7" rowspan="2" |Generator (in steps of [[edo]]) | ||
! rowspan="2" | | ! colspan="2" |Cents | ||
! colspan="2" | | |||
! colspan="2" |Step ratio | ! colspan="2" |Step ratio | ||
! rowspan="2" |Comments | ! rowspan="2" |Comments | ||
Line 167: | Line 166: | ||
!Dark | !Dark | ||
!L:s | !L:s | ||
! | !Hardness | ||
|- | |- | ||
|[[7edo|4\7]] | |[[7edo|4\7]] | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|685.714 | |685.714 | ||
|514.286 | |514.286 | ||
|1:1 | |1:1 | ||
|Equalized | |1.000 | ||
|Equalized 5L 2s | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | | | ||
| | |┌ | ||
|[[47edo|27\47]] | |[[47edo|27\47]] | ||
|689.362 | |689.362 | ||
|510.638 | |510.638 | ||
|7:6 | |7:6 | ||
| | |1.167 | ||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
| | |||
|┌ | |||
|[[40edo|23\40]] | |[[40edo|23\40]] | ||
|690 | | | ||
|510 | |690.000 | ||
|510.000 | |||
|6:5 | |6:5 | ||
|1.200 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
| | |||
|│ | |||
|└ | |||
|[[73edo|42\73]] | |[[73edo|42\73]] | ||
|690.411 | |690.411 | ||
|509.589 | |509.589 | ||
|11:9 | |11:9 | ||
|1.222 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
|┌ | |||
|[[33edo|19\33]] | |[[33edo|19\33]] | ||
| | |||
| | |||
|690.909 | |690.909 | ||
|509.091 | |509.091 | ||
|5:4 | |5:4 | ||
|1.250 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
|│ | |||
| | |||
|┌ | |||
|[[92edo|53\92]] | |[[92edo|53\92]] | ||
|691.304 | |691.304 | ||
|508.696 | |508.696 | ||
|14:11 | |14:11 | ||
|1.273 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
|│ | |||
| | |||
|[[59edo|34\59]] | |[[59edo|34\59]] | ||
| | |||
|691.525 | |691.525 | ||
|508.475 | |508.475 | ||
|9:7 | |9:7 | ||
|1.286 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
|│ | |||
| | |||
|└ | |||
|[[85edo|49\85]] | |[[85edo|49\85]] | ||
|691.765 | |691.765 | ||
|508.235 | |508.235 | ||
|13:10 | |13:10 | ||
|1.300 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|┌ | |||
|[[26edo|15\26]] | |[[26edo|15\26]] | ||
| | |||
| | |||
| | |||
|692.308 | |692.308 | ||
|507.692 | |507.692 | ||
|4:3 | |4:3 | ||
|Supersoft | |1.333 | ||
| Supersoft 5L 2s | |||
|- | |||
| | |||
| | |||
|│ | |||
|│ | |||
| | | | ||
| | |┌ | ||
|[[97edo|56\97]] | |[[97edo|56\97]] | ||
|692.784 | |692.784 | ||
|507.216 | |507.216 | ||
|15:11 | |15:11 | ||
| | |1.364 | ||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
|│ | |||
|┌ | |||
|[[71edo|41\71]] | |[[71edo|41\71]] | ||
| | |||
|692.958 | |692.958 | ||
|507.042 | |507.042 | ||
|11:8 | |11:8 | ||
|1.375 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
|│ | |||
|│ | |||
|└ | |||
|[[116edo|67\116]] | |[[116edo|67\116]] | ||
|693.103 | |693.103 | ||
|506.897 | |506.897 | ||
|18:13 | |18:13 | ||
|1.385 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
|└ | |||
|[[45edo|26\45]] | |[[45edo|26\45]] | ||
| | |||
| | |||
|693.333 | |693.333 | ||
|506.667 | |506.667 | ||
|7:5 | |7:5 | ||
|1.400 | |||
|[[Flattone]] is in this region | |||
|- | |||
| | |||
| | | | ||
| | |│ | ||
| | |||
|│ | |||
|┌ | |||
|[[109edo|63\109]] | |[[109edo|63\109]] | ||
|693.578 | |693.578 | ||
|506.422 | |506.422 | ||
|17:12 | |17:12 | ||
|1.417 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
| | |||
|└ | |||
|[[64edo|37\64]] | |[[64edo|37\64]] | ||
|693. | | | ||
|506. | |693.750 | ||
|506.250 | |||
|10:7 | |10:7 | ||
|1.429 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
| | |||
| | |||
|└ | |||
|[[83edo|48\83]] | |[[83edo|48\83]] | ||
|693.976 | |693.976 | ||
|506.024 | |506.024 | ||
|13:9 | |13:9 | ||
|1.444 | |||
| | | | ||
|- | |- | ||
| | |||
|┌ | |||
|[[19edo|11\19]] | |[[19edo|11\19]] | ||
| | |||
| | |||
| | |||
| | |||
|694.737 | |694.737 | ||
|505.263 | |505.263 | ||
|3:2 | |3:2 | ||
|Soft | |1.500 | ||
|Soft 5L 2s | |||
|- | |||
| | |||
|│ | |||
|│ | |||
| | |||
| | | | ||
| | |┌ | ||
|[[88edo|51\88]] | |[[88edo|51\88]] | ||
|695.455 | |695.455 | ||
|504.545 | |504.545 | ||
|14:9 | |14:9 | ||
| | |1.556 | ||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|│ | |||
| | |||
|┌ | |||
|[[69edo|40\69]] | |[[69edo|40\69]] | ||
| | |||
|695.652 | |695.652 | ||
|504.348 | |504.348 | ||
|11:7 | |11:7 | ||
|1.571 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|│ | |||
| | |||
|│ | |||
|└ | |||
|[[119edo|69\119]] | |[[119edo|69\119]] | ||
|695.798 | |695.798 | ||
|504.202 | |504.202 | ||
|19:12 | |19:12 | ||
|1.583 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|│ | |||
|┌ | |||
|[[50edo|29\50]] | |[[50edo|29\50]] | ||
|696 | | | ||
|504 | | | ||
|696.000 | |||
| 504.000 | |||
|8:5 | |8:5 | ||
|1.600 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|│ | |||
|│ | |||
|│ | |||
|┌ | |||
|[[131edo|76\131]] | |[[131edo|76\131]] | ||
|696.183 | |696.183 | ||
|503.817 | |503.817 | ||
|21:13 | |21:13 | ||
|1.615 | |||
|[[Golden meantone]] (696.2145¢) | |||
|- | |||
| | | | ||
| | |│ | ||
|│ | |||
|│ | |||
|└ | |||
|[[81edo|47\81]] | |[[81edo|47\81]] | ||
| | |||
|696.296 | |696.296 | ||
|503.704 | |503.704 | ||
|13:8 | |13:8 | ||
|1.625 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|│ | |||
|│ | |||
| | |||
|└ | |||
|[[112edo|65\112]] | |[[112edo|65\112]] | ||
|696.429 | |696.429 | ||
|503.571 | |503.571 | ||
|18:11 | |18:11 | ||
|1.636 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|└ | |||
|[[31edo|18\31]] | |[[31edo|18\31]] | ||
| | |||
| | |||
| | |||
|696.774 | |696.774 | ||
|503.226 | |503.226 | ||
|5:3 | |5:3 | ||
|Semisoft | |1.667 | ||
|Semisoft 5L 2s | |||
[[Meantone]] is in this region | |||
|- | |||
| | |||
|│ | |||
| | |||
|│ | |||
| | | | ||
| | |┌ | ||
|[[105edo|61\105]] | |[[105edo|61\105]] | ||
|697.143 | |697.143 | ||
|502.857 | | 502.857 | ||
|17:10 | |17:10 | ||
| | |1.700 | ||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
| | |||
|│ | |||
|┌ | |||
|[[74edo|43\74]] | |[[74edo|43\74]] | ||
| | |||
|697.297 | |697.297 | ||
|502.703 | |502.703 | ||
|12:7 | |12:7 | ||
|1.714 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
| | |||
|│ | |||
|│ | |||
|└ | |||
|[[117edo|68\117]] | |[[117edo|68\117]] | ||
|697.436 | |697.436 | ||
|502.564 | |502.564 | ||
|19:11 | |19:11 | ||
|1.727 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
| | |||
|└ | |||
|[[43edo|25\43]] | |[[43edo|25\43]] | ||
| | |||
| | |||
|697.674 | |697.674 | ||
|502.326 | |502.326 | ||
|7:4 | |7:4 | ||
|1.750 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
| | |||
| | |||
|│ | |||
| | |||
|[[98edo|57\98]] | |[[98edo|57\98]] | ||
|697.959 | |697.959 | ||
|502.041 | |502.041 | ||
|16:9 | |16:9 | ||
|1.778 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
| | |||
| | |||
|└ | |||
|[[55edo|32\55]] | |[[55edo|32\55]] | ||
| | |||
|698.182 | |698.182 | ||
|501.818 | |501.818 | ||
|9:5 | |9:5 | ||
|1.800 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
| | |||
| | |||
| | |||
|└ | |||
|[[67edo|39\67]] | |[[67edo|39\67]] | ||
|698.507 | |698.507 | ||
|501.493 | | 501.493 | ||
|11:6 | |11:6 | ||
|1.833 | |||
| | | | ||
|- | |- | ||
| | |||
|[[12edo|7\12]] | |[[12edo|7\12]] | ||
|700 | | | ||
|500 | | | ||
| | |||
| | |||
| | |||
|700.000 | |||
|500.000 | |||
|2:1 | |2:1 | ||
|Basic | |2.000 | ||
|Basic 5L 2s | |||
|- | |||
| | |||
|│ | |||
| | |||
| | |||
| | | | ||
| | |┌ | ||
|[[65edo|38\65]] | |[[65edo|38\65]] | ||
|701.538 | |701.538 | ||
|498.462 | |498.462 | ||
|11:5 | |11:5 | ||
| | |2.200 | ||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
| | |||
| | |||
|┌ | |||
|[[53edo|31\53]] | |[[53edo|31\53]] | ||
| | |||
|701.887 | |701.887 | ||
|498.113 | |498.113 | ||
|9:4 | |9:4 | ||
|2.250 | |||
|The generator closest to a just [[3/2]] for EDOs less than 200 | |||
|- | |||
| | |||
|│ | |||
| | |||
| | | | ||
| | |│ | ||
|└ | |||
|[[94edo|55\94]] | |[[94edo|55\94]] | ||
|702.128 | |702.128 | ||
|497.872 | |497.872 | ||
|16:7 | |16:7 | ||
|2.286 | |||
|[[Garibaldi]] / [[Cassandra]] | |||
|- | |||
| | |||
|│ | |||
| | | | ||
| | |┌ | ||
|[[41edo|24\41]] | |[[41edo|24\41]] | ||
| | |||
| | |||
|702.439 | |702.439 | ||
|497.561 | |497.561 | ||
|7:3 | |7:3 | ||
|2.333 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
| | |||
|│ | |||
|│ | |||
|┌ | |||
|[[111edo|65\111]] | |[[111edo|65\111]] | ||
|702.703 | |702.703 | ||
|497.297 | |497.297 | ||
|19:8 | |19:8 | ||
|2.375 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
| | |||
|│ | |||
|└ | |||
|[[70edo|41\70]] | |[[70edo|41\70]] | ||
| | |||
|702.857 | |702.857 | ||
|497.143 | |497.143 | ||
|12:5 | |12:5 | ||
|2.400 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
| | |||
|│ | |||
| | |||
|└ | |||
|[[99edo|58\99]] | |[[99edo|58\99]] | ||
|703. | |703.030 | ||
|496. | |496.970 | ||
|17:7 | |17:7 | ||
|2.429 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|┌ | |||
|[[29edo|17\29]] | |[[29edo|17\29]] | ||
| | |||
| | |||
| | |||
|703.448 | |703.448 | ||
|496.552 | |496.552 | ||
|5:2 | |5:2 | ||
|Semihard | |2.500 | ||
|Semihard 5L 2s | |||
|- | |||
| | |||
|│ | |||
|│ | |||
|│ | |||
| | | | ||
| | |┌ | ||
|[[104edo|61\104]] | |[[104edo|61\104]] | ||
|703.846 | |703.846 | ||
|496.154 | |496.154 | ||
|18:7 | |18:7 | ||
| | |2.571 | ||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|│ | |||
|│ | |||
|┌ | |||
|[[75edo|44\75]] | |[[75edo|44\75]] | ||
|704 | | | ||
|496 | |704.000 | ||
|496.000 | |||
|13:5 | |13:5 | ||
|2.600 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|│ | |||
|│ | |||
|│ | |||
|└ | |||
|[[121edo|71\121]] | |[[121edo|71\121]] | ||
|704.132 | |704.132 | ||
|495.868 | |495.868 | ||
|21:8 | |21:8 | ||
|2.625 | |||
|Golden neogothic (704.0956¢) | |||
|- | |||
| | | | ||
| | |│ | ||
|│ | |||
|└ | |||
|[[46edo|27\46]] | |[[46edo|27\46]] | ||
| | |||
| | |||
|704.348 | |704.348 | ||
|495.652 | |495.652 | ||
|8:3 | |8:3 | ||
|2.667 | |||
|[[Neogothic]] is in this region | |||
|- | |||
| | |||
|│ | |||
|│ | |||
| | |||
| | | | ||
| | |┌ | ||
|[[109edo|64\109]] | |[[109edo|64\109]] | ||
|704.587 | |704.587 | ||
|495.413 | |495.413 | ||
|19:7 | |19:7 | ||
|2.714 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|│ | |||
| | |||
| | |||
|[[63edo|37\63]] | |[[63edo|37\63]] | ||
| | |||
|704.762 | |704.762 | ||
|495.238 | |495.238 | ||
|11:4 | |11:4 | ||
|2.750 | |||
| | | | ||
|- | |- | ||
| | |||
|│ | |||
|│ | |||
| | |||
| | |||
|└ | |||
|[[80edo|47\80]] | |[[80edo|47\80]] | ||
|705 | |705.000 | ||
|495 | |495.000 | ||
|14:5 | |14:5 | ||
|2.800 | |||
| | | | ||
|- | |- | ||
| | |||
|└ | |||
|[[17edo|10\17]] | |[[17edo|10\17]] | ||
| | |||
| | |||
| | |||
| | |||
|705.882 | |705.882 | ||
|494.118 | |494.118 | ||
|3:1 | |3:1 | ||
|Hard | |3.000 | ||
|Hard 5L 2s | |||
|- | |||
| | | | ||
| | | | ||
|│ | |||
| | |||
| | |||
|┌ | |||
|[[73edo|43\73]] | |[[73edo|43\73]] | ||
|706.849 | |706.849 | ||
|493.151 | |493.151 | ||
|13:4 | |13:4 | ||
| | |3.250 | ||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
| | |||
|┌ | |||
|[[56edo|33\56]] | |[[56edo|33\56]] | ||
| | |||
|707.143 | |707.143 | ||
|492.857 | |492.857 | ||
|10:3 | |10:3 | ||
|3.333 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
| | |||
|│ | |||
|└ | |||
|[[95edo|56\95]] | |[[95edo|56\95]] | ||
|707.368 | |707.368 | ||
|492.632 | |492.632 | ||
|17:5 | |17:5 | ||
|3.400 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
|┌ | |||
|[[39edo|23\39]] | |[[39edo|23\39]] | ||
| | |||
| | |||
|707.692 | |707.692 | ||
|492.308 | |492.308 | ||
|7:2 | |7:2 | ||
|3.500 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
|│ | |||
|│ | |||
|┌ | |||
|[[100edo|59\100]] | |[[100edo|59\100]] | ||
|708 | |708.000 | ||
|492 | |492.000 | ||
|18:5 | |18:5 | ||
|3.600 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
|│ | |||
|└ | |||
|[[61edo|36\61]] | |[[61edo|36\61]] | ||
| | |||
|708.197 | |708.197 | ||
|491.803 | |491.803 | ||
|11:3 | |11:3 | ||
|3.667 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|│ | |||
|│ | |||
| | |||
|└ | |||
|[[83edo|49\83]] | |[[83edo|49\83]] | ||
|708.434 | |708.434 | ||
|491.566 | |491.566 | ||
|15:4 | |15:4 | ||
|3.750 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|└ | |||
|[[22edo|13\22]] | |[[22edo|13\22]] | ||
| | |||
| | |||
| | |||
|709.091 | |709.091 | ||
|490.909 | |490.909 | ||
|4:1 | |4:1 | ||
|Superhard | |4.000 | ||
|Superhard 5L 2s | |||
[[Archy]] is in this region | |||
|- | |||
| | |||
| | |||
| | | | ||
| | |│ | ||
| | |||
|┌ | |||
|[[71edo|42\71]] | |[[71edo|42\71]] | ||
|709.859 | |709.859 | ||
|490.141 | |490.141 | ||
|13:3 | |13:3 | ||
| | |4.333 | ||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
|│ | |||
|┌ | |||
|[[49edo|29\49]] | |[[49edo|29\49]] | ||
| | |||
|710.204 | |710.204 | ||
|489.796 | |489.796 | ||
|9:2 | |9:2 | ||
|4.500 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
|│ | |||
|│ | |||
|└ | |||
|[[76edo|45\76]] | |[[76edo|45\76]] | ||
|710.526 | |710.526 | ||
|489.474 | |489.474 | ||
|14:3 | |14:3 | ||
|4.667 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
|└ | |||
|[[27edo|16\27]] | |[[27edo|16\27]] | ||
| | |||
| | |||
|711.111 | |711.111 | ||
|488.889 | |488.889 | ||
|5:1 | |5:1 | ||
|5.000 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
| | |||
|│ | |||
|┌ | |||
|[[59edo|35\59]] | |[[59edo|35\59]] | ||
|711.864 | |711.864 | ||
|488.136 | |488.136 | ||
|11:2 | |11:2 | ||
|5.500 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
| | |||
|└ | |||
|[[32edo|19\32]] | |[[32edo|19\32]] | ||
|712. | | | ||
|487. | |712.500 | ||
|487.500 | |||
|6:1 | |6:1 | ||
|6.000 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
| | |||
| | |||
| | |||
|└ | |||
|[[37edo|22\37]] | |[[37edo|22\37]] | ||
|713.514 | |713.514 | ||
|486.486 | |486.486 | ||
|7:1 | |7:1 | ||
|7.000 | |||
| | | | ||
|- | |- | ||
|[[5edo|3\5]] | |[[5edo|3\5]] | ||
|720 | | | ||
|480 | | | ||
| | |||
| | |||
| | |||
| | |||
|720.000 | |||
|480.000 | |||
|1:0 | |1:0 | ||
| | |→ ∞ | ||
| | |Collapsed 5L 2s | ||
|} | |} |
Revision as of 08:43, 16 February 2024
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
Sandbox for proposed templates
JI ratio intro
For general ratios: m/n, also called interval-name, is a p-limit just intonation ratio of exactly/about r¢.
For harmonics: m/1, also called interval-name, is a just intonation ration that represents the mth harmonic of exactly/about r¢.
MOS step sizes
Interval | Basic 3L 4s
(10edo, L:s = 2:1) |
Hard 3L 4s
(13edo, L:s = 3:1) |
Soft 3L 4s
(17edo, L:s = 3:2) |
Approx. JI ratios | |||
---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | ||
Large step | 2 | 240¢ | 3 | 276.9¢ | 3 | 211.8¢ | Hide column if no ratios given |
Small step | 1 | 120¢ | 1 | 92.3¢ | 2 | 141.2¢ | |
Bright generator | 3 | 360¢ | 4 | 369.2¢ | 5 | 355.6¢ |
Notes:
- Allow option to show the bright generator, dark generator, or no generator.
- JI ratios column only shows if there are any ratios to show
Expanded MOS intro
Base wording
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
Rothenprop info
Single-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step.
Multi-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step per period.
Descendant info (descendants of tamnams-named mosses only)
scalesig is a chromatic/enharmonic scale of parent-scalesig, an extension of parent-scalesig scales with a step-ratio-range step ratio.
scalesig is a descendant scale of parent-scalesig.
Full wording
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.
Examples
5L 7s, also called p-chromatic, is an octave-equivalent moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a chromatic scale of 5L 2s, an extension of 5L 2s scales with a hard-of-basic step ratio. Generators that produce this scale range from 700¢ to 720¢, or from 480¢ to 500¢.
Mos ancestors and descendants
2nd ancestor | 1st ancestor | Mos | 1st descendants | 2nd descendants |
---|---|---|---|---|
uL vs | zL ws | xL ys | xL (x+y)s | xL (2x+y)s |
(2x+y)L xs | ||||
(x+y)L xs | (2x+y)L (x+y)s | |||
(x+y)L (2x+y)s |
6- to 10-note mosses | 1L 5s (selenite) | 2L 4s ( | 3L 3s | 4L 2 | 5L 1s | ||||||||
Monolarge family | 1L 5s (selenite) | 1L 6s (onyx) | 1L 7s (spinel) | 1L 8s (agate) | 1L 9s (olivine) | ||||||||
Diatonic mos family |
|
Scale tree formatting
Proposed changes:
- Merge step ratio and hardness columns
Advanced table may need custom html?
Generator (in steps of edo) | Cents | Step ratio | Comments | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | ||||||||
4\7 | 685.714 | 514.286 | 1:1 | 1.000 | Equalized 5L 2s | ||||||
┌ | 27\47 | 689.362 | 510.638 | 7:6 | 1.167 | ||||||
┌ | 23\40 | 690.000 | 510.000 | 6:5 | 1.200 | ||||||
│ | └ | 42\73 | 690.411 | 509.589 | 11:9 | 1.222 | |||||
┌ | 19\33 | 690.909 | 509.091 | 5:4 | 1.250 | ||||||
│ | ┌ | 53\92 | 691.304 | 508.696 | 14:11 | 1.273 | |||||
│ | 34\59 | 691.525 | 508.475 | 9:7 | 1.286 | ||||||
│ | └ | 49\85 | 691.765 | 508.235 | 13:10 | 1.300 | |||||
┌ | 15\26 | 692.308 | 507.692 | 4:3 | 1.333 | Supersoft 5L 2s | |||||
│ | │ | ┌ | 56\97 | 692.784 | 507.216 | 15:11 | 1.364 | ||||
│ | │ | ┌ | 41\71 | 692.958 | 507.042 | 11:8 | 1.375 | ||||
│ | │ | │ | └ | 67\116 | 693.103 | 506.897 | 18:13 | 1.385 | |||
│ | └ | 26\45 | 693.333 | 506.667 | 7:5 | 1.400 | Flattone is in this region | ||||
│ | │ | ┌ | 63\109 | 693.578 | 506.422 | 17:12 | 1.417 | ||||
│ | └ | 37\64 | 693.750 | 506.250 | 10:7 | 1.429 | |||||
│ | └ | 48\83 | 693.976 | 506.024 | 13:9 | 1.444 | |||||
┌ | 11\19 | 694.737 | 505.263 | 3:2 | 1.500 | Soft 5L 2s | |||||
│ | │ | ┌ | 51\88 | 695.455 | 504.545 | 14:9 | 1.556 | ||||
│ | │ | ┌ | 40\69 | 695.652 | 504.348 | 11:7 | 1.571 | ||||
│ | │ | │ | └ | 69\119 | 695.798 | 504.202 | 19:12 | 1.583 | |||
│ | │ | ┌ | 29\50 | 696.000 | 504.000 | 8:5 | 1.600 | ||||
│ | │ | │ | │ | ┌ | 76\131 | 696.183 | 503.817 | 21:13 | 1.615 | Golden meantone (696.2145¢) | |
│ | │ | │ | └ | 47\81 | 696.296 | 503.704 | 13:8 | 1.625 | |||
│ | │ | │ | └ | 65\112 | 696.429 | 503.571 | 18:11 | 1.636 | |||
│ | └ | 18\31 | 696.774 | 503.226 | 5:3 | 1.667 | Semisoft 5L 2s
Meantone is in this region | ||||
│ | │ | ┌ | 61\105 | 697.143 | 502.857 | 17:10 | 1.700 | ||||
│ | │ | ┌ | 43\74 | 697.297 | 502.703 | 12:7 | 1.714 | ||||
│ | │ | │ | └ | 68\117 | 697.436 | 502.564 | 19:11 | 1.727 | |||
│ | └ | 25\43 | 697.674 | 502.326 | 7:4 | 1.750 | |||||
│ | │ | 57\98 | 697.959 | 502.041 | 16:9 | 1.778 | |||||
│ | └ | 32\55 | 698.182 | 501.818 | 9:5 | 1.800 | |||||
│ | └ | 39\67 | 698.507 | 501.493 | 11:6 | 1.833 | |||||
7\12 | 700.000 | 500.000 | 2:1 | 2.000 | Basic 5L 2s | ||||||
│ | ┌ | 38\65 | 701.538 | 498.462 | 11:5 | 2.200 | |||||
│ | ┌ | 31\53 | 701.887 | 498.113 | 9:4 | 2.250 | The generator closest to a just 3/2 for EDOs less than 200 | ||||
│ | │ | └ | 55\94 | 702.128 | 497.872 | 16:7 | 2.286 | Garibaldi / Cassandra | |||
│ | ┌ | 24\41 | 702.439 | 497.561 | 7:3 | 2.333 | |||||
│ | │ | │ | ┌ | 65\111 | 702.703 | 497.297 | 19:8 | 2.375 | |||
│ | │ | └ | 41\70 | 702.857 | 497.143 | 12:5 | 2.400 | ||||
│ | │ | └ | 58\99 | 703.030 | 496.970 | 17:7 | 2.429 | ||||
│ | ┌ | 17\29 | 703.448 | 496.552 | 5:2 | 2.500 | Semihard 5L 2s | ||||
│ | │ | │ | ┌ | 61\104 | 703.846 | 496.154 | 18:7 | 2.571 | |||
│ | │ | │ | ┌ | 44\75 | 704.000 | 496.000 | 13:5 | 2.600 | |||
│ | │ | │ | │ | └ | 71\121 | 704.132 | 495.868 | 21:8 | 2.625 | Golden neogothic (704.0956¢) | |
│ | │ | └ | 27\46 | 704.348 | 495.652 | 8:3 | 2.667 | Neogothic is in this region | |||
│ | │ | ┌ | 64\109 | 704.587 | 495.413 | 19:7 | 2.714 | ||||
│ | │ | 37\63 | 704.762 | 495.238 | 11:4 | 2.750 | |||||
│ | │ | └ | 47\80 | 705.000 | 495.000 | 14:5 | 2.800 | ||||
└ | 10\17 | 705.882 | 494.118 | 3:1 | 3.000 | Hard 5L 2s | |||||
│ | ┌ | 43\73 | 706.849 | 493.151 | 13:4 | 3.250 | |||||
│ | ┌ | 33\56 | 707.143 | 492.857 | 10:3 | 3.333 | |||||
│ | │ | └ | 56\95 | 707.368 | 492.632 | 17:5 | 3.400 | ||||
│ | ┌ | 23\39 | 707.692 | 492.308 | 7:2 | 3.500 | |||||
│ | │ | │ | ┌ | 59\100 | 708.000 | 492.000 | 18:5 | 3.600 | |||
│ | │ | └ | 36\61 | 708.197 | 491.803 | 11:3 | 3.667 | ||||
│ | │ | └ | 49\83 | 708.434 | 491.566 | 15:4 | 3.750 | ||||
└ | 13\22 | 709.091 | 490.909 | 4:1 | 4.000 | Superhard 5L 2s
Archy is in this region | |||||
│ | ┌ | 42\71 | 709.859 | 490.141 | 13:3 | 4.333 | |||||
│ | ┌ | 29\49 | 710.204 | 489.796 | 9:2 | 4.500 | |||||
│ | │ | └ | 45\76 | 710.526 | 489.474 | 14:3 | 4.667 | ||||
└ | 16\27 | 711.111 | 488.889 | 5:1 | 5.000 | ||||||
│ | ┌ | 35\59 | 711.864 | 488.136 | 11:2 | 5.500 | |||||
└ | 19\32 | 712.500 | 487.500 | 6:1 | 6.000 | ||||||
└ | 22\37 | 713.514 | 486.486 | 7:1 | 7.000 | ||||||
3\5 | 720.000 | 480.000 | 1:0 | → ∞ | Collapsed 5L 2s |