Meantone family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Normalize, +missing CTE and CWE tunings, +error maps, and misc. cleanup
 
(33 intermediate revisions by 8 users not shown)
Line 5: Line 5:
| ja =  
| ja =  
}}
}}
The [[5-limit]] parent [[comma]] of the '''meantone family''' is the syntonic comma, [[81/80]]. This is the one they all temper out. The [[period]] is an [[octave]], the [[generator]] is a [[3/2|fifth]], and four fifths go to make up a [[5/1]] interval.
{{Technical data page}}
The '''meantone family''' is the family of [[rank-2 temperament]]s that [[tempering out|temper out]] the syntonic comma, [[81/80]], and thus can all be seen as [[extension]]s of [[meantone]].  


== Meantone ==
== Meantone ==
{{Main| Meantone }}
{{Main| Meantone }}
Meantone is characterized by an [[2/1|octave]] [[period]], a [[3/2|fifth]] [[generator]], and the relationship that four fifths go to make up a [[5/1|5th harmonic]].


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 17: Line 20:


: mapping generators: ~2, ~3
: mapping generators: ~2, ~3
{{Multival|legend=1| 1 4 4 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 697.214
* [[WE]]: ~2 = 1201.3906{{c}}, ~3/2 = 697.0455{{c}}
: [[error map]]: {{val| 0 -4.741 +2.544 }}
: [[error map]]: {{val| +1.391 -3.519 +1.868 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 696.239
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6512{{c}}
: [[error map]]: {{val| 0 -5.716 -1.359 }}
: error map: {{val| 0.000 -5.304 +0.291 }}


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[5-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
* [[5-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 36: Line 37:
{{Optimal ET sequence|legend=1| 5, 7, 12, 19, 31, 50, 81, 131b }}
{{Optimal ET sequence|legend=1| 5, 7, 12, 19, 31, 50, 81, 131b }}


[[Badness]]: 0.007381
[[Badness]] (Sintel): 0.173


=== Extensions ===
=== Overview to extensions ===
The second comma of the normal comma list defines which [[7-limit]] family member we are looking at.
The second comma of the normal comma list defines which [[7-limit]] family member we are looking at.
* Septimal meantone adds [[Harrison's comma|{{monzo| -13 10 0 -1 }}]], finding the ~7/4 at the augmented sixth,  
* Flattertone adds {{monzo| -24 17 0 -1 }}, finding the [[~]][[7/4]] at the double-augmented sixth, for a tuning between 33edo and 26edo.
* Flattone adds {{monzo| -17 9 0 1 }}, finding the ~7/4 at the diminished seventh,  
* Flattone adds {{monzo| -17 9 0 1 }}, finding the ~7/4 at the diminished seventh, for a tuning between 26edo and 19edo.
* Dominant adds [[64/63|{{monzo| 6 -2 0 -1 }}]], finding the ~7/4 at the minor seventh,  
* Septimal meantone adds [[Harrison's comma|{{monzo| -13 10 0 -1 }}]], finding the ~7/4 at the augmented sixth, for a tuning between 19edo and 12edo.
* Flattertone adds {{monzo| -24 17 0 -1 }}, finding the ~7/4 at the double-augmented sixth,  
* Dominant adds [[64/63|{{monzo| 6 -2 0 -1 }}]], finding the ~7/4 at the minor seventh, for a tuning between 12edo and 5edo.
* Sharptone adds [[28/27|{{monzo| 2 -3 0 1 }}]], finding the ~7/4 at the major sixth,  
* Sharptone adds [[28/27|{{monzo| 2 -3 0 1 }}]], finding the ~7/4 at the major sixth, for an [[exotemperament]] never exactly well-tuned, and where 5edo is the only [[diamond monotone]] tuning, with a terrible 5-limit part.
Those all have a fifth as generator.
Those all have a fifth as generator.
* Injera adds {{monzo| -7 8 0 -2 }} with a half-octave period.
* Injera adds {{monzo| -7 8 0 -2 }} with a half-octave period.
* Mohajira adds {{monzo| -23 11 0 2 }} and splits the fifth in two.
* Mohajira adds {{monzo| -23 11 0 2 }} and splits the fifth in two.
* Godzilla adds [[49/48|{{monzo| -4 -1 0 2 }}]] with an ~8/7 generator, two of which give the [[4/3|fourth]].
* Godzilla adds [[49/48|{{monzo| -4 -1 0 2 }}]] with an ~[[8/7]] generator, two of which give the [[4/3|fourth]].
* Mothra adds [[1029/1024|{{monzo| -10 1 0 3 }}]] with an ~8/7 generator, three of which give the fifth.
* Mothra adds [[1029/1024|{{monzo| -10 1 0 3 }}]] with an ~8/7 generator, three of which give the fifth.
* Liese adds {{monzo| -9 11 0 -3 }} with a ~10/7 generator, three of which give the [[3/1|twelfth]].
* Liese adds {{monzo| -9 11 0 -3 }} with a ~[[10/7]] generator, three of which give the [[3/1|twelfth]].
* Squares adds {{monzo| -3 9 0 -4 }} with a ~9/7 generator, four of which give the [[8/3|eleventh]].
* Squares adds {{monzo| -3 9 0 -4 }} with a ~[[9/7]] generator, four of which give the [[8/3|eleventh]].
* Jerome adds {{monzo| 3 7 0 -5 }} and slices the fifth in five.
* Jerome adds {{monzo| 3 7 0 -5 }} and slices the fifth in five.


Line 75: Line 76:
* ''[[Plutus]]'' (+15/14) → [[Very low accuracy temperaments #Plutus|Very low accuracy temperaments]]
* ''[[Plutus]]'' (+15/14) → [[Very low accuracy temperaments #Plutus|Very low accuracy temperaments]]
* [[Godzilla]] (+49/48) → [[Semaphoresmic clan #Godzilla|Semaphoresmic clan]]
* [[Godzilla]] (+49/48) → [[Semaphoresmic clan #Godzilla|Semaphoresmic clan]]
* ''[[Mothra]]'' (+1029/1024) → [[Gamelismic clan #Mothra|Gamelismic clan]]
* [[Mothra]] (+1029/1024) → [[Gamelismic clan #Mothra|Gamelismic clan]]
* ''[[Mohaha]]'' (+121/120) → [[Rastmic clan #Mohaha|Rastmic clan]]
* ''[[Mohaha]]'' (+121/120) → [[Rastmic clan #Mohaha|Rastmic clan]]


Line 92: Line 93:


{{Mapping|legend=1| 1 0 -4 -13 | 0 1 4 10 }}
{{Mapping|legend=1| 1 0 -4 -13 | 0 1 4 10 }}
{{Multival|legend=1| 1 4 10 4 13 12 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 696.952
* [[WE]]: ~2 = 1201.2358{{c}}, ~3/2 = 697.2122{{c}}
: [[error map]]: {{val| 0 -5.003 +1.495 +0.695 }}
: [[error map]]: {{val| +1.236 -3.507 +2.535 -0.412 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 696.495
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6562{{c}}
: [[error map]]: {{val| 0 -5.460 -0.334 -3.877 }}
: error map: {{val| 0.000 -5.299 +0.311 -2.264 }}


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | -3 0 5/2 0 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | -3 0 5/2 0 }}
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 115: Line 114:
{{Optimal ET sequence|legend=1| 12, 19, 31, 81, 112b, 143b }}
{{Optimal ET sequence|legend=1| 12, 19, 31, 81, 112b, 143b }}


[[Badness]]: 0.013707
[[Badness]] (Sintel): 0.347


=== Undecimal meantone (huygens) ===
=== Undecimal meantone (huygens) ===
{{Redirect|Huygens|the Dutch mathematician, physicist and astronomer|Wikipedia: Christiaan Huygens}}
{{Redirect|Huygens|the Dutch mathematician, physicist and astronomer|Wikipedia: Christiaan Huygens}}
{{See also| Meantone vs meanpop }}
{{See also| Huygens vs meanpop }}


Undecimal meantone maps the [[11/8]] to the double-augmented third (C–E𝄪), and tridecimal meantone maps the [[13/8]] to the double-augmented fifth (C–G𝄪). Note that the minor third conflates 13/11 with 6/5, and that 11/10~13/12 is a double-augmented unison; 12/11 is a double-diminished third; and 14/13 is a minor second.  
Undecimal meantone<ref name="meantone & meanpop 2003">[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_6048.html#6052 Yahoo! Tuning Group | ''good 11-limit meantones'']</ref> a.k.a. huygens<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_10437.html Yahoo! Tuning Group | ''The meantone family'']</ref><ref name="meantone & meanpop 2004">[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_10864.html#10870 Yahoo! Tuning Group | ''names and definitions: meantone'']</ref> maps the [[11/8]] to the double-augmented third (C–E𝄪), and tridecimal meantone maps the [[13/8]] to the double-augmented fifth (C–G𝄪). Note that the minor third conflates 13/11 with 6/5, and that 11/10~13/12 is a double-augmented unison; 12/11 is a double-diminished third; and 14/13 is a minor second.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 128: Line 127:


Mapping: {{mapping| 1 0 -4 -13 -25 | 0 1 4 10 18 }}
Mapping: {{mapping| 1 0 -4 -13 -25 | 0 1 4 10 18 }}
Wedgie: {{multival| 1 4 10 18 4 13 25 12 28 16 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.168
* WE: ~2 = 1200.7636{{c}}, ~3/2 = 697.4122{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.967
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0315{{c}}


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
* 11-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 25/16 -1/8 0 0 1/16 }}, {{monzo| 9/4 -1/2 0 0 1/4 }}, {{monzo| 21/8 -5/4 0 0 5/8 }}, {{monzo| 25/8 -9/4 0 0 9/8 }}]
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 25/16 -1/8 0 0 1/16 }}, {{monzo| 9/4 -1/2 0 0 1/4 }}, {{monzo| 21/8 -5/4 0 0 5/8 }}, {{monzo| 25/8 -9/4 0 0 9/8 }}]
: eigenmonzo (unchanged-interval) basis: 2.11/9
: unchanged-interval (eigenmonzo) basis: 2.11/9


Tuning ranges:  
Tuning ranges:  
Line 146: Line 143:
Algebraic generator: Traverse, the positive real root of ''x''<sup>4</sup> + 2''x'' - 13, or 696.9529 cents.
Algebraic generator: Traverse, the positive real root of ''x''<sup>4</sup> + 2''x'' - 13, or 696.9529 cents.


Optimal ET sequence: {{Optimal ET sequence| 12, 19e, 31, 105, 136b }}
{{Optimal ET sequence|legend=0| 12, 19e, 31, 105, 136b }}


Badness: 0.017027
Badness (Sintel): 0.563


; Music
; Music
Line 161: Line 158:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.855
* WE: ~2 = 1200.8149{{c}}, ~3/2 = 697.1155{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.642
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7085{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
: eigenmonzo (unchanged-interval) basis: 2.11/9
: unchanged-interval (eigenmonzo) basis: 2.11/9


Optimal ET sequence: {{Optimal ET sequence| 12f, 19e, 31 }}
{{Optimal ET sequence|legend=0| 12f, 19e, 31 }}


Badness: 0.018048
Badness (Sintel): 0.746


===== Meantonic =====
===== Meantonic =====
Line 182: Line 179:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.649
* WE: ~2 = 1201.2376{{c}}, ~3/2 = 697.0954{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.377
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4563{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12fg, 19eg, 31, 50e }}
{{Optimal ET sequence|legend=0| 12fg, 19eg, 31, 50e }}


Badness: 0.019037
Badness (Sintel): 0.970


====== 19-limit ======
====== 19-limit ======
Line 197: Line 194:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.555
* WE: ~2 = 1201.4134{{c}}, ~3/2 = 697.0933{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.273
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.3526{{c}}
 
Optimal ET sequence: {{Optimal ET sequence| 12fghh, 19egh, 31, 50e }}
 
Badness: 0.017846
 
===== Meantoid =====
Dubbed ''meantoid'' here, this extension maps 17/16~19/18 to the augmented unison (C–C♯) and 19/16 to the augmented second (C–D♯). For any tuning flatter than 12edo, the sizes of 17/16 (augmented unison) and 18/17 (minor second) are inverted, so genuine septendecimal and undevicesimal harmony cannot be expected.
 
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 51/50, 66/65, 81/80, 85/84, 99/98
 
Mapping: {{mapping| 1 0 -4 -13 -25 -20 -7 | 0 1 4 10 18 15 7 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 697.036
* POTE: ~2 = 1200.000, ~3/2 = 696.448
 
Optimal ET sequence: {{Optimal ET sequence| 12f, 19eg, 31g }}
 
Badness: 0.019433
 
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 51/50, 57/56, 66/65, 81/80, 85/84, 99/98
 
Mapping: {{mapping| 1 0 -4 -13 -25 -20 -7 -10 | 0 1 4 10 18 15 7 9 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 697.216
* POTE: ~2 = 1200.000, ~3/2 = 696.394


Optimal ET sequence: {{Optimal ET sequence| 12f, 19egh, 31gh }}
{{Optimal ET sequence|legend=0| 12fghh, 19egh, 31, 50e }}


Badness: 0.017437
Badness (Sintel): 1.09


===== Huygens =====
===== Huygens =====
Line 246: Line 211:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.908
* WE: ~2 = 1199.5548{{c}}, ~3/2 = 696.7449{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.003
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9823{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 31 }}
{{Optimal ET sequence|legend=0| 12f, 31 }}


Badness: 0.019982
Badness (Sintel): 1.02


====== 19-limit ======
====== 19-limit ======
Line 261: Line 226:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.931
* WE: ~2 = 1199.0408{{c}}, ~3/2 = 696.5824{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.140
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1061{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 31 }}
{{Optimal ET sequence|legend=0| 12f, 31 }}


Badness: 0.018047
Badness (Sintel): 1.10


==== Grosstone ====
==== Grosstone ====
Line 278: Line 243:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.258
* WE: ~2 = 1199.9389{{c}}, ~3/2 = 697.2282{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.264
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.2627{{c}}


Minimax tuning:  
Minimax tuning:  
Line 289: Line 254:
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)


Optimal ET sequence: {{Optimal ET sequence| 12, 31, 43, 74 }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74 }}


Badness: 0.025899
Badness (Sintel): 1.07


===== 17-limit =====
===== 17-limit =====
Line 301: Line 266:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.300
* WE: ~2 = 1199.5811{{c}}, ~3/2 = 697.0918{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.335
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3303{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 31, 43, 74g }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74g }}


Badness: 0.020889
Badness (Sintel): 1.06


===== 19-limit =====
===== 19-limit =====
Line 316: Line 281:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.327
* WE: ~2 = 1199.2931{{c}}, ~3/2 = 696.9690{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.380
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3736{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 31, 43, 74gh }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74gh }}


Badness: 0.017611
Badness (Sintel): 1.07


==== Meridetone ====
==== Meridetone ====
Line 333: Line 298:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.516
* WE: ~2 = 1199.9122{{c}}, ~3/2 = 697.4779{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.529
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5241{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 14/25 -2/25 0 0 0 1/25 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 14/25 -2/25 0 0 0 1/25 }}
: eigenmonzo (unchanged-interval) basis: 2.13/9
: unchanged-interval (eigenmonzo) basis: 2.13/9


Optimal ET sequence: {{Optimal ET sequence| 12f, 31f, 43 }}
{{Optimal ET sequence|legend=0| 12f, 31f, 43 }}


Badness: 0.026421
Badness (Sintel): 1.09


===== Meridetonic =====
===== Meridetonic =====
Line 352: Line 317:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.508
* WE: ~2 = 1199.9428{{c}}, ~3/2 = 697.4804{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.514
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5113{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12fg, 31fg, 43 }}
{{Optimal ET sequence|legend=0| 12fg, 31fg, 43 }}


Badness: 0.027706
Badness (Sintel): 1.41


====== 19-limit ======
====== 19-limit ======
Line 367: Line 332:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.485
* WE: ~2 = 1200.0089{{c}}, ~3/2 = 697.4864{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.481
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.4815{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12fghh, 31fgh, 43 }}
{{Optimal ET sequence|legend=0| 12fghh, 31fgh, 43 }}


Badness: 0.025315
Badness (Sintel): 1.54


===== Meridetoid =====
===== Sauveuric =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 51/50, 78/77, 81/80, 85/84, 99/98
Comma list: 78/77, 81/80, 99/98, 120/119, 126/125


Mapping: {{mapping| 1 0 -4 -13 -25 -39 -7 | 0 1 4 10 18 27 7 }}
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 | 0 1 4 10 18 27 -5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.610
* WE: ~2 = 1199.3793{{c}}, ~3/2 = 697.2833{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.376
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6222{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 31fg, 43g }}
{{Optimal ET sequence|legend=0| 12f, 43 }}


Badness: 0.027518
Badness (Sintel): 1.22


====== 19-limit ======
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 51/50, 57/56, 78/77, 81/80, 85/84, 99/98
Comma list: 78/77, 81/80, 96/95, 99/98, 120/119, 126/125


Mapping: {{mapping| 1 0 -4 -13 -25 -39 -7 -10 | 0 1 4 10 18 27 7 9 }}
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 9 | 0 1 4 10 18 27 -5 -3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.701
* WE: ~2 = 1199.0260{{c}}, ~3/2 = 697.1486{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.316
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6887{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 19effgh, 31fgh, 43gh }}
{{Optimal ET sequence|legend=0| 12f, 43 }}


Badness: 0.023613
Badness (Sintel): 1.25


===== Sauveuric =====
==== Hemimeantone ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 78/77, 81/80, 99/98, 120/119, 126/125
 
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 | 0 1 4 10 18 27 -5 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 697.538
* POTE: ~2 = 1200.000, ~3/2 = 697.644
 
Optimal ET sequence: {{Optimal ET sequence| 12f, 43 }}
 
Badness: 0.023881
 
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 78/77, 81/80, 96/95, 99/98, 120/119, 126/125
 
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 9 | 0 1 4 10 18 27 -5 -3 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 697.555
* POTE: ~2 = 1200.000, ~3/2 = 697.715
 
Optimal ET sequence: {{Optimal ET sequence| 12f, 43 }}
 
Badness: 0.020540
 
==== Hemimeantone ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Line 444: Line 379:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~26/15 = 948.611
* WE: ~2 = 1201.0387{{c}}, ~26/15 = 949.2863{{c}}
* POTE: ~2 = 1200.000, ~26/15 = 948.465
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5065{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19e, 43, 62 }}
{{Optimal ET sequence|legend=0| 19e, 43, 62 }}


Badness: 0.031433
Badness (Sintel): 1.30


===== 17-limit =====
===== 17-limit =====
Line 459: Line 394:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~26/15 = 948.617
* WE: ~2 = 1201.0270{{c}}, ~26/15 = 949.2892{{c}}
* POTE: ~2 = 1200.000, ~26/15 = 948.477
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5169{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19eg, 43, 62 }}
{{Optimal ET sequence|legend=0| 19eg, 43, 62 }}


Badness: 0.023380
Badness (Sintel): 1.19


===== 19-limit =====
===== 19-limit =====
Line 474: Line 409:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~19/11 = 948.609
* WE: ~2 = 1201.0339{{c}}, ~19/11 = 949.2902{{c}}
* POTE: ~2 = 1200.000, ~19/11 = 948.473
* CWE: ~2 = 1200.0000{{c}}, ~19/11 = 948.5111{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19egh, 43, 62 }}
{{Optimal ET sequence|legend=0| 19egh, 43, 62 }}


Badness: 0.018952
Badness (Sintel): 1.15


==== Semimeantone ====
==== Semimeantone ====
Line 491: Line 426:


Optimal tunings:  
Optimal tunings:  
* CTE: ~55/39 = 600.000, ~3/2 = 697.168
* WE: ~55/39 = 600.3606{{c}}, ~3/2 = 697.4241{{c}}
* POTE: ~55/39 = 600.000, ~3/2 = 697.005
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 697.0545{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 38deefff, 50eff, 62, 136b }}
{{Optimal ET sequence|legend=0| 12f, , 50eff, 62, 136b }}


Badness: 0.040668
Badness (Sintel): 1.68


===== 17-limit =====
===== 17-limit =====
Line 506: Line 441:


Optimal tunings:  
Optimal tunings:  
* CTE: ~17/12 = 600.000, ~3/2 = 697.174
* WE: ~17/12 = 600.5426{{c}}, ~3/2 = 697.5571{{c}}
* POTE: ~17/12 = 600.000, ~3/2 = 696.927
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9858{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 50eff, 62, 136bg }}
{{Optimal ET sequence|legend=0| 12f, 50eff, 62, 136bg }}


Badness: 0.031491
Badness (Sintel): 1.60


===== 19-limit =====
===== 19-limit =====
Line 521: Line 456:


Optimal tunings:  
Optimal tunings:  
* CTE: ~17/12 = 600.000, ~3/2 = 697.187
* WE: ~17/12 = 600.5959{{c}}, ~3/2 = 697.5985{{c}}
* POTE: ~17/12 = 600.000, ~3/2 = 696.906
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9638{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 50eff, 62 }}
{{Optimal ET sequence|legend=0| 12f, 50eff, 62 }}


Badness: 0.024206
Badness (Sintel): 1.47


=== Meanpop ===
=== Meanpop ===
{{See also| Meantone vs meanpop }}
{{See also| Meantone vs meanpop }}


Meanpop maps the 11/8 to the double-diminished fifth (C–G𝄫), and tridecimal meanpop still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a double-diminished third; 12/11~13/12, double-augmented unison; and 14/13, minor second.  
Meanpop<ref name="meantone & meanpop 2003"/><ref name="meantone & meanpop 2004"/> maps the 11/8 to the double-diminished fifth (C–G𝄫), and tridecimal meanpop still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a double-diminished third; 12/11~13/12, double-augmented unison; and 14/13, minor second.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 540: Line 475:


: mapping generator: ~2, ~3
: mapping generator: ~2, ~3
{{Multival|legend=1| 1 4 10 -13 4 13 -24 12 -44 -71 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.531
* WE: ~2 = 1201.3464{{c}}, ~3/2 = 697.2159{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.434
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4509{{c}}


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~3/2 = {{monzo| 0 0 1/4 }}
* 11-odd-limit: ~3/2 = {{monzo| 0 0 1/4 }}
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| -3 0 5/2 0 0 }}, {{monzo| 11 0 -13/4 0 0 }}]
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| -3 0 5/2 0 0 }}, {{monzo| 11 0 -13/4 0 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.5
: unchanged-interval (eigenmonzo) basis: 2.5


Tuning ranges:  
Tuning ranges:  
Line 558: Line 491:
Algebraic generator: Cybozem; or else Radieubiz, the real root of 3''x''<sup>3</sup> + 6''x'' - 19. Unlike Cybozem, the recurrence for Radieubiz does not converge.
Algebraic generator: Cybozem; or else Radieubiz, the real root of 3''x''<sup>3</sup> + 6''x'' - 19. Unlike Cybozem, the recurrence for Radieubiz does not converge.


Optimal ET sequence: {{Optimal ET sequence| 12e, 19, 31, 81, 112b }}
{{Optimal ET sequence|legend=0| 12e, 19, 31, 81, 112b }}


Badness: 0.021543
Badness (Sintel): 0.712


; Music
; Music
Line 572: Line 505:


Mapping: {{mapping| 1 0 -4 -13 24 -20 | 0 1 4 10 -13 15 }}
Mapping: {{mapping| 1 0 -4 -13 24 -20 | 0 1 4 10 -13 15 }}
Wedgie: {{multival| 1 4 10 -13 15 4 13 -24 20 12 -44 20 -71 5 100 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.356
* WE: ~2 = 1201.0765{{c}}, ~3/2 = 696.8361{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.211
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2347{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 4/7 0 0 0 -1/28 1/28 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 4/7 0 0 0 -1/28 1/28 }}
: eigenmonzo (unchanged-interval) basis: 2.13/11
: unchanged-interval (eigenmonzo) basis: 2.13/11


Tuning ranges:  
Tuning ranges:  
Line 587: Line 518:
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)


Optimal ET sequence: {{Optimal ET sequence| 19, 31, 50, 81 }}
{{Optimal ET sequence|legend=0| 19, 31, 50, 81 }}


Badness: 0.020883
Badness (Sintel): 0.863


===== Meanpoppic =====
===== Meanpoppic =====
Line 599: Line 530:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.351
* WE: ~2 = 1201.0727{{c}}, ~3/2 = 696.8168{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.194
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2195{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19g, 31, 50, 81, 131bd }}
{{Optimal ET sequence|legend=0| 19g, 31, 50, 81, 131bd }}


Badness: 0.019953
Badness (Sintel): 1.02


====== 19-limit ======
====== 19-limit ======
Line 614: Line 545:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.347
* WE: ~2 = 1201.0719{{c}}, ~3/2 = 696.8101{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.188
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2137{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19gh, 31, 50, 81 }}
{{Optimal ET sequence|legend=0| 19gh, 31, 50, 81 }}


Badness: 0.017791
Badness (Sintel): 1.08


===== Meanpoid =====
===== Meanpoid =====
Line 629: Line 560:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.439
* WE: ~2 = 1200.2768{{c}}, ~3/2 = 696.5683{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.408
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4114{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19, 31 }}
{{Optimal ET sequence|legend=0| 19, 31 }}


Badness: 0.022870
Badness (Sintel): 1.17


====== 19-limit ======
====== 19-limit ======
Line 644: Line 575:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.484
* WE: ~2 = 1199.7905{{c}}, ~3/2 = 696.3779{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.499
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4973{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12ef, 19, 31 }}
{{Optimal ET sequence|legend=0| 19, 31 }}


Badness: 0.020488
Badness (Sintel): 1.25


==== Meanplop ====
==== Meanplop ====
Line 657: Line 588:


Mapping: {{mapping| 1 0 -4 -13 24 10 | 0 1 4 10 -13 -4 }}
Mapping: {{mapping| 1 0 -4 -13 24 10 | 0 1 4 10 -13 -4 }}
{{Multival|legend=1| 1 4 10 -13 -4 4 13 -24 -10 12 -44 -24 -71 -48 34 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.283
* WE: ~2 = 1202.3237{{c}}, ~3/2 = 697.5502{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.202
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2135{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 11/13 0 0 0 -1/13 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 11/13 0 0 0 -1/13 }}
: eigenmonzo (unchanged-interval) basis: 2.11
: unchanged-interval (eigenmonzo) basis: 2.11


Optimal ET sequence: {{Optimal ET sequence| 12e, 19, 31f }}
{{Optimal ET sequence|legend=0| 12e, 19, 31f }}


Badness: 0.027666
Badness (Sintel): 1.14


===== 17-limit =====
===== 17-limit =====
Line 680: Line 609:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.407
* WE: ~2 = 1201.4737{{c}}, ~3/2 = 697.2690{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.414
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4129{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12e, 19 }}
{{Optimal ET sequence|legend=0| 12e, 19 }}


Badness: 0.026836
Badness (Sintel): 1.37


====== 19-limit ======
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Line 695: Line 624:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.473
* WE: ~2 = 1200.8839{{c}}, ~3/2 = 697.0104{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.497
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4949{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12e, 19 }}
{{Optimal ET sequence|legend=0| 12e, 19 }}


Badness: 0.023540
Badness (Sintel): 1.43


===== Meanploid =====
=== Meanenneadecal ===
Subgroup: 2.3.5.7.11.13.17
Meanenneadecal maps the 11/8 to the augmented fourth (C–F♯), and tridecimal meanenneadecal still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a major second; 12/11~14/13, minor second; and 13/12, double-augmented unison.  
 
Comma list: 51/50, 65/64, 78/77, 81/80, 85/84
 
Mapping: {{mapping| 1 0 -4 -13 24 10 -7 | 0 1 4 10 -13 -4 7 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 696.661
* POTE: ~2 = 1200.000, ~3/2 = 696.415
 
Optimal ET sequence: {{Optimal ET sequence| 12e, 19g, 31fg }}
 
Badness: 0.026094
 
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 51/50, 57/56, 65/64, 76/75, 78/77, 81/80
 
Mapping: {{mapping| 1 0 -4 -13 24 10 -7 -10 | 0 1 4 10 -13 -4 7 9 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 697.016
* POTE: ~2 = 1200.000, ~3/2 = 696.583
 
Optimal ET sequence: {{Optimal ET sequence| 12e, 19gh, 31fgh }}
 
Badness: 0.023104
 
=== Meanenneadecal ===
Meanenneadecal maps the 11/8 to the augmented fourth (C–F♯), and tridecimal meanenneadecal still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a major second; 12/11~14/13, minor second; and 13/12, double-augmented unison.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 740: Line 639:


Mapping: {{mapping| 1 0 -4 -13 -6 | 0 1 4 10 6 }}
Mapping: {{mapping| 1 0 -4 -13 -6 | 0 1 4 10 6 }}
{{Multival|legend=1| 1 4 10 6 4 13 6 12 0 -18 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.153
* WE: ~2 = 1199.6946{{c}}, ~3/2 = 696.0729{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.250
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2083{{c}}


Tuning ranges:  
Tuning ranges:  
Line 751: Line 648:
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 704.377]
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 704.377]


Optimal ET sequence: {{Optimal ET sequence| 7d, 12, 19, 31e }}
{{Optimal ET sequence|legend=0| 7d, 12, 19, 31e }}


Badness: 0.021423
Badness (Sintel): 0.708


==== 13-limit ====
==== 13-limit ====
Line 761: Line 658:


Mapping: {{mapping| 1 0 -4 -13 -6 -20 | 0 1 4 10 6 15 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -20 | 0 1 4 10 6 15 }}
{{Multival|legend=1| 1 4 10 6 15 4 13 6 20 12 0 20 -18 5 30 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.098
* WE: ~2 = 1199.7931{{c}}, ~3/2 = 696.0258{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.146
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1241{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7df, 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 7df, 12f, 19, 31e }}


Badness: 0.021182
Badness (Sintel): 0.875


===== 17-limit =====
===== 17-limit =====
Line 780: Line 675:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.216
* WE: ~2 = 1198.6665{{c}}, ~3/2 = 695.8010{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.575
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4998{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 12f, 19, 31e }}


Badness: 0.022980
Badness (Sintel): 1.17


====== 19-limit ======
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Line 795: Line 690:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.277
* WE: ~2 = 1198.2880{{c}}, ~3/2 = 695.7123{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.706
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.6370{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 12f, 19, 31e }}


Badness: 0.020293
Badness (Sintel): 1.23


===== Meanenneadecoid =====
==== Vincenzo ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13


Comma list: 34/33, 45/44, 51/50, 56/55, 78/77
Comma list: 45/44, 56/55, 65/64, 81/80


Mapping: {{mapping| 1 0 -4 -13 -6 -20 -7 | 0 1 4 10 6 15 7 }}
Mapping: {{mapping| 1 0 -4 -13 -6 10 | 0 1 4 10 6 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.450
* WE: ~2 = 1202.1684{{c}}, ~3/2 = 696.3160{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.025
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.2045{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dfg, 12f, 19g }}
{{Optimal ET sequence|legend=0| 7d, 12, 19 }}


Badness: 0.020171
Badness (Sintel): 1.02


====== 19-limit ======
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 45/44, 52/51, 56/55, 65/64, 81/80
 
Mapping: {{mapping| 1 0 -4 -13 -6 10 12 | 0 1 4 10 6 -4 -5 }}
 
Optimal tunings:
* WE: ~2 = 1200.5137{{c}}, ~3/2 = 696.1561{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.8771{{c}}
 
{{Optimal ET sequence|legend=0| 12, 19 }}
 
Badness (Sintel): 1.30
 
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 34/33, 45/44, 51/50, 56/55, 57/55, 78/77
Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 81/80


Mapping: {{mapping| 1 0 -4 -13 -6 -20 -7 -10 | 0 1 4 10 6 15 7 9 }}
Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 | 0 1 4 10 6 -4 -5 -3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.793
* WE: ~2 = 1199.8261{{c}}, ~3/2 = 696.0298{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.121
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1262{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dfgh, 12f, 19gh }}
{{Optimal ET sequence|legend=0| 12, 19 }}


Badness: 0.018045
Badness (Sintel): 1.36


==== Vincenzo ====
==== Meanundec ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 56/55, 65/64, 81/80
Comma list: 27/26, 40/39, 45/44, 56/55


Mapping: {{mapping| 1 0 -4 -13 -6 10 | 0 1 4 10 6 -4 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -1 | 0 1 4 10 6 3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.790
* WE: ~2 = 1196.0359{{c}}, ~3/2 = 694.9504{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.060
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7474{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7d, 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 12f, 19f }}


Badness: 0.024763
Badness (Sintel): 1.00


===== 17-limit =====
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 45/44, 52/51, 56/55, 65/64, 81/80
Comma list: 27/26, 34/33, 40/39, 45/44, 56/55


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 | 0 1 4 10 6 -4 -5 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 | 0 1 4 10 6 3 7 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.011
* WE: ~2 = 1196.8604{{c}}, ~3/2 = 695.7613{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.858
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1744{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 7dg, 12f }}


Badness: 0.025535
Badness (Sintel): 1.09


====== 19-limit ======
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 81/80
Comma list: 27/26, 34/33, 40/39, 45/44, 56/55, 57/55


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 | 0 1 4 10 6 -4 -5 -3 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 -10 | 0 1 4 10 6 3 7 9 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.120
* WE: ~2 = 1196.9296{{c}}, ~3/2 = 696.3321{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.131
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7122{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 7dgh, 12f }}


Badness: 0.022302
Badness (Sintel): 1.16


====== 23-limit ======
=== Meanundeci ===
Subgroup: 2.3.5.7.11.13.17.19.23
Meanundeci is a low-complexity low-accuracy entry that maps the 11/8 to the perfect fourth (C–F), and tridecimal meanundeci maps the 13/8 to the minor sixth (C–A♭).  


Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 69/68, 81/80
Subgroup: 2.3.5.7.11
 
Comma list: 33/32, 55/54, 77/75


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 | 0 1 4 10 6 -4 -5 -3 -6 }}
Mapping: {{mapping| 1 0 -4 -13 5 | 0 1 4 10 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.059
* WE: ~2 = 1205.7146{{c}}, ~3/2 = 697.9977{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.044
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.1805{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 12e, 19e }}


Badness: 0.020139
Badness (Sintel): 1.04


====== 29-limit ======
==== 13-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29
Subgroup: 2.3.5.7.11.13


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 81/80
Comma list: 33/32, 55/54, 65/64, 77/75


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 | 0 1 4 10 6 -4 -5 -3 -6 -2 }}
Mapping: {{mapping| 1 0 -4 -13 5 10 | 0 1 4 10 -1 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.982
* WE: ~2 = 1205.5631{{c}}, ~3/2 = 697.9847{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.913
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.0144{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 12e, 19e }}


Badness: 0.018168
Badness (Sintel): 1.09


====== 31-limit ======
=== Bimeantone ===
Subgroup: 2.3.5.7.11.13.17.19.23.29.31
11/8 is mapped to half octave minus the [[128/125|meantone diesis]].
 
Subgroup: 2.3.5.7.11


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 81/80, 93/92
Comma list: 81/80, 126/125, 245/242
 
Mapping: {{mapping| 2 0 -8 -26 -31 | 0 1 4 10 12 }}


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 }}
: mapping generators: ~63/44, ~3


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.798
* WE: ~63/44 = 600.7492{{c}}, ~3/2 = 696.8853{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.750
* CWE: ~63/44 = 600.0000{{c}}, ~3/2 = 696.1908{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 12, 26de, 38d, 50 }}


Badness: 0.017069
Badness (Sintel): 1.26


====== 37-limit ======
==== 13-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37
Subgroup: 2.3.5.7.11.13


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 93/92
Comma list: 81/80, 105/104, 126/125, 245/242


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 }}
Mapping: {{mapping| 2 0 -8 -26 -31 -40 | 0 1 4 10 12 15 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.675
* WE: ~55/39 = 600.8309{{c}}, ~3/2 = 696.8000{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.603
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 696.0066{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }}


Badness: 0.016129
Badness (Sintel): 1.19


====== 41-limit ======
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41
Subgroup: 2.3.5.7.11.13.17


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 93/92, 124/123
Comma list: 81/80, 105/104, 126/125, 189/187, 221/220


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 }}
Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 | 0 1 4 10 12 15 1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.724
* WE: ~17/12 = 600.9234{{c}}, ~3/2 = 696.8536{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.696
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.9317{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 12f, 38df, 50 }}


Badness: 0.015356
Badness (Sintel): 1.15


====== 43-limit ======
==== 19-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41.43
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 86/85, 93/92, 124/123
Comma list: 81/80, 105/104, 126/125, 153/152, 189/187, 221/220


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 7 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 -1 }}
Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 -1 | 0 1 4 10 12 15 1 3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.716
* WE: ~17/12 = 600.9845{{c}}, ~3/2 = 696.8939{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.688
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.8947{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }}


Badness: 0.013906
Badness (Sintel): 1.08


====== 47-limit ======
=== Trimean ===
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41.43.47
{{See also| No-sevens subgroup temperaments #Superpine }}


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 86/85, 93/92, 95/94, 124/123
Subgroup: 2.3.5.7.11


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 7 4 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 -1 1 }}
Comma list: 81/80, 126/125, 1344/1331
 
Mapping: {{mapping| 1 2 4 7 5 | 0 -3 -12 -30 -11 }}
 
: mapping generators: ~2, ~11/10


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.685
* WE: ~2 = 1200.7155{{c}}, ~11/10 = 167.9055{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.676
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7749{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 36d, 43, 50, 93 }}


Badness: 0.013818
Badness (Sintel): 1.68


===== Vincenzoid =====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13


Comma list: 34/33, 45/44, 51/50, 56/55, 65/64
Comma list: 81/80, 126/125, 144/143, 364/363


Mapping: {{mapping| 1 0 -4 -13 -6 10 -7 | 0 1 4 10 6 -4 7 }}
Mapping: {{mapping| 1 2 4 7 5 3 | 0 -3 -12 -30 -11 5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.412
* WE: ~2 = 1200.6104{{c}}, ~11/10 = 167.8749{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.358
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7728{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dg, 12, 19g }}
{{Optimal ET sequence|legend=0| 7d, 43, 50, 93 }}


Badness: 0.022099
Badness (Sintel): 1.46


====== 19-limit ======
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17


Comma list: 34/33, 45/44, 51/50, 56/55, 57/55, 65/64
Comma list: 81/80, 126/125, 144/143, 189/187, 221/220


Mapping: {{mapping| 1 0 -4 -13 -6 10 -7 -10 | 0 1 4 10 6 -4 7 9 }}
Mapping: {{mapping| 1 2 4 7 5 3 8 | 0 -3 -12 -30 -11 5 -28 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.950
* WE: ~2 = 1200.6144{{c}}, ~11/10 = 167.8716{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.725
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7682{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dgh, 12, 19gh }}
{{Optimal ET sequence|legend=0| 7dg, 43, 50, 93 }}


Badness: 0.019904
Badness (Sintel): 1.28


==== Meanundec ====
== Flattone ==
Subgroup: 2.3.5.7.11.13
{{Main| Flattone }}


Comma list: 27/26, 40/39, 45/44, 56/55
In flattone tunings, the fifth is typically even flatter than that of [[19edo]]. Here, 9 fourths get to the interval class for 7, so that [[7/4]] is a diminished seventh (C–B𝄫), [[7/6]] is a diminished third (C–E𝄫), and [[7/5]] is a double-diminished fifth (C–G𝄫). In general, septimal subminor intervals are diminished and septimal supermajor intervals are augmented, which makes it quite easy to learn flattone notation. Good tunings for flattone are [[45edo]], [[64edo]], and [[71edo]].


Mapping: {{mapping| 1 0 -4 -13 -6 -1 | 0 1 4 10 6 3 }}
[[Subgroup]]: 2.3.5.7


Optimal tunings:  
[[Comma list]]: 81/80, 525/512
* CTE: ~2 = 1200.000, ~3/2 = 695.620
* POTE: ~2 = 1200.000, ~3/2 = 697.254


Optimal ET sequence: {{Optimal ET sequence| 7d, 12f, 19f }}
{{Mapping|legend=1| 1 0 -4 17 | 0 1 4 -9 }}


Badness: 0.024243
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1203.6308{{c}}, ~3/2 = 695.8782{{c}}
: [[error map]]: {{val| +3.631 -2.446 -2.801 -2.684 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.7334{{c}}
: error map: {{val| 0.000 -8.222 -11.380 -12.426 }}


===== 17-limit =====
[[Minimax tuning]]:
Subgroup: 2.3.5.7.11.13.17
* [[7-odd-limit]]: ~3/2 = {{monzo| 8/13 0 1/13 -1/13 }}
: [[projection map]]: [{{monzo| 1 0 0 0 }}, {{monzo| 21/13 0 1/13 -1/13 }}, {{monzo| 32/13 0 4/13 -4/13 }}, {{monzo| 32/13 0 -9/13 9/13 }}]
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5
* [[9-odd-limit]]: ~3/2 = {{monzo| 6/11 2/11 0 -1/11 }}
: [[projection map]]: [{{monzo| 1 0 0 0 }}, {{monzo| 17/11 2/11 0 -1/11 }}, {{monzo| 24/11 8/11 0 -4/11 }}, {{monzo| 34/11 -18/11 0 9/11 }}]
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7


Comma list: 27/26, 34/33, 40/39, 45/44, 56/55
[[Tuning ranges]]:  
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [692.353, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955]


Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 | 0 1 4 10 6 3 7 }}
[[Algebraic generator]]: Squarto, the positive root of 8''x''<sup>2</sup> - 4''x'' - 9, at 506.3239 cents, equal to (1 + sqrt (19))/4.


Optimal tunings:
{{Optimal ET sequence|legend=1| 7, 19, 26, 45 }}
* CTE: ~2 = 1200.000, ~3/2 = 696.279
* POTE: ~2 = 1200.000, ~3/2 = 697.586


Optimal ET sequence: {{Optimal ET sequence| 7dg, 12f }}
[[Badness]] (Sintel): 0.976


Badness: 0.021400
=== 11-limit ===
This can also be considered a no-sevens temperament: [[#Hypnotone|hypnotone]].


===== 19-limit =====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 27/26, 34/33, 40/39, 45/44, 56/55, 57/55
Comma list: 45/44, 81/80, 385/384


Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 -10 | 0 1 4 10 6 3 7 9 }}
Mapping: {{mapping| 1 0 -4 17 -6 | 0 1 4 -9 6 }}


Optimal tunings:  
Optimal tuning:  
* CTE: ~2 = 1200.000, ~3/2 = 696.849
* WE: ~2 = 1202.3247{{c}}, ~3/2 = 694.4688{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 698.118
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.1467{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dgh, 12f }}
Tuning ranges:  
* 11-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]


Badness: 0.018996
{{Optimal ET sequence|legend=0| 7, 19, 26, 45, 71bc, 116bcde }}


=== Meanundeci ===
Badness (Sintel): 1.12
Meanundeci is a low-complexity low-accuracy entry that maps the 11/8 to the perfect fourth (C–F), and tridecimal meanundeci maps the 13/8 to the minor sixth (C–A♭).  


Subgroup: 2.3.5.7.11
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Comma list: 33/32, 55/54, 77/75
Comma list: 45/44, 65/64, 78/77, 81/80


Mapping: {{mapping| 1 0 -4 -13 5 | 0 1 4 10 -1 }}
Mapping: {{mapping| 1 0 -4 17 -6 10 | 0 1 4 -9 6 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.702
* WE: ~2 = 1202.5156{{c}}, ~3/2 = 694.5107{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 694.689
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0538{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7d, 12e, 19e }}
Tuning ranges:
* 13- and 15-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]
 
{{Optimal ET sequence|legend=0| 7, 19, 26, 45f, 71bcf, 116bcdef }}


Badness: 0.031539
Badness (Sintel): 0.920


==== 13-limit ====
== Flattertone ==
Subgroup: 2.3.5.7.11.13
Flattertone tunings are typically at least as flat as [[26edo]]. Here, 17 fifths get to the interval class for 7, so that [[7/4]] is a double-augmented sixth (C–Ax). [[26edo]] and [[33edo|33cd-edo]] are the two primary flattertone tunings. [[1/2-comma meantone]] is also encompassed within flattertone's range. Any flatter than this, the meantone mapping for 5/4 is too inaccurate (it becomes more of a [[16/13]] or [[27/22]]), and [[deeptone]] temperament's mapping is more logical.
 
[[Subgroup]]: 2.3.5.7


Comma list: 33/32, 55/54, 65/64, 77/75
[[Comma list]]: 81/80, 1875/1792


Mapping: {{mapping| 1 0 -4 -13 5 10 | 0 1 4 10 -1 -4 }}
{{Mapping|legend=1| 1 0 -4 -24 | 0 1 4 17 }}


Optimal tunings:  
: mapping generators: ~2, ~3
* CTE: ~2 = 1200.000, ~3/2 = 696.241
* POTE: ~2 = 1200.000, ~3/2 = 694.764


Optimal ET sequence: {{Optimal ET sequence| 7d, 12e, 19e }}
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1204.4511{{c}}, ~3/2 = 694.3258{{c}}
: [[error map]]: {{val| +4.451 -3.178 -9.011 +3.554 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 692.0479{{c}}
: error map: {{val| 0.000 -9.907 -18.122 -4.012 }}


Badness: 0.026288
{{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }}


=== Bimeantone ===
[[Badness]] (Sintel): 2.43
11/8 is mapped to half octave minus the [[128/125|meantone diesis]].  


==== 11-limit ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 126/125, 245/242
Comma list: 45/44, 81/80, 1375/1344


Mapping: {{mapping| 2 0 -8 -26 -31 | 0 1 4 10 12 }}
Mapping: {{mapping| 1 0 -4 -24 -6 | 0 1 4 17 6 }}
 
: mapping generators: ~63/44, ~3


Optimal tunings:  
Optimal tunings:  
* CTE: ~63/44 = 600.000, ~3/2 = 696.520
* WE: ~2 = 1203.4653{{c}}, ~3/2 = 693.8144{{c}}
* POTE: ~63/44 = 600.000, ~3/2 = 696.016
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 692.0422{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 26de, 38d, 50 }}
{{Optimal ET sequence|legend=0| 7d, 19d, 26 }}


Badness: 0.038122
Badness (Sintel): 1.53


==== 13-limit ====
; Music
Subgroup: 2.3.5.7.11.13
* [https://youtu.be/scCuGXnj5IY ''Music in 33EDO (33-Tone Equal Temperament) - Feb 2024''] by [[Budjarn Lambeth]] (2024)


Comma list: 81/80, 105/104, 126/125, 245/242
== Dominant ==
{{Main| Dominant (temperament) }}
{{See also| Archytas clan }}


Mapping: {{mapping| 2 0 -8 -26 -31 -40 | 0 1 4 10 12 15 }}
The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh (C–Bb). The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is [[12edo]], but it also works well with the Pythagorean tuning of pure [[3/2]] fifths, and with [[29edo]], [[41edo]], or [[53edo]].


Optimal tunings:
Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension [[neutrominant]], splitting the fifth as well as the chromatic semitone in two like in all [[rastmic clan|rastmic]] temperaments.  
* CTE: ~55/39 = 600.000, ~3/2 = 696.341
* POTE: ~55/39 = 600.000, ~3/2 = 695.836


Optimal ET sequence: {{Optimal ET sequence| 12f, 26deff, 38df, 50 }}
[[Subgroup]]: 2.3.5.7


Badness: 0.028817
[[Comma list]]: 36/35, 64/63


==== 17-limit ====
{{Mapping|legend=1| 1 0 -4 6 | 0 1 4 -2 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 81/80, 105/104, 126/125, 189/187, 221/220
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1195.3384{{c}}, ~3/2 = 698.8478{{c}}
: [[error map]]: {{val| -4.662 -7.769 +9.077 +14.832 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.1125{{c}}
: error map: {{val| 0.000 -0.842 +18.136 +28.949 }}


Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 | 0 1 4 10 12 15 1 }}
[[Tuning ranges]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[diamond monotone]]: ~3/2 = [700.000, 720.000] (7\12 to 3\5)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [694.786, 715.587]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal tunings:
{{Optimal ET sequence|legend=1| 5, 7, 12, 41cd, 53cdd, 65ccddd }}
* CTE: ~17/12 = 600.000, ~3/2 = 696.353
* POTE: ~17/12 = 600.000, ~3/2 = 695.783


Optimal ET sequence: {{Optimal ET sequence| 12f, 38df, 50 }}
[[Badness]] (Sintel): 0.524


Badness: 0.022666
=== 11-limit ===
Subgroup: 2.3.5.7.11


==== 19-limit ====
Comma list: 36/35, 56/55, 64/63
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 81/80, 105/104, 126/125, 153/152, 189/187, 221/220
Mapping: {{mapping| 1 0 -4 6 13 | 0 1 4 -2 -6 }}


Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 -1 | 0 1 4 10 12 15 1 3 }}
Tuning ranges:  
* 11-odd-limit diamond monotone: ~3/2 = [700.000, 705.882] (7\12 to 10\17)
* 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal tunings:  
Optimal tunings:  
* CTE: ~17/12 = 600.000, ~3/2 = 696.384
* WE: ~2 = 1194.0169{{c}}, ~3/2 = 699.7473{{c}}
* POTE: ~17/12 = 600.000, ~3/2 = 695.752
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.2672{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 26deff, 38df, 50 }}
{{Optimal ET sequence|legend=0| 5, 12, 17c, 29cde }}


Badness: 0.017785
Badness (Sintel): 0.799


=== Trimean ===
==== 13-limit ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 126/125, 1344/1331
Comma list: 36/35, 56/55, 64/63, 66/65


Mapping: {{mapping| 1 2 4 7 5 | 0 -3 -12 -30 -11 }}
Mapping: {{mapping| 1 0 -4 6 13 18 | 0 1 4 -2 -6 -9 }}


: mapping generators: ~2, ~11/10
Optimal tunings:  
* WE: ~2 = 1193.8055{{c}}, ~3/2 = 700.0042{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.8254{{c}}


Optimal tunings:  
Tuning ranges:  
* CTE: ~2 = 1200.000, ~11/10 = 167.707
* 13- and 15-odd-limit diamond monotone: ~3/2 = 705.882 (10\17)
* POTE: ~2 = 1200.000, ~11/10 = 167.805
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal ET sequence: {{Optimal ET sequence| 7d, 36d, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 12f, 17c, 29cdef }}


Badness: 0.050729
Badness (Sintel): 0.996


==== 13-limit ====
==== Dominion ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 126/125, 144/143, 364/363
Comma list: 26/25, 36/35, 56/55, 64/63


Mapping: {{mapping| 1 2 4 7 5 3 | 0 -3 -12 -30 -11 5 }}
Mapping: {{mapping| 1 0 -4 6 13 -9 | 0 1 4 -2 -6 8 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/10 = 167.712
* WE: ~2 = 1195.0293{{c}}, ~3/2 = 701.9847{{c}}
* POTE: ~2 = 1200.000, ~11/10 = 167.790
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7698{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7d, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 5, 12, 17c }}


Badness: 0.035445
Badness (Sintel): 1.13


==== 17-limit ====
=== Domineering ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11


Comma list: 81/80, 126/125, 144/143, 189/187, 221/220
Comma list: 36/35, 45/44, 64/63


Mapping: {{mapping| 1 2 4 7 5 3 8 | 0 -3 -12 -30 -11 5 -28 }}
Mapping: {{mapping| 1 0 -4 6 -6 | 0 1 4 -2 6 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/10 = 167.705
* WE: ~2 = 1194.7102{{c}}, ~3/2 = 695.6962{{c}}
* POTE: ~2 = 1200.000, ~11/10 = 167.786
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1765{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dg, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 5e, 7, 12 }}


Badness: 0.025221
Badness (Sintel): 0.727


== Flattone ==
==== 13-limit ====
{{Main| Flattone }}
Subgroup: 2.3.5.7.11.13


In flattone tunings, the fifth is typically even flatter than that of [[19edo]]. Here, 9 fourths get to the interval class for 7, so that [[7/4]] is a diminished seventh (C–B𝄫), [[7/6]] is a diminished third (C–E𝄫), and [[7/5]] is a double-diminished fifth (C–G𝄫). In general, septimal subminor intervals are diminished and septimal supermajor intervals are augmented, which makes it quite easy to learn flattone notation. Good tunings for flattone are [[45edo]], [[64edo]], and [[71edo]].
Comma list: 36/35, 45/44, 52/49, 64/63


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 1 0 -4 6 -6 10 | 0 1 4 -2 6 -4 }}


[[Comma list]]: 81/80, 525/512
Optimal tunings:  
* WE: ~2 = 1198.1958{{c}}, ~3/2 = 694.7159{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.6809{{c}}


{{Mapping|legend=1| 1 0 -4 17 | 0 1 4 -9 }}
{{Optimal ET sequence|legend=0| 7, 12 }}


{{Multival|legend=1| 1 4 -9 4 -17 -32 }}
Badness (Sintel): 1.12


[[Optimal tuning]]s:
===== 17-limit =====
* [[CTE]]: ~2 = 1200.000, ~3/2 = 693.552
Subgroup: 2.3.5.7.11.13.17
: [[error map]]: {{val| 0.000 -8.403 -12.106 -10.794 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 693.779
: error map: {{val| 0.000 -8.176 -11.197 -12.838 }}


[[Minimax tuning]]:  
Comma list: 36/35, 45/44, 51/49, 52/49, 64/63
* [[7-odd-limit]]: ~3/2 = {{monzo| 8/13 0 1/13 -1/13 }}
: [[projection map]]: [{{monzo| 1 0 0 0 }}, {{monzo| 21/13 0 1/13 -1/13 }}, {{monzo| 32/13 0 4/13 -4/13 }}, {{monzo| 32/13 0 -9/13 9/13 }}]
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7/5
* [[9-odd-limit]]: ~3/2 = {{monzo| 6/11 2/11 0 -1/11 }}
: [[projection map]]: [{{monzo| 1 0 0 0 }}, {{monzo| 17/11 2/11 0 -1/11 }}, {{monzo| 24/11 8/11 0 -4/11 }}, {{monzo| 34/11 -18/11 0 9/11 }}]
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/7


[[Tuning ranges]]:  
Mapping: {{mapping| 1 0 -4 6 -6 10 12 | 0 1 4 -2 6 -4 -5 }}
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [692.353, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955]


[[Algebraic generator]]: Squarto, the positive root of 8''x''<sup>2</sup> - 4''x'' - 9, at 506.3239 cents, equal to (1 + sqrt (19))/4.
Optimal tunings:  
* WE: ~2 = 1197.7959{{c}}, ~3/2 = 694.8362{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.0834{{c}}


{{Optimal ET sequence|legend=1| 7, 19, 26, 45 }}
{{Optimal ET sequence|legend=0| 7, 12 }}


[[Badness]]: 0.038553
Badness (Sintel): 1.25


=== 11-limit ===
===== 19-limit =====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 45/44, 81/80, 385/384
Comma list: 36/35, 39/38, 45/44, 51/49, 52/49, 57/56


Mapping: {{mapping| 1 0 -4 17 -6 | 0 1 4 -9 6 }}
Mapping: {{mapping| 1 0 -4 6 -6 10 12 9 | 0 1 4 -2 6 -4 -5 -3 }}


Optimal tuning:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 693.251
* WE: ~2 = 1197.6198{{c}}, ~3/2 = 694.8362{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 693.126
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2075{{c}}
 
Tuning ranges:
* 11-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]


Optimal ET sequence: {{Optimal ET sequence| 7, 19, 26, 45, 71bc, 116bcde }}
{{Optimal ET sequence|legend=0| 5ef, 7, 12, 19d, 31def }}


Badness: 0.033839
Badness (Sintel): 1.24


=== 13-limit ===
==== Dominatrix ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 65/64, 78/77, 81/80
Comma list: 27/26, 36/35, 45/44, 64/63


Mapping: {{mapping| 1 0 -4 17 -6 10 | 0 1 4 -9 6 -4 }}
Mapping: {{mapping| 1 0 -4 6 -6 -1 | 0 1 4 -2 6 3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 693.029
* WE: ~2 = 1193.1574{{c}}, ~3/2 = 694.5610{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 693.058
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7268{{c}}


Tuning ranges:
{{Optimal ET sequence|legend=0| 5e, 7, 12f }}
* 13- and 15-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]


Optimal ET sequence: {{Optimal ET sequence| 7, 19, 26, 45f, 71bcf, 116bcdef }}
Badness (Sintel): 0.756


Badness: 0.022260
=== Domination ===
Subgroup: 2.3.5.7.11


== Flattertone ==
Comma list: 36/35, 64/63, 77/75
Flattertone tunings are typically at least as flat as [[26edo]]. Here, 17 fifths get to the interval class for 7, so that [[7/4]] is a double-augmented sixth (C–Ax). [[26edo]] and [[33edo|33cd-edo]] are the two primary flattertone tunings. [[1/2-comma meantone]] is also encompassed within flattertone's range. Any flatter than this, the meantone mapping for 5/4 is too inaccurate (it becomes more of a [[16/13]] or [[27/22]]), and [[deeptone]] temperament's mapping is more logical.


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 1 0 -4 6 -14 | 0 1 4 -2 11 }}


[[Comma list]]: 81/80, 1875/1792
Optimal tunings:  
* WE: ~2 = 1194.8645{{c}}, ~3/2 = 701.9872{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.5945{{c}}


{{Mapping|legend=1| 1 0 -4 -24 | 0 1 4 17 }}
{{Optimal ET sequence|legend=0| 5e, 12e, 17c }}


: mapping generators: ~2, ~3
Badness (Sintel): 1.21


[[Optimal tuning]]s:
==== 13-limit ====
* [[CTE]]: ~2 = 1200.000, ~3/2 = 692.698
Subgroup: 2.3.5.7.11.13
: [[error map]]: {{val| 0.000 -9.257 -15.520 +7.047 }}
* [[CWE]]: ~2 = 1200.000, ~3/2 = 692.048
: error map: {{val| 0.000 -9.907 -18.122 -4.012 }}


{{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }}
Comma list: 26/25, 36/35, 64/63, 66/65


[[Badness]]: 0.0961
Mapping: {{mapping| 1 0 -4 6 -14 -9 | 0 1 4 -2 11 8 }}


==== 11-limit ====
Optimal tunings:
[[Subgroup]]: 2.3.5.7
* WE: ~2 = 1195.1324{{c}}, ~3/2 = 702.6343{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 705.0791{{c}}


[[Comma list]]: 45/44, 81/80, 1375/1344
{{Optimal ET sequence|legend=0| 5e, 12e, 17c }}


{{Mapping|legend=1| 1 0 -4 -24 0| 0 1 4 17 6 }}
Badness (Sintel): 1.13


: mapping generators: ~2, ~3
=== Arnold ===
Subgroup: 2.3.5.7.11


[[Optimal tuning]]s:  
Comma list: 22/21, 33/32, 36/35
* [[CTE]]: ~2 = 1200.000, ~3/2 = 692.642
* [[CWE]]: ~2 = 1200.000, ~3/2 = 692.042


Optimal ET sequence: {{Optimal ET sequence| 7d, 19d, 26, 59bcd, 85bccd }}
Mapping: {{mapping| 1 0 -4 6 5 | 0 1 4 -2 -1 }}


; Music
Optimal tunings:
* [https://youtu.be/scCuGXnj5IY ''Music in 33EDO (33-Tone Equal Temperament) - Feb 2024''] - [[Budjarn Lambeth]] (2024)
* WE: ~2 = 1199.8507{{c}}, ~3/2 = 698.4045{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.4822{{c}}


== Dominant ==
{{Optimal ET sequence|legend=0| 5, 7, 12e }}
{{Main| Dominant (temperament) }}
{{See also| Archytas clan }}


The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh. The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is [[12edo]], but it also works well with the Pythagorean tuning of pure [[3/2]] fifths, and with [[29edo]], [[41edo]], or [[53edo]].
Badness (Sintel): 0.864


Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension [[neutrominant]], splitting the fifth as well as the chromatic semitone in two like in all [[rastmic clan|rastmic]] temperaments.  
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


[[Subgroup]]: 2.3.5.7
Comma list: 22/21, 27/26, 33/32, 36/35


[[Comma list]]: 36/35, 64/63
Mapping: {{mapping| 1 0 -4 6 5 -1 | 0 1 4 -2 -1 3 }}


{{Mapping|legend=1| 1 0 -4 6 | 0 1 4 -2 }}
Optimal tunings:
* WE: ~2 = 1197.8123{{c}}, ~3/2 = 695.4727{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.5713{{c}}


{{Multival|legend=1| 1 4 -2 4 -6 -16 }}
{{Optimal ET sequence|legend=0| 5, 7 }}


[[Optimal tuning]]s:  
Badness (Sintel): 0.963
* [[CTE]]: ~2 = 1200.000, ~3/2 = 699.622
: [[error map]]: {{val| 0.000 -2.333 +12.173 +31.931 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 701.573
: error map: {{val| 0.000 -0.382 +19.979 +28.028 }}


[[Tuning ranges]]:
==== 17-limit ====
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[diamond monotone]]: ~3/2 = [700.000, 720.000] (7\12 to 3\5)
Subgroup: 2.3.5.7.11.13.17
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [694.786, 715.587]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


{{Optimal ET sequence|legend=1| 5, 7, 12, 41cd, 53cdd, 65ccddd }}
Comma list: 22/21, 27/26, 33/32, 36/35, 51/49


[[Badness]]: 0.020690
Mapping: {{mapping| 1 0 -4 6 5 -1 12 | 0 1 4 -2 -1 3 -5 }}


=== 11-limit ===
Optimal tunings:
Subgroup: 2.3.5.7.11
* WE: ~2 = 1197.6327{{c}}, ~3/2 = 695.6030{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9316{{c}}


Comma list: 36/35, 56/55, 64/63
{{Optimal ET sequence|legend=0| 5, 7 }}


Mapping: {{mapping| 1 0 -4 6 13 | 0 1 4 -2 -6 }}
Badness (Sintel): 1.25


Tuning ranges:
==== 19-limit ====
* 11-odd-limit diamond monotone: ~3/2 = [700.000, 705.882] (7\12 to 10\17)
Subgroup: 2.3.5.7.11.13.17.19
* 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal tunings:  
Comma list: 22/21, 27/26, 33/32, 36/35, 51/49, 57/56
* CTE: ~2 = 1200.000, ~3/2 = 703.334
* POTE: ~2 = 1200.000, ~3/2 = 703.254


Optimal ET sequence: {{Optimal ET sequence| 5, 12, 17c, 29cde }}
Mapping: {{mapping| 1 0 -4 6 5 -1 12 9 | 0 1 4 -2 -1 3 -5 -3 }}


Badness: 0.024180
Optimal tunings:  
* WE: ~2 = 1197.5295{{c}}, ~3/2 = 695.6325{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0579{{c}}


==== 13-limit ====
{{Optimal ET sequence|legend=0| 5, 7, 12ef, 19def }}
Subgroup: 2.3.5.7.11.13


Comma list: 36/35, 56/55, 64/63, 66/65
Badness (Sintel): 1.28


Mapping: {{mapping| 1 0 -4 6 13 18 | 0 1 4 -2 -6 -9 }}
== Sharptone ==
Sharptone is a low-accuracy temperament tempering out [[21/20]] and [[28/27]]. In sharptone, 7/4 is a major sixth, 7/6 a whole tone, and 7/5 a fourth. Genuinely septimal sounding harmony therefore cannot be expected, but it can be used to translate, more or less, 7-limit JI into 5-limit meantone. [[12edo]] tuning does sharptone about as well as such a thing can be done, of course not in its patent val.


Optimal tunings:
However, while 12edo ends up near-optimal, the only valid [[diamond monotone]] tuning for sharptone is [[5edo]]. Anything flat of it has ~12/7 and ~7/4 in the wrong order (and so should be dominant) and anything sharp of it has ~5/4 and ~4/3 in the wrong order (and so should not be meantone).
* CTE: ~2 = 1200.000, ~3/2 = 704.847
* POTE: ~2 = 1200.000, ~3/2 = 703.636


Tuning ranges:
The 11-limit extension was named by Gene Ward Smith in 2004<ref name="meantone & meanpop 2004"/>.  
* 13- and 15-odd-limit diamond monotone: ~3/2 = 705.882 (10\17)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal ET sequence: {{Optimal ET sequence|12f, 17c, 29cdef }}
[[Subgroup]]: 2.3.5.7


Badness: 0.024108
[[Comma list]]: 21/20, 28/27


==== Dominion ====
{{Mapping|legend=1| 1 0 -4 -2 | 0 1 4 3 }}
Subgroup: 2.3.5.7.11.13


Comma list: 26/25, 36/35, 56/55, 64/63
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1204.2961{{c}}, ~3/2 = 702.6463{{c}}
: [[error map]]: {{val| +4.296 +4.987 +24.271 -56.591 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.4928{{c}}
: error map: {{val| 0.000 -0.462 +19.657 -64.347 }}


Mapping: {{mapping| 1 0 -4 6 13 -9 | 0 1 4 -2 -6 8 }}
{{Optimal ET sequence|legend=1| 5, 7d, 12d }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 704.034
* POTE: ~2 = 1200.000, ~3/2 = 704.905


Optimal ET sequence: {{Optimal ET sequence| 5, 12, 17c, 46cde }}
[[Badness]] (Sintel): 0.629


Badness: 0.027295
=== Meanertone ===
 
=== Domineering ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 36/35, 45/44, 64/63
Comma list: 21/20, 28/27, 33/32


Mapping: {{mapping| 1 0 -4 6 -6 | 0 1 4 -2 6 }}
Mapping: {{mapping| 1 0 -4 -2 5 | 0 1 4 3 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.240
* WE: ~2 = 1208.5304{{c}}, ~3/2 = 701.5669{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 698.776
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1117{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5e, 7, 12, 19d, 43de }}
{{Optimal ET sequence|legend=0| 5, 7d, 12de }}


Badness: 0.021978
Badness (Sintel): 0.832


==== 13-limit ====
== Supermean ==
Subgroup: 2.3.5.7.11.13
Supermean tempers out 672/625 and finds the interval class of 7 at 15 generators up, as a double-augmented fifth (C–Gx). As such, it extends [[leapfrog]].
 
[[Subgroup]]: 2.3.5.7


Comma list: 36/35, 45/44, 52/49, 64/63
[[Comma list]]: 81/80, 672/625


Mapping: {{mapping| 1 0 -4 6 -6 10 | 0 1 4 -2 6 -4 }}
{{Mapping|legend=1| 1 0 -4 -21 | 0 1 4 15 }}


Optimal tunings:  
[[Optimal tuning]]s:  
* CTE: ~2 = 1200.000, ~3/2 = 695.315
* [[WE]]: ~2 = 1195.4372{{c}}, ~3/2 = 702.2086{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.762
: [[error map]]: {{val| -4.563 -4.309 +22.521 -8.319 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 704.5375{{c}}
: error map: {{val| 0.000 +2.583 +31.836 -0.763 }}


Optimal ET sequence: {{Optimal ET sequence| 5ef, 7, 12, 19d, 31def }}
{{Optimal ET sequence|legend=1| 5d, 12d, 17c }}


Badness: 0.027039
[[Badness]] (Sintel): 3.40


===== 17-limit =====
=== 11-limit ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11


Comma list: 36/35, 45/44, 51/49, 52/49, 64/63
Comma list: 56/55, 81/80, 132/125


Mapping: {{mapping| 1 0 -4 6 -6 10 12 | 0 1 4 -2 6 -4 -5 }}
Mapping: {{mapping| 1 0 -4 -21 -14 | 0 1 4 15 11 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.894
* WE: ~2 = 1195.7270{{c}}, ~3/2 = 702.5848{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.115
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7471{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5ef, 7, 12, 19d, 31def }}
{{Optimal ET sequence|legend=0| 5de, 12de, 17c }}


Badness: 0.024539
Badness (Sintel): 2.09


===== 19-limit =====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13


Comma list: 36/35, 39/38, 45/44, 51/49, 52/49, 57/56
Comma list: 26/25, 56/55, 66/65, 81/80


Mapping: {{mapping| 1 0 -4 6 -6 10 12 9 | 0 1 4 -2 6 -4 -5 -3 }}
Mapping: {{mapping| 1 0 -4 -21 -14 -9 | 0 1 4 15 11 8 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.139
* WE: ~2 = 1196.3958{{c}}, ~3/2 = 702.9766{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.217
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7940{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5ef, 7, 12, 19d, 31def }}
{{Optimal ET sequence|legend=0| 5de, 12de, 17c, 29c }}


Badness: 0.020398
Badness (Sintel): 1.67


==== Dominatrix ====
== Mohajira ==
Subgroup: 2.3.5.7.11.13
{{Main| Mohajira }}


Comma list: 27/26, 36/35, 45/44, 64/63
Mohajira can be viewed as derived from mohaha which maps the interval half a [[chromatic semitone|chroma]] flat of the minor seventh to ~7/4 so that 7/4 is mapped to a semidiminished seventh (C–Bdb), although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the [[porwell comma]]. It can be described as {{nowrap| 24 & 31 }}; its ploidacot is dicot. [[31edo]] makes for an excellent mohajira tuning, with generator 9\31.


Mapping: {{mapping| 1 0 -4 6 -6 -1 | 0 1 4 -2 6 3 }}
[[Subgroup]]: 2.3.5.7


Optimal tunings:  
[[Comma list]]: 81/80, 6144/6125
* CTE: ~2 = 1200.000, ~3/2 = 694.840
* POTE: ~2 = 1200.000, ~3/2 = 698.544


Optimal ET sequence: {{Optimal ET sequence| 5e, 7, 12f, 19df }}
{{Mapping|legend=1| 1 1 0 6 | 0 2 8 -11 }}


Badness: 0.018289
: mapping generators: ~2, ~128/105


=== Domination ===
[[Optimal tuning]]s:
Subgroup: 2.3.5.7.11
* [[WE]]: ~2 = 1200.8160{{c}}, ~128/105 = 348.6518{{c}}
: [[error map]]: {{val| +0.816 -3.835 +2.901 +0.900 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~128/105 = 348.4194{{c}}
: error map: {{val| 0.000 -5.116 +1.041 -1.439 }}


Comma list: 36/35, 64/63, 77/75
[[Minimax tuning]]:
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~128/105 = {{monzo| 0 0 1/8 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 6 0 -11/8 0 }}
: [[eigenmonzo basis|Unchanged-interval (eigenmonzo) basis]]: 2.5


Mapping: {{mapping| 1 0 -4 6 -14 | 0 1 4 -2 11 }}
[[Tuning ranges]]:
* 7- and 9-odd-limit [[diamond monotone]]: ~128/105 = [347.368, 350.000] (11\38 to 7\24)
* 7-odd-limit [[diamond tradeoff]]: ~128/105 = [347.393, 350.978]
* 9-odd-limit diamond tradeoff: ~128/105 = [345.601, 350.978]


Optimal tunings:  
[[Algebraic generator]]: Mohabis, real root of 3''x''<sup>3</sup> - 3''x''<sup>2</sup> - 1, 348.6067 cents. Corresponding recurrence converges quickly.
* CTE: ~2 = 1200.000, ~3/2 = 703.268
* POTE: ~2 = 1200.000, ~3/2 = 705.004


Optimal ET sequence: {{Optimal ET sequence| 5e, 12e, 17c, 46cd }}
{{Optimal ET sequence|legend=1| 7, 24, 31 }}


Badness: 0.036562
[[Badness]] (Sintel): 1.41


==== 13-limit ====
Scales: [[mohaha7]], [[mohaha10]]
Subgroup: 2.3.5.7.11.13


Comma list: 26/25, 36/35, 64/63, 66/65
=== 11-limit ===
Subgroup: 2.3.5.7.11


Mapping: {{mapping| 1 0 -4 6 -14 -9 | 0 1 4 -2 11 8 }}
Comma list: 81/80, 121/120, 176/175
 
Mapping: {{mapping| 1 1 0 6 2 | 0 2 8 -11 5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 703.719
* WE: ~2 = 1201.1562{{c}}, ~11/9 = 348.8124{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 705.496
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.4910{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5e, 12e, 17c }}
Minimax tuning:  
* 11-odd-limit: ~11/9 = {{monzo| 0 0 1/8 }}
: projection map: [{{Monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 6 0 -11/8 0 0 }}, {{monzo| 2 0 5/8 0 0 }}]
: unchanged-interval (eigenmonzo) basis: 2.5


Badness: 0.027435
Tuning ranges:
* 11-odd-limit diamond monotone: ~11/9 = [348.387, 350.000] (9\31 to 7\24)
* 11-odd-limit diamond tradeoff: ~11/9 = [344.999, 350.978]


=== Arnold ===
{{Optimal ET sequence|legend=0| 7, 24, 31 }}
Subgroup: 2.3.5.7.11


Comma list: 22/21, 33/32, 36/35
Badness (Sintel): 0.862


Mapping: {{mapping| 1 0 -4 6 5 | 0 1 4 -2 -1 }}
Scales: [[mohaha7]], [[mohaha10]]


Optimal tunings:
=== 13-limit ===
* CTE: ~2 = 1200.000, ~3/2 = 698.546
* POTE: ~2 = 1200.000, ~3/2 = 698.491
 
Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12e }}
 
Badness: 0.026141
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 22/21, 27/26, 33/32, 36/35
Comma list: 66/65, 81/80, 105/104, 121/120


Mapping: {{mapping| 1 0 -4 6 5 -1 | 0 1 4 -2 -1 3 }}
Mapping: {{mapping| 1 1 0 6 2 4 | 0 2 8 -11 5 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.929
* WE: ~2 = 1200.4256{{c}}, ~11/9 = 348.6819{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.743
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.5622{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12ef, 19def }}
{{Optimal ET sequence|legend=0| 7, 24, 31 }}


Badness: 0.023300
Badness (Sintel): 0.966


==== 17-limit ====
Scales: [[mohaha7]], [[mohaha10]]
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 22/21, 27/26, 33/32, 36/35, 51/49
Comma list: 66/65, 81/80, 105/104, 121/120, 154/153


Mapping: {{mapping| 1 0 -4 6 5 -1 12 | 0 1 4 -2 -1 3 -5 }}
Mapping: {{mapping| 1 1 0 6 2 4 7 | 0 2 8 -11 5 -1 -10 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.683
* WE: ~2 = 1200.0382{{c}}, ~11/9 = 348.7471{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.978
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.7360{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12ef, 19def }}
{{Optimal ET sequence|legend=0| 7, 24, 31 }}


Badness: 0.024535
Badness (Sintel): 1.05


==== 19-limit ====
Scales: [[mohaha7]], [[mohaha10]]
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 22/21, 27/26, 33/32, 36/35, 51/49, 57/56
Comma list: 66/65, 77/76, 81/80, 96/95, 105/104, 153/152


Mapping: {{mapping| 1 0 -4 6 5 -1 12 9 | 0 1 4 -2 -1 3 -5 -3 }}
Mapping: {{mapping| 1 1 0 6 2 4 7 6 | 0 2 8 -11 5 -1 -10 -6 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.996
* WE: ~2 = 1199.7469{{c}}, ~11/9 = 348.7367{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.068
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.8117{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12ef, 19def }}
{{Optimal ET sequence|legend=0| 7, 24, 31, 55 }}


Badness: 0.021098
Badness (Sintel): 1.05


== Sharptone ==
Scales: [[mohaha7]], [[mohaha10]]
Sharptone is a low-accuracy temperament tempering out [[21/20]] and [[28/27]]. In sharptone, 7/4 is a major sixth, 7/6 a whole tone, and 7/5 a fourth. Genuinely septimal sounding harmony therefore cannot be expected, but it can be used to translate, more or less, 7-limit JI into 5-limit meantone. [[12edo]] tuning does sharptone about as well as such a thing can be done, of course not in its patent val.
 
== Mohamaq ==
Mohamaq is a lower-accuracy alternative to mohajira that favors tunings sharp of 24edo. It may be described as {{nowrap| 17c & 24 }}; its ploidacot is dicot, the same as mohajira.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 21/20, 28/27
[[Comma list]]: 81/80, 392/375


{{Mapping|legend=1| 1 0 -4 -2 | 0 1 4 3 }}
{{Mapping|legend=1| 1 1 0 -1 | 0 2 8 13 }}


{{Multival|legend=1| 1 4 3 4 2 -4 }}
: mapping generators: ~2, ~25/21


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 703.732
* [[WE]]: ~2 = 1199.0661{{c}}, ~25/21 = 350.3127{{c}}
: [[error map]]: {{val| 0.000 +1.777 +28.614 -57.630 }}
: [[error map]]: {{val| -0.934 -2.264 +16.188 -13.827 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 700.140
* [[CWE]]: ~2 = 1200.0000{{c}}, ~25/21 = 350.4856{{c}}
: error map: {{val| 0.000 -1.815 +14.245 -68.407 }}
: error map: {{val| 0.000 -0.984 +17.571 -12.513 }}
 
{{Optimal ET sequence|legend=1| 7d, 17c, 24 }}


{{Optimal ET sequence|legend=1| 5, 7d, 12d }}
[[Badness]] (Sintel): 1.97


[[Badness]]: 0.024848
Scales: [[mohaha7]], [[mohaha10]]


=== Meanertone ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 21/20, 28/27, 33/32
Comma list: 56/55, 77/75, 243/242


Mapping: {{mapping| 1 0 -4 -2 5 | 0 1 4 3 -1 }}
Mapping: {{mapping| 1 1 0 -1 2 | 0 2 8 13 5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 702.730
* WE: ~2 = 1199.1924{{c}}, ~11/9 = 350.3286{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.615
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.4821{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 7d, 12de }}
{{Optimal ET sequence|legend=0| 7d, 17c, 24 }}


Badness: 0.025167
Badness (Sintel): 1.20


== Supermean ==
Scales: [[mohaha7]], [[mohaha10]]
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 672/625
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


{{Mapping|legend=1|  1 0 -4 -21 | 0 1 4 15 }}
Comma list: 56/55, 66/65, 77/75, 243/242


[[Optimal tuning]]s:
Mapping: {{mapping| 1 1 0 -1 2 4 | 0 2 8 13 5 -1 }}
* [[CTE]]: ~2 = 1200.000, ~3/2 = 703.811
: [[error map]]: {{val| 0.000 +1.856 +28.929 -11.665 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 704.889
: error map: {{val| 0.000 +2.934 +33.242 +4.507 }}


{{Optimal ET sequence|legend=1| 5d, 12d, 17c, 29c }}
Optimal tunings:
* WE: ~2 = 1198.5986{{c}}, ~11/9 = 350.3353{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.6459{{c}}


[[Badness]]: 0.134204
{{Optimal ET sequence|legend=0| 7d, 17c, 24, 41c }}


=== 11-limit ===
Badness (Sintel): 1.19
Subgroup: 2.3.5.7.11


Comma list: 56/55, 81/80, 132/125
Scales: [[mohaha7]], [[mohaha10]]


Mapping: {{mapping| 1 0 -4 -21 -14 | 0 1 4 15 11 }}
== Liese ==
<span style="display: block; text-align: right;">[[:de:Liese|Deutsch]]</span>


Optimal tunings:
Liese splits the [[3/1|perfect twelfth]] into three generators of ~10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. It may be described as {{nowrap| 17c & 19 }}; its ploidacot is alpha-tricot. It is a very natural 13-limit tuning, given the generator is so near 13/9. [[74edo]] makes for a good liese tuning, though [[19edo]] can be used. The tuning is well-supplied with mos scales: 7, 9, 11, 13, 15, 17, 19, 36, 55.  
* CTE: ~2 = 1200.000, ~3/2 = 704.016
* POTE: ~2 = 1200.000, ~3/2 = 705.096


Optimal ET sequence: {{Optimal ET sequence| 5de, 12de, 17c, 29c }}
[[Subgroup]]: 2.3.5.7


Badness: 0.063262
[[Comma list]]: 81/80, 686/675


=== 13-limit ===
{{Mapping|legend=1| 1 0 -4 -3 | 0 3 12 11 }}
Subgroup: 2.3.5.7.11.13


Comma list: 26/25, 56/55, 66/65, 81/80
: mapping generators: ~2, ~10/7


Mapping: {{mapping| 1 0 -4 -21 -14 -9 | 0 1 4 15 11 8 }}
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1201.5548{{c}}, ~10/7 = 633.2251{{c}}
: [[error map]]: {{val| +1.555 -2.280 +6.168 -8.015 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 632.5640{{c}}
: error map: {{val| 0.000 -4.263 +4.454 -10.622 }}


Optimal tunings:  
[[Minimax tuning]]:  
* CTE: ~2 = 1200.000, ~3/2 = 704.121
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/7 = {{monzo| 1/3 0 1/12 }}
* POTE: ~2 = 1200.000, ~3/2 = 705.094
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 2/3 0 11/12 0 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


Optimal ET sequence: {{Optimal ET sequence| 5de, 12de, 17c, 29c }}
[[Algebraic generator]]: Radix, the real root of ''x''<sup>5</sup> - 2''x''<sup>4</sup> + 2''x''<sup>3</sup> - 2''x''<sup>2</sup> + 2''x'' - 2, also a root of ''x''<sup>6</sup> - ''x''<sup>5</sup> - 2. The recurrence converges.


Badness: 0.040324
{{Optimal ET sequence|legend=1| 17c, 19, 55, 74d }}


== Mohajira ==
[[Badness]] (Sintel): 1.18
{{Main| Mohajira }}


Mohajira can be viewed as derived from mohaha which maps the interval one quarter tone flat of 16/9 to 7/4, although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the porwell comma. [[31edo]] makes for an excellent (7-limit) mohajira tuning, with generator 9\31.  
=== Liesel ===
Subgroup: 2.3.5.7.11


[[Subgroup]]: 2.3.5.7
Comma list: 56/55, 81/80, 540/539


[[Comma list]]: 81/80, 6144/6125
Mapping: {{mapping| 1 0 -4 -3 4 | 0 3 12 11 -1 }}


{{Mapping|legend=1| 1 1 0 6 | 0 2 8 -11 }}
Optimal tunings:
* WE: ~2 = 1198.8507{{c}}, ~10/7 = 632.4668{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 632.9963{{c}}


: mapping generators: ~2, ~128/105
{{Optimal ET sequence|legend=0| 17c, 19, 36 }}


{{Multival|legend=1| 2 8 -11 8 -23 -48 }}
Badness (Sintel): 1.35


[[Optimal tuning]]s:
==== 13-limit ====
* [[CTE]]: ~2 = 1200.000, ~128/105 = 348.437
Subgroup: 2.3.5.7.11.13
: [[error map]]: {{val| 0.000 -5.080 +1.186 -1.637 }}
* [[POTE]]: ~2 = 1200.000, ~128/105 = 348.415
: error map: {{val| 0.000 -5.125 +1.005 -1.390 }}


[[Minimax tuning]]:
Comma list: 56/55, 78/77, 81/80, 91/90
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~128/105 = {{monzo| 0 0 1/8 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 6 0 -11/8 0 }}
: [[eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.5


[[Tuning ranges]]:
Mapping: {{mapping| 1 0 -4 -3 4 0 | 0 3 12 11 -1 7 }}
* 7- and 9-odd-limit [[diamond monotone]]: ~128/105 = [347.368, 350.000] (11\38 to 7\24)
* 7-odd-limit [[diamond tradeoff]]: ~128/105 = [347.393, 350.978]
* 9-odd-limit diamond tradeoff: ~128/105 = [345.601, 350.978]


[[Algebraic generator]]: Mohabis, real root of 3''x''<sup>3</sup> - 3''x''<sup>2</sup> - 1, 348.6067 cents. Corresponding recurrence converges quickly.
Optimal tunings:  
* WE: ~2 = 1199.4968{{c}}, ~10/7 = 632.7766{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.0082{{c}}


{{Optimal ET sequence|legend=1| 7, 24, 31 }}
{{Optimal ET sequence|legend=0| 17c, 19, 36 }}


[[Badness]]: 0.055714
Badness (Sintel): 1.13


Scales: [[mohaha7]], [[mohaha10]]
=== Elisa ===
Subgroup: 2.3.5.7.11


=== 11-limit ===
Comma list: 77/75, 81/80, 99/98
Subgroup: 2.3.5.7.11
 
Mapping: {{mapping| 1 0 -4 -3 -5 | 0 3 12 11 16 }}


Comma list: 81/80, 121/120, 176/175
Optimal tunings:  
* WE: ~2 = 1201.0489{{c}}, ~10/7 = 633.6147{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1644{{c}}


Mapping: {{mapping| 1 1 0 6 2 | 0 2 8 -11 5 }}
{{Optimal ET sequence|legend=0| 17c, 19e, 36e }}


Wedgie: {{multival| 2 8 -11 5 8 -23 1 -48 -16 52 }}
Badness (Sintel): 1.37


Optimal tunings:
==== 13-limit ====
* CTE: ~2 = 1200.000, ~11/9 = 348.561
Subgroup: 2.3.5.7.11.13
* POTE: ~2 = 1200.000, ~11/9 = 348.477


Minimax tuning:  
Comma list: 66/65, 77/75, 81/80, 99/98
* 11-odd-limit: ~11/9 = {{monzo| 0 0 1/8 }}
: projection map: [{{Monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 6 0 -11/8 0 0 }}, {{monzo| 2 0 5/8 0 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.5


Tuning ranges:
Mapping: {{mapping| 1 0 -4 -3 -5 0 | 0 3 12 11 16 7 }}
* 11-odd-limit diamond monotone: ~11/9 = [348.387, 350.000] (9\31 to 7\24)
* 11-odd-limit diamond tradeoff: ~11/9 = [344.999, 350.978]


Optimal ET sequence: {{Optimal ET sequence| 7, 24, 31 }}
Optimal tunings:  
* WE: ~2 = 1201.4815{{c}}, ~10/7 = 633.7720{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1281{{c}}


Badness: 0.026064
{{Optimal ET sequence|legend=0| 17c, 19e, 36e }}


Scales: [[mohaha7]], [[mohaha10]]
Badness (Sintel): 1.11


=== 13-limit ===
=== Lisa ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11


Comma list: 66/65, 81/80, 105/104, 121/120
Comma list: 45/44, 81/80, 343/330


Mapping: {{mapping| 1 1 0 6 2 4 | 0 2 8 -11 5 -1 }}
Mapping: {{mapping| 1 0 -4 -3 -6 | 0 3 12 11 18 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/9 = 348.587
* WE: ~2 = 1202.6773{{c}}, ~10/7 = 632.7783{{c}}
* POTE: ~2 = 1200.000, ~11/9 = 348.558
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.6175{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7, 24, 31 }}
{{Optimal ET sequence|legend=0| 17cee, 19 }}


Badness: 0.023388
Badness (Sintel): 1.81


Scales: [[mohaha7]], [[mohaha10]]
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


=== 17-limit ===
Comma list: 45/44, 81/80, 91/88, 147/143
Subgroup: 2.3.5.7.11.13.17


Comma list: 66/65, 81/80, 105/104, 121/120, 154/153
Mapping: {{mapping| 1 0 -4 -3 -6 0 | 0 3 12 11 18 7 }}
 
Mapping: {{mapping| 1 1 0 6 2 4 7 | 0 2 8 -11 5 -1 -10 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/9 = 348.735
* WE: ~2 = 1203.6086{{c}}, ~10/7 = 633.1193{{c}}
* POTE: ~2 = 1200.000, ~11/9 = 348.736
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.5346{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7, 24, 31 }}
{{Optimal ET sequence|legend=0| 17cee, 19 }}


Badness: 0.020576
Badness (Sintel): 1.49


Scales: [[mohaha7]], [[mohaha10]]
== Superpine ==
{{See also| No-sevens subgroup temperaments #Superpine }}


=== 19-limit ===
The superpine temperament is generated by 1/3 of a fourth, represented by [[~]][[35/32]], which resembles [[porcupine]], but it favors flat fifths instead of sharp ones. It may be described as {{nowrap| 36 & 43 }}; its ploidacot is omega-tricot. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent [[6/5]] – harmonics other than 3 all require the 15-tone mos ([[7L 8s]]) to properly utilize. This temperament has an obvious 11-limit interpretation by treating the generator as [[11/10]] as in porcupine, which makes [[11/8]] high-[[complexity]] like the other harmonics, but in the 13-limit 5 generators up closely approximates [[13/8]]. [[43edo]] is a good tuning especially for the higher-limit extensions.
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 66/65, 77/76, 81/80, 96/95, 105/104, 153/152
[[Subgroup]]: 2.3.5.7


Mapping: {{mapping| 1 1 0 6 2 4 7 6 | 0 2 8 -11 5 -1 -10 -6 }}
[[Comma list]]: 81/80, 1119744/1071875


Optimal tunings:
{{Mapping|legend=1| 1 2 4 1 | 0 -3 -12 13 }}
* CTE: ~2 = 1200.000, ~11/9 = 348.821
* POTE: ~2 = 1200.000, ~11/9 = 348.810


Optimal ET sequence: {{Optimal ET sequence| 7, 24, 31, 55 }}
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1199.3652{{c}}, ~35/32 = 167.1615{{c}}
: [[error map]]: {{val| -0.635 -4.709 +5.209 +3.639 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~35/32 = 167.2561{{c}}
: error map: {{val| 0.000 -3.723 +6.613 +5.503 }}


Badness: 0.017302
{{Optimal ET sequence|legend=1| 7, 36, 43, 79c }}


Scales: [[mohaha7]], [[mohaha10]]
[[Badness]] (Sintel): 3.46


== Mohamaq ==
=== 11-limit ===
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7.11


[[Comma list]]: 81/80, 392/375
Comma list: 81/80, 176/175, 864/847


{{Mapping|legend=1| 1 1 0 -1 | 0 2 8 13 }}
Mapping: {{mapping| 1 2 4 1 5 | 0 -3 -12 13 -11 }}


: mapping generators: ~2, ~25/21
Optimal tunings:  
* WE: ~2 = 1199.0522{{c}}, ~11/10 = 167.1904{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3382{{c}}


[[Optimal tuning]]s:
{{Optimal ET sequence|legend=0| 7, 36, 43 }}
* [[CTE]]: ~2 = 1200.000, ~25/21 = 350.352
: [[error map]]: {{val| 0.000 -1.250 +16.505 -14.245 }}
* [[POTE]]: ~2 = 1200.000, ~25/21 = 350.586
: error map: {{val| 0.000 -0.784 +18.370 -11.214 }}


{{Optimal ET sequence|legend=1| 7d, 17c, 24 }}
Badness (Sintel): 1.90


[[Badness]]: 0.077734
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Scales: [[mohaha7]], [[mohaha10]]
Comma list: 78/77, 81/80, 144/143, 176/175


=== 11-limit ===
Mapping: {{mapping| 1 2 4 1 5 3 | 0 -3 -12 13 -11 5 }}
Subgroup: 2.3.5.7.11


Comma list: 56/55, 77/75, 243/242
Optimal tunings:  
* WE: ~2 = 1199.4286{{c}}, ~11/10 = 167.3105{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3958{{c}}


Mapping: {{mapping| 1 1 0 -1 2 | 0 2 8 13 5 }}
{{Optimal ET sequence|legend=0| 7, 36, 43 }}


Optimal tunings:  
Badness (Sintel): 1.52
* CTE: ~2 = 1200.000, ~11/9 = 350.347
* POTE: ~2 = 1200.000, ~11/9 = 350.565


Optimal ET sequence: {{Optimal ET sequence| 7d, 17c, 24 }}
== Lithium ==
Lithium is named after the 3rd element for having a 3rd-octave period (and also for lithium's molar mass of 6.9 g/mol since 69edo supports it). Its ploidacot is triploid monocot. It supports a [[3L 6s]] scale and thus intuitively can be thought of as "tcherepnin meantone" in that context.


Badness: 0.036207
[[Subgroup]]: 2.3.5.7


Scales: [[mohaha7]], [[mohaha10]]
[[Comma list]]: 81/80, 3125/3087


=== 13-limit ===
{{Mapping|legend=1| 3 0 -12 -20 | 0 1 4 6 }}
Subgroup: 2.3.5.7.11.13


Comma list: 56/55, 66/65, 77/75, 243/242
: mapping generators: ~56/45, ~3


Mapping: {{mapping| 1 1 0 -1 2 4 | 0 2 8 13 5 -1 }}
[[Optimal tuning]]s:  
* [[WE]]: ~56/45 = 400.6744{{c}}, ~3/2 = 695.8474{{c}} {~15/14 = 105.5015{{c}})
: [[error map]]: {{val| +2.023 -4.084 -2.924 +4.910 }}
* [[CWE]]: ~56/45 = 400.0000{{c}}, ~3/2 = 695.1413{{c}} {~15/14 = 104.8587{{c}})
: error map: {{val| 0.000 -6.814 -5.748 +2.022 }}


Optimal tunings:
{{Optimal ET sequence|legend=1| 12, 33cd, 45, 57 }}
* CTE: ~2 = 1200.000, ~11/9 = 350.365
* POTE: ~2 = 1200.000, ~11/9 = 350.745


Optimal ET sequence: {{Optimal ET sequence| 7d, 17c, 24, 41c }}
[[Badness]] (Sintel): 1.75


Badness: 0.028738
== Squares ==
 
{{Main| Squares }}
Scales: [[mohaha7]], [[mohaha10]]
 
== Liese ==
<span style="display: block; text-align: right;">[[:de:Liese|Deutsch]]</span>


Liese splits the twelfth interval of 3/1 into three generators of 10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. Liese is a very natural 13-limit tuning, given the generator is so near 13/9. [[74edo]] makes for a good liese tuning, though [[19edo]] can be used. The tuning is well-supplied with mos scales: 7, 9, 11, 13, 15, 17, 19, 36, 55.  
Squares splits the [[6/1|6th harmonic]] into four subminor sixths of [[11/7]]~[[14/9]] (or splits a [[8/3|perfect eleventh]] into four supermajor thirds of [[9/7]]~[[14/11]]), and uses it for a generator. It may be described as {{nowrap| 14c & 17c }}; its ploidacot is beta-tetracot. [[31edo]], with a generator of 11/31, makes for a good squares tuning, with 8-, 11-, and 14-note mos scales available. Squares tempers out [[2401/2400]], the breedsma, as well as [[2430/2401]].


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 686/675
[[Comma list]]: 81/80, 2401/2400
 
{{Mapping|legend=1| 1 0 -4 -3 | 0 3 12 11 }}


: mapping generators: ~2, ~10/7
{{Mapping|legend=1| 1 -1 -8 -3 | 0 4 16 9 }}


{{Multival|legend=1| 3 12 11 12 9 -8 }}
: mapping generators: ~2, ~14/9


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~10/7 = 632.783
* [[WE]]: ~2 = 1201.2488{{c}}, ~14/9 = 774.8640{{c}}
: [[error map]]: {{val| 0.000 -3.606 +7.084 -8.212 }}
: [[error map]]: {{val| +1.249 -3.748 +1.520 +1.204 }}
* [[POTE]]: ~2 = 1200.000, ~10/7 = 632.406
* [[CWE]]: ~2 = 1200.0000{{c}}, ~14/9 = 774.1560{{c}}
: error map: {{val| 0.000 -4.738 +2.554 -12.363 }}
: error map: {{val| 0.000 -5.331 +0.183 -1.422 }}


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/7 = {{monzo| 1/3 0 1/12 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~9/7 = {{monzo| 1/2 0 -1/16 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 2/3 0 11/12 0 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 3/2 0 9/16 0 }}
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
 
[[Algebraic generator]]: Sceptre2, the positive root of 9''x''<sup>2</sup> + ''x'' - 16, or (sqrt (577) - 1)/18, which is 425.9311 cents.


[[Algebraic generator]]: Radix, the real root of ''x''<sup>5</sup> - 2''x''<sup>4</sup> + 2''x''<sup>3</sup> - 2''x''<sup>2</sup> + 2''x'' - 2, also a root of ''x''<sup>6</sup> - ''x''<sup>5</sup> - 2. The recurrence converges.
{{Optimal ET sequence|legend=1| 14c, 17c, 31, 169b, 200b }}


{{Optimal ET sequence|legend=1| 17c, 19, 55, 74d }}
[[Badness]] (Sintel): 1.16


[[Badness]]: 0.046706
Scales: [[skwares8]], [[skwares11]], [[skwares14]]


=== Liesel ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 56/55, 81/80, 540/539
Comma list: 81/80, 99/98, 121/120


Mapping: {{mapping| 1 0 -4 -3 4 | 0 3 12 11 -1 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 | 0 4 16 9 10 }}
 
Wedgie: {{multival| 3 12 11 -1 12 9 -12 -8 -44 -41 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~10/7 = 632.812
* WE: ~2 = 1201.6657{{c}}, ~11/7 = 775.1171{{c}}
* POTE: ~2 = 1200.000, ~10/7 = 633.073
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.1754{{c}}


Optimal ET sequence: {{Optimal ET sequence| 17c, 19, 36 }}
{{Optimal ET sequence|legend=0| 14c, 17c, 31, 130bee, 169beee }}


Badness: 0.040721
Badness (Sintel): 0.715


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 56/55, 78/77, 81/80, 91/90
Comma list: 66/65, 81/80, 99/98, 121/120


Mapping: {{mapping| 1 0 -4 -3 4 0 | 0 3 12 11 -1 7 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 5 | 0 4 16 9 10 -2 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~10/7 = 632.925
* WE: ~2 = 1199.8419{{c}}, ~11/7 = 774.3484{{c}}
* POTE: ~2 = 1200.000, ~10/7 = 633.042
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4422{{c}}


Optimal ET sequence: {{Optimal ET sequence| 17c, 19, 36, 91ceef }}
{{Optimal ET sequence|legend=0| 14c, 17c, 31, 79cf }}


Badness: 0.027304
Badness (Sintel): 1.05


=== Elisa ===
==== Squad ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 77/75, 81/80, 99/98
Comma list: 78/77, 81/80, 91/90, 99/98


Mapping: {{mapping| 1 0 -4 -3 -5 | 0 3 12 11 16 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 -6 | 0 4 16 9 10 15 }}
 
Wedgie: {{multival| 3 12 11 16 12 9 15 -8 -4 7 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~10/7 = 633.317
* WE: ~2 = 1202.0312{{c}}, ~11/7 = 775.5589{{c}}
* POTE: ~2 = 1200.000, ~10/7 = 633.061
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4140{{c}}


Optimal ET sequence: {{Optimal ET sequence| 17c, 19e, 36e }}
{{Optimal ET sequence|legend=0| 14cf, 17c, 31f }}


Badness: 0.041592
Badness (Sintel): 1.11


==== 13-limit ====
==== Agora ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 66/65, 77/75, 81/80, 99/98
Comma list: 81/80, 99/98, 105/104, 121/120


Mapping: {{mapping| 1 0 -4 -3 -5 0 | 0 3 12 11 16 7 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 -15 | 0 4 16 9 10 29 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~10/7 = 633.370
* WE: ~2 = 1202.3228{{c}}, ~11/7 = 775.2214{{c}}
* POTE: ~2 = 1200.000, ~10/7 = 632.991
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8617{{c}}


Optimal ET sequence: {{Optimal ET sequence| 17c, 19e, 36e }}
{{Optimal ET sequence|legend=0| 14cf, 31, 45ef, 76e }}


Badness: 0.026922
Badness (Sintel): 1.01


=== Lisa ===
===== 17-limit =====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17


Comma list: 45/44, 81/80, 343/330
Comma list: 81/80, 99/98, 105/104, 120/119, 121/119


Mapping: {{mapping| 1 0 -4 -3 -6 | 0 3 12 11 18 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 -15 -3 | 0 4 16 9 10 29 11 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~10/7 = 631.981
* WE: ~2 = 1201.4340{{c}}, ~11/7 = 774.7375{{c}}
* POTE: ~2 = 1200.000, ~10/7 = 631.370
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8955{{c}}


Optimal ET sequence: {{Optimal ET sequence| 17cee, 19 }}
{{Optimal ET sequence|legend=0| 14cf, 31 }}


Badness: 0.054829
Badness (Sintel): 1.15


==== 13-limit ====
===== 19-limit =====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 45/44, 81/80, 91/88, 147/143
Comma list: 77/76, 81/80, 99/98, 105/104, 120/119, 121/119


Mapping: {{mapping| 1 0 -4 -3 -6 0 | 0 3 12 11 18 7 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 -15 -3 -8 | 0 4 16 9 10 29 11 19 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~10/7 = 632.093
* WE: ~2 = 1201.2461{{c}}, ~11/7 = 774.5783{{c}}
* POTE: ~2 = 1200.000, ~10/7 = 631.221
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8479{{c}}


Optimal ET sequence: {{Optimal ET sequence| 17cee, 19 }}
{{Optimal ET sequence|legend=0| 14cf, 31 }}


Badness: 0.036144
Badness (Sintel): 1.15


== Superpine ==
=== Cuboctahedra ===
The superpine temperament is generated by 1/3 of a fourth, represented by [[~]][[35/32]], which resembles [[porcupine]], but it favors flat fifths instead of sharp ones. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent [[6/5]]–harmonics other than 3 all require the 15-tone mos to properly utilize. This temperament has an obvious 11-limit interpretation by treating the generator as [[11/10]] as in porcupine, which makes [[11/8]] high-[[complexity]] like the other harmonics, but in the 13-limit 5 generators up closely approximates [[13/8]]. [[43edo]] is a good tuning especially for the higher-limit extensions.
Subgroup: 2.3.5.7.11
 
Comma list: 81/80, 385/384, 1375/1372
 
Mapping: {{mapping| 1 -1 -8 -3 17 | 0 4 16 9 -21 }}
 
Optimal tunings:
* WE: ~2 = 1201.4436{{c}}, ~14/9 = 774.9386{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~14/9 = 774.0243{{c}}
 
{{Optimal ET sequence|legend=0| 31, 107b, 138b, 169be, 200be }}
 
Badness (Sintel): 1.88
 
== Jerome ==
Jerome is related to [[20ed5|Hieronymus' tuning]]; the Hieronymus generator is 5<sup>1/20</sup>, or 139.316 cents. It may be described as {{nowrap| 17c & 26 }}; its ploidacot is pentacot. While the generator represents both 13/12 and 12/11, the CTE/CWE and Hieronymus generators are close to 13/12 in size.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 1119744/1071875
[[Comma list]]: 81/80, 17280/16807
 
{{Mapping|legend=1| 1 1 0 2 | 0 5 20 7 }}


{{Mapping|legend=1| 1 2 4 1 | 0 -3 -12 13 }}
: mapping generators: ~2, ~54/49


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~35/32 = 167.279
* [[WE]]: ~2 = 1200.1640{{c}}, ~54/49 = 139.3624{{c}}
: [[error map]]: {{val| 0.000 -3.793 +6.336 +5.804 }}
: [[error map]]: {{val| +0.164 -4.979 +0.934 +7.039 }}
* [[CWE]]: ~2 = 1200.000, ~35/32 = 167.256
* [[CWE]]: ~2 = 1200.0000{{c}}, ~54/49 = 139.3528{{c}}
: error map: {{val| 0.000 -3.723 +6.613 +5.503 }}
: error map: {{val| 0.000 -5.191 +0.741 +6.643 }}


{{Optimal ET sequence|legend=1| 7, 36, 43, 79c }}
{{Optimal ET sequence|legend=1| 17c, 26, 43 }}


[[Badness]]: 0.137
[[Badness]] (Sintel): 2.75


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 176/175, 864/847
Comma list: 81/80, 99/98, 864/847


Mapping: {{mapping| 1 2 4 1 5 | 0 -3 -12 13 -11 }}
Mapping: {{mapping| 1 1 0 2 3 | 0 5 20 7 4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/10 = 167.407
* WE: ~2 = 1201.4436{{c}}, ~12/11 = 139.3714{{c}}
* CWE: ~2 = 1200.000, ~11/10 = 167.338
* CWE: ~2 = 1200.0000{{c}}, ~12/11 = 139.4038{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7, 36, 43 }}
{{Optimal ET sequence|legend=0| 17c, 26, 43 }}


Badness: 0.0576
Badness (Sintel): 1.58


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 78/77, 81/80, 144/143, 176/175
Comma list: 78/77, 81/80, 99/98, 144/143


Mapping: {{mapping| 1 2 4 1 5 3 | 0 -3 -12 13 -11 5 }}
Mapping: {{mapping| 1 1 0 2 3 3 | 0 5 20 7 4 6 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/10 = 167.427
* WE: ~2 = 1199.8860{{c}}, ~13/12 = 139.3737{{c}}
* CWE: ~2 = 1200.000, ~11/10 = 167.396
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3817{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7, 36, 43 }}
{{Optimal ET sequence|legend=0| 17c, 26, 43 }}


Badness: 0.0368
Badness (Sintel): 1.21


== Lithium ==
=== 17-limit ===
Lithium is named after the 3rd element for having a 3rd-octave period, and also for lithium's molar mass of 6.9 g/mol since 69edo supports it. It supports a [[3L 6s]] scale and thus intuitively can be thought of as "tcherepnin meantone" in that context.
Subgroup: 2.3.5.7.11.13.17


[[Subgroup]]: 2.3.5.7
Comma list: 78/77, 81/80, 99/98, 144/143, 189/187
 
Mapping: {{mapping| 1 1 0 2 3 3 2 | 0 5 20 7 4 6 18 }}
 
Optimal tunings:
* WE: ~2 = 1199.8346{{c}}, ~13/12 = 139.3431{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3544{{c}}
 
{{Optimal ET sequence|legend=0| 17cg, 26, 43 }}


[[Comma list]]: 81/80, 3125/3087
Badness (Sintel): 1.06


{{Mapping|legend=1| 3 0 -12 -20 | 0 1 4 6 }}
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19


: mapping generators: ~56/45, ~3
Comma list: 78/77, 81/80, 99/98, 120/119, 135/133, 144/143


[[Optimal tuning]]s:
Mapping: {{mapping| 1 1 0 2 3 3 2 1 | 0 5 20 7 4 6 18 28 }}
* [[CTE]]: ~56/45 = 400.000, ~3/2 = 695.827 (~15/14 = 104.173)
: [[error map]]: {{val| 0.000 -6.128 -3.007 +6.135 }}
* [[CWE]]: ~56/45 = 400.000, ~3/2 = 695.141 {~15/14 = 104.859)
: error map: {{val| 0.000 -6.814 -5.748 +2.022 }}


{{Optimal ET sequence|legend=1| 12, 33cd, 45, 57 }}
Optimal tunings:
* WE: ~2 = 1199.8891{{c}}, ~13/12 = 139.3001{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3080{{c}}


[[Badness]]: 0.0692
{{Optimal ET sequence|legend=0| 17cgh, 26, 43, 69 }}


== Squares ==
Badness (Sintel): 1.11
{{Main| Squares }}


Squares splits the interval of an eleventh, or 8/3, into four supermajor third ([[9/7]]) intervals, and uses it for a generator. [[31edo]], with a generator of 11/31, makes for a good squares tuning, with 8-, 11-, and 14-note mos scales available. Squares tempers out [[2401/2400]], the breedsma, as well as [[2430/2401]].
== Meantritone ==
The meantritone temperament tempers out the [[mirkwai comma]] (16875/16807) and [[trimyna comma]] (50421/50000) in the 7-limit. In this temperament, the 6th harmonic is split into five generators of ~10/7; the ploidacot of this temperament is beta-pentacot. The name ''meantritone'' is a portmanteau of ''meantone'' and ''tritone'', the latter is a generator of this temperament.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 2401/2400
[[Comma list]]: 81/80, 16875/16807


{{Mapping|legend=1| 1 3 8 6 | 0 -4 -16 -9 }}
{{Mapping|legend=1| 1 -1 -8 -7 | 0 5 20 19 }}


: mapping generators: ~2, ~9/7
: mapping generators: ~2, ~10/7
 
{{Multival|legend=1| 4 16 9 16 3 -24 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~9/7 = 425.695
* [[WE]]: ~2 = 1201.3832{{c}}, ~10/7 = 619.9478{{c}}
: [[error map]]: {{val| 0.000 -4.734 +2.570 -0.079 }}
: [[error map]]: {{val| +1.383 -3.599 +1.576 +0.499 }}
* [[POTE]]: ~2 = 1200.000, ~9/7 = 425.942
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 619.3176{{c}}
: error map: {{val| 0.000 -5.721 -1.378 -2.300 }}
: error map: {{val| 0.000 -5.367 +0.038 -1.791 }}


[[Minimax tuning]]:
{{Optimal ET sequence|legend=1| 29cd, 31, 188bcd, 219bbcd }}
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~9/7 = {{monzo| 1/2 0 -1/16 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 3/2 0 9/16 0 }}
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5


[[Algebraic generator]]: Sceptre2, the positive root of 9''x''<sup>2</sup> + ''x'' - 16, or (sqrt (577) - 1)/18, which is 425.9311 cents.
[[Badness]] (Sintel): 2.08
 
{{Optimal ET sequence|legend=1| 14c, 17c, 31, 169b, 200b }}
 
[[Badness]]: 0.045993
 
Scales: [[skwares8]], [[skwares11]], [[skwares14]]


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 99/98, 121/120
Comma list: 81/80, 99/98, 2541/2500


Mapping: {{mapping| 1 3 8 6 7 | 0 -4 -16 -9 -10 }}
Mapping: {{mapping| 1 -1 -8 -7 -11 | 0 5 20 19 28 }}
 
Wedgie: {{multival| 4 16 9 10 16 3 2 -24 -32 -3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~9/7 = 425.599
* WE: ~2 = 1201.2054{{c}}, ~10/7 = 619.9752{{c}}
* POTE: ~2 = 1200.000, ~9/7 = 425.957
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 619.4223{{c}}


Optimal ET sequence: {{Optimal ET sequence| 14c, 17c, 31, 130bee, 169beee }}
{{Optimal ET sequence|legend=0| 29cde, 31 }}


Badness: 0.021636
Badness (Sintel): 1.42


==== 13-limit ====
== Injera ==
Subgroup: 2.3.5.7.11.13
Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a ~15/14 semitone difference between a half-octave and a perfect fifth. Injera may be described as {{nowrap| 12 & 26 }}; its ploidacot is diploid monocot. It tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. [[38edo]], which is two parallel [[19edo]]s, is an excellent tuning for injera.


Comma list: 66/65, 81/80, 99/98, 121/120
[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3091.html#3091 Origin of the name]


Mapping: {{mapping| 1 3 8 6 7 3 | 0 -4 -16 -9 -10 2 }}
[[Subgroup]]: 2.3.5.7


Optimal tunings:  
[[Comma list]]: 50/49, 81/80
* CTE: ~2 = 1200.000, ~9/7 = 425.578
* POTE: ~2 = 1200.000, ~9/7 = 425.550


Optimal ET sequence: {{Optimal ET sequence| 14c, 17c, 31, 79cf }}
{{Mapping|legend=1| 2 0 -8 -7 | 0 1 4 4 }}


Badness: 0.025514
: mapping generators: ~7/5, ~3


==== Squad ====
[[Optimal tuning]]s:
Subgroup: 2.3.5.7.11.13
* [[WE]]: ~7/5 = 600.6662{{c}}, ~3/2 = 695.1463{{c}} (~21/20 = 94.4801{{c}})
: [[error map]]: {{val| +1.332 -5.476 -5.729 +12.425 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 694.7712{{c}} (~21/20 = 94.7712{{c}})
: error map: {{val| 0.000 -7.184 -7.229 +10.259 }}


Comma list: 78/77, 81/80, 91/90, 99/98
[[Tuning ranges]]:  
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [688.957, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


Mapping: {{mapping| 1 3 8 6 7 9 | 0 -4 -16 -9 -10 -15 }}
{{Optimal ET sequence|legend=1| 12, 26, 38 }}


Optimal tunings:  
[[Badness]] (Sintel): 0.788
* CTE: ~2 = 1200.000, ~9/7 = 425.297
* POTE: ~2 = 1200.000, ~9/7 = 425.752


Optimal ET sequence: {{Optimal ET sequence| 14cf, 17c, 31f }}
; Music
* [https://web.archive.org/web/20201127013520/http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Two%20Pairs%20of%20Socks.mp3 ''Two Pairs of Socks''] by [[Igliashon Jones]] – in [[26edo]] tuning


Badness: 0.026877
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 45/44, 50/49, 81/80
 
Mapping: {{mapping| 2 0 -8 -7 -12 | 0 1 4 4 6 }}
 
Optimal tunings:
* WE: ~7/5 = 600.9350{{c}}, ~3/2 = 693.9198{{c}} (~21/20 = 92.9848{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.3539{{c}} (~21/20 = 93.3539{{c}})


==== Agora ====
Tuning ranges:
* 11-odd-limit diamond monotone: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]
 
{{Optimal ET sequence|legend=0| 12, 26 }}
 
Badness (Sintel): 0.764
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 99/98, 105/104, 121/120
Comma list: 45/44, 50/49, 78/77, 81/80


Mapping: {{mapping| 1 3 8 6 7 14 | 0 -4 -16 -9 -10 -29 }}
Mapping: {{mapping| 2 0 -8 -7 -12 -21 | 0 1 4 4 6 9 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~9/7 = 425.870
* WE: ~7/5 = 600.9982{{c}}, ~3/2 = 693.8249{{c}} (~21/20 = 92.8267{{c}})
* POTE: ~2 = 1200.000, ~9/7 = 426.276
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.0992{{c}} (~21/20 = 93.0992{{c}})
 
Tuning ranges:
* 13- and 15-odd-limit diamond monotone: ~3/2 = 692.308 (15\26)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


Optimal ET sequence: {{Optimal ET sequence| 14cf, 31, 45ef, 76e }}
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}


Badness: 0.024522
Badness (Sintel): 0.891


===== 17-limit =====
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 81/80, 99/98, 105/104, 120/119, 121/119
Comma list: 45/44, 50/49, 78/77, 81/80, 85/84


Mapping: {{mapping| 1 3 8 6 7 14 8 | 0 -4 -16 -9 -10 -29 -11 }}
Mapping: {{mapping| 2 0 -8 -7 -12 -21 5 | 0 1 4 4 6 9 1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~9/7 = 425.919
* WE: ~7/5 = 601.1757{{c}}, ~3/2 = 693.8441{{c}} (~21/20 = 92.6684{{c}})
* POTE: ~2 = 1200.000, ~9/7 = 426.187
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.8879{{c}} (~21/20 = 92.8879{{c}})


Optimal ET sequence: {{Optimal ET sequence| 14cf, 31 }}
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}


Badness: 0.022573
Badness (Sintel): 0.935


===== 19-limit =====
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 77/76, 81/80, 99/98, 105/104, 120/119, 121/119
Comma list: 45/44, 50/49, 57/56, 78/77, 81/80, 85/84


Mapping: {{mapping| 1 3 8 6 7 14 8 11 | 0 -4 -16 -9 -10 -29 -11 -19 }}
Mapping: {{mapping| 2 0 -8 -7 -12 -21 5 -1 | 0 1 4 4 6 9 1 3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~9/7 = 425.984
* WE: ~7/5 = 601.4245{{c}}, ~3/2 = 693.9426{{c}} (~21/20 = 92.5181{{c}})
* POTE: ~2 = 1200.000, ~9/7 = 426.225
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.7606{{c}} (~21/20 = 92.7606{{c}})


Optimal ET sequence: {{Optimal ET sequence| 14cf, 31 }}
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}


Badness: 0.018839
Badness (Sintel): 0.920


=== Cuboctahedra ===
==== Enjera ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 385/384, 1375/1372
Comma list: 27/26, 40/39, 45/44, 50/49


Mapping: {{mapping| 1 3 8 6 -4 | 0 -4 -16 -9 21 }}
Mapping: {{mapping| 2 0 -8 -7 -12 -2 | 0 1 4 4 6 3 }}
 
Wedgie: {{multival| 4 16 9 -21 16 3 -47 -24 -104 -90 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~9/7 = 425.899
* WE: ~7/5 = 599.1863{{c}}, ~3/2 = 693.1791{{c}} (~21/20 = 93.9929{{c}})
* POTE: ~2 = 1200.000, ~9/7 = 425.993
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.6809{{c}} (~21/20 = 93.6809{{c}})


Optimal ET sequence: {{Optimal ET sequence| 31, 107b, 138b, 169be, 200be }}
{{Optimal ET sequence|legend=0| 10cdeef, 12f }}


Badness: 0.056826
Badness (Sintel): 1.10


== Jerome ==
=== Injerous ===
Jerome is related to [[20ed5|Hieronymus' tuning]]; the Hieronymus generator is 5<sup>1/20</sup>, or 139.316 cents. While the generator represents both 13/12 and 12/11, the POTE and Hieronymus generators are close to 13/12 in size.
Subgroup: 2.3.5.7.11


[[Subgroup]]: 2.3.5.7
Comma list: 33/32, 50/49, 55/54


[[Comma list]]: 81/80, 17280/16807
Mapping: {{mapping| 2 0 -8 -7 10 | 0 1 4 4 -1 }}


{{Mapping|legend=1| 1 1 0 2 | 0 5 20 7 }}
Optimal tunings:
* WE: ~7/5 = 603.1682{{c}}, ~3/2 = 694.1945{{c}} (~21/20 = 91.0264{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 691.6107{{c}} (~21/20 = 91.6107{{c}})


: mapping generators: ~2, ~54/49
{{Optimal ET sequence|legend=0| 12e, 14c, 26e, 40cee }}


{{Multival|legend=1| 5 20 7 20 -3 -40 }}
Badness (Sintel): 1.28


[[Optimal tuning]]s:
=== Lahoh ===
* [[CTE]]: ~2 = 1200.000, ~54/49 = 139.371
: [[error map]]: {{val| 0.000 -5.098 +1.114 +6.774 }}
* [[POTE]]: ~2 = 1200.000, ~54/49 = 139.343
: error map: {{val| 0.000 -5.238 +0.553 +6.577 }}
 
{{Optimal ET sequence|legend=1| 17c, 26, 43 }}
 
[[Badness]]: 0.108656
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 99/98, 864/847
Comma list: 50/49, 56/55, 81/77


Mapping: {{mapping| 1 1 0 2 3 | 0 5 20 7 4 }}
Mapping: {{mapping| 2 0 -8 -7 7 | 0 1 4 4 0 }}
 
Wedgie: {{multival| 5 20 7 4 20 -3 -11 -40 -60 -13 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~12/11 = 139.349
* WE: ~7/5 = 597.3179{{c}}, ~3/2 = 695.8759{{c}} (~21/20 = 98.5581{{c}})
* POTE: ~2 = 1200.000, ~12/11 = 139.428
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 697.8757{{c}} (~21/20 = 97.8757{{c}})


Optimal ET sequence: {{Optimal ET sequence| 17c, 26, 43 }}
{{Optimal ET sequence|legend=0| 10cd, 12 }}


Badness: 0.047914
Badness (Sintel): 1.42


=== 13-limit ===
=== Teff ===
Subgroup: 2.3.5.7.11.13
{{Main| Teff }}
 
Teff, found and named by [[Mason Green]], is to injera what mohajira is to meantone; it splits the generator in halves in order to accommodate higher-limit intervals, creating a half-octave quartertone temperament. Its ploidacot is diploid alpha-dicot.
 
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 81/80, 864/847


Comma list: 78/77, 81/80, 99/98, 144/143
Mapping: {{mapping| 2 1 -4 -3 8 | 0 2 8 8 -1 }}


Mapping: {{mapping| 1 1 0 2 3 3 | 0 5 20 7 4 6 }}
: mapping generators: ~7/5, ~16/11


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~13/12 = 139.369
* WE: ~7/5 = 600.2802{{c}}, ~16/11 = 647.7720{{c}} (~33/32 = 47.4918{{c}})
* POTE: ~2 = 1200.000, ~13/12 = 139.387
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5224{{c}} (~33/32 = 47.5224{{c}})


Optimal ET sequence: {{Optimal ET sequence| 17c, 26, 43 }}
{{Optimal ET sequence|legend=0| 24d, 26, 50d }}


Badness: 0.029285
Badness (Sintel): 2.34


=== 17-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13


Comma list: 78/77, 81/80, 99/98, 144/143, 189/187
Comma list: 50/49, 78/77, 81/80, 144/143


Mapping: {{mapping| 1 1 0 2 3 3 2 | 0 5 20 7 4 6 18 }}
Mapping: {{mapping| 2 1 -4 -3 8 2 | 0 2 8 8 -1 5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~13/12 = 139.334
* WE: ~7/5 = 600.3037{{c}}, ~16/11 = 647.7954{{c}} (~33/32 = 47.4917{{c}})
* POTE: ~2 = 1200.000, ~13/12 = 139.362
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5256{{c}} (~33/32 = 47.5256{{c}})


Optimal ET sequence: {{Optimal ET sequence| 17cg, 26, 43 }}
{{Optimal ET sequence|legend=0| 24d, 26, 50d }}


Badness: 0.020878
Badness (Sintel): 1.65


=== 19-limit ===
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17


Comma list: 78/77, 81/80, 99/98, 120/119, 135/133, 144/143
Comma list: 50/49, 78/77, 81/80, 85/84, 144/143


Mapping: {{mapping| 1 1 0 2 3 3 2 1 | 0 5 20 7 4 6 18 28 }}
Mapping: {{mapping| 2 1 -4 -3 8 2 6 | 0 2 8 8 -1 5 2 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~13/12 = 139.296
* WE: ~7/5 = 600.5123{{c}}, ~16/11 = 647.8970{{c}} (~34/33 = 47.3846{{c}})
* POTE: ~2 = 1200.000, ~13/12 = 139.313
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4314{{c}} (~34/33 = 47.4314{{c}})


Optimal ET sequence: {{Optimal ET sequence| 17cgh, 26, 43, 69 }}
{{Optimal ET sequence|legend=0| 24d, 26 }}


Badness: 0.018229
Badness (Sintel): 1.50


== Meantritone ==
==== 19-limit ====
The meantritone temperament tempers out the [[mirkwai comma]] (16875/16807) and [[trimyna comma]] (50421/50000) in the 7-limit. In this temperament, three septimal tritones equals ~30/11 (an octave plus [[15/11]]-wide super-fourth) and five of them equals ~[[16/3]] (double-compound fourth). The name "meantritone" is a portmanteau of meantone and tritone, the latter is a generator of this temperament.
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 50/49, 57/56, 78/77, 81/80, 85/84, 144/143
 
Mapping: {{mapping| 2 1 -4 -3 8 2 6 2 | 0 2 8 8 -1 5 2 6 }}
 
Optimal tunings:
* WE: ~7/5 = 600.6308{{c}}, ~16/11 = 648.0424{{c}} (~34/33 = 47.4116{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4715{{c}} (~34/33 = 47.4715{{c}})
 
{{Optimal ET sequence|legend=0| 24d, 26 }}
 
Badness (Sintel): 1.41
 
== Pombe ==
Pombe (named after the African millet beer) is a variant of [[#Teff]] by [[User:Kaiveran|Kaiveran Lugheidh]] that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Its ploidacot is diploid alpha-dicot, the same as teff. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 16875/16807
[[Comma list]]: 81/80, 300125/294912


{{Mapping|legend=1| 1 4 12 12 | 0 -5 -20 -19 }}
{{Mapping|legend=1| 2 1 -4 11 | 0 2 8 -5 }}


{{Multival|legend=1| 5 20 19 20 16 -12 }}
: mapping generators: ~735/512, ~35/24


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~7/5 = 580.568
* [[WE]]: ~735/512 = 601.0652{{c}}, ~35/24 = 648.9295{{c}} (~36/35 = 47.8642{{c}})
: [[error map]]: {{val| 0.000 -4.795 +2.325 +0.381 }}
: [[error map]]: {{val| +2.130 -3.031 +0.861 -1.756 }}
* [[POTE]]: ~2 = 1200.000, ~7/5 = 580.766
* [[CWE]]: ~735/512 = 600.0000{{c}}, ~35/24 = 647.8628{{c}} (~36/35 = 47.8628{{c}})
: error map: {{val| 0.000 -5.785 -1.634 -3.380 }}
: error map: {{val| 0.000 -6.229 -3.411 -8.140 }}


{{Optimal ET sequence|legend=1| 29cd, 31, 188bcd, 219bbcd }}
{{Optimal ET sequence|legend=1| 24, 26, 50, 126bcd, 176bcdd, 226bbcdd }}


[[Badness]]: 0.082239
[[Badness]] (Sintel): 2.94


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 99/98, 2541/2500
Comma list: 81/80, 245/242, 385/384


Mapping: {{mapping| 1 4 12 12 17 | 0 -5 -20 -19 -28 }}
Mapping: {{mapping| 2 1 -4 11 8 | 0 2 8 -5 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~7/5 = 580.482
* WE: ~99/70 = 600.7890{{c}}, ~16/11 = 648.7592{{c}} (~36/35 = 47.9701{{c}})
* POTE: ~2 = 1200.000, ~7/5 = 580.647
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.9516{{c}} (~36/35 = 47.9516{{c}})


Optimal ET sequence: {{Optimal ET sequence| 29cde, 31 }}
{{Optimal ET sequence|legend=0| 24, 26, 50 }}


Badness: 0.042869
Badness (Sintel): 1.72


== Injera ==
=== 13-limit ===
Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a 15/14 semitone difference between a half-octave and a perfect fifth. Injera tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. [[38edo]], which is two parallel [[19edo]]s, is an excellent tuning for injera.
Subgroup: 2.3.5.7.11.13


[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3091.html#3091 Origin of the name]
Comma list: 81/80, 105/104, 144/143, 245/242


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 2 1 -4 11 8 2 | 0 2 8 -5 -1 5 }}


[[Comma list]]: 50/49, 81/80
Optimal tunings:  
* WE: ~99/70 = 600.6971{{c}}, ~16/11 = 648.6029{{c}} (~36/35 = 47.9058{{c}})
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}})


{{Mapping|legend=1| 2 0 -8 -7 | 0 1 4 4 }}
{{Optimal ET sequence|legend=0| 24, 26, 50 }}


: mapping generators: ~7/5, ~3
Badness (Sintel): 1.28


{{Multival|legend=1| 2 8 8 8 7 -4 }}
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


[[Optimal tuning]]s:  
Comma list: 81/80, 105/104, 144/143, 245/242, 273/272
* [[CTE]]: ~7/5 = 600.000, ~3/2 = 695.330 (~21/20 = 95.330)
: [[error map]]: {{val| 0.000 -6.625 -4.993 +12.495 }}
* [[POTE]]: ~7/5 = 600.000, ~3/2 = 694.375 (~21/20 = 94.375)
: error map: {{val| 0.000 -7.580 -8.813 +8.675 }}


[[Tuning ranges]]:  
Mapping: {{mapping| 2 1 -4 11 8 2 6 | 0 2 8 -5 -1 5 2 }}
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [688.957, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


{{Optimal ET sequence|legend=1| 12, 26, 38 }}
Optimal tunings:
* WE: ~17/12 = 600.7610{{c}}, ~16/11 = 648.6638{{c}} (~36/35 = 47.9028{{c}})
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}})


[[Badness]]: 0.031130
{{Optimal ET sequence|legend=0| 24, 26, 50 }}
 
; Music
* [https://web.archive.org/web/20201127013520/http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Two%20Pairs%20of%20Socks.mp3 ''Two Pairs of Socks''] by [[Igliashon Jones]] – in [[26edo]] tuning


=== 11-limit ===
Badness (Sintel): 1.08
Subgroup: 2.3.5.7.11


Comma list: 45/44, 50/49, 81/80
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19


Mapping: {{mapping| 2 0 -8 -7 -12 | 0 1 4 4 6 }}
Comma list: 81/80, 105/104, 133/132, 144/143, 171/170, 210/209


Wedgie: {{Multival| 2 8 8 12 8 7 12 -4 0 6 }}
Mapping: {{mapping| 2 1 -4 11 8 2 6 2 | 0 2 8 -5 -1 5 2 6 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~7/5 = 600.000, ~3/2 = 694.098 (~21/20 = 94.098)
* WE: ~17/12 = 600.8048{{c}}, ~16/11 = 648.7494{{c}} (~36/35 = 47.9446{{c}})
* POTE: ~7/5 = 600.000, ~3/2 = 692.840 (~21/20 = 92.840)
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.9425{{c}} (~36/35 = 47.9425{{c}})


Tuning ranges:
{{Optimal ET sequence|legend=0| 24, 26, 50 }}
* 11-odd-limit diamond monotone: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


Optimal ET sequence: {{Optimal ET sequence| 12, 26 }}
Badness (Sintel): 1.01


Badness: 0.023124
== Orphic ==
Orphic has a semi-octave period and four generators plus a period gives the 3rd harmonic; its ploidacot is diploid alpha-tetracot.  


==== 13-limit ====
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 50/49, 78/77, 81/80
[[Comma list]]: 81/80, 5898240/5764801


Mapping: {{mapping| 2 0 -8 -7 -12 -21 | 0 1 4 4 6 9 }}
{{Mapping|legend=1| 2 1 -4 4 | 0 4 16 3 }}


Optimal tunings:  
: mapping generators: ~2401/1728, ~343/288
* CTE: ~7/5 = 600.000, ~3/2 = 693.806 (~21/20 = 93.806)
* POTE: ~7/5 = 600.000, ~3/2 = 692.673 (~21/20 = 92.673)


Tuning ranges:  
[[Optimal tuning]]s:  
* 13- and 15-odd-limit diamond monotone: ~3/2 = 692.308 (15\26)
* [[WE]]: ~2401/1728 = 600.1767{{c}}, ~343/288 = 324.3015{{c}} (~7/6 = 275.8751{{c}})
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]
: [[error map]]: {{val| +0.353 -4.572 +1.804 +4.785 }}
* [[CWE]]: ~2401/1728 = 600.0000{{c}}, ~343/288 = 324.2285{{c}} (~7/6 = 275.7715{{c}})
: error map: {{val| 0.000 -5.041 +1.342 +3.860 }}


Optimal ET sequence: {{Optimal ET sequence| 12f, 14cf, 26 }}
{{Optimal ET sequence|legend=1| 26, 48c, 74 }}


Badness: 0.021565
[[Badness]] (Sintel): 6.55


===== 17-limit =====
=== 11-limit ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11


Comma list: 45/44, 50/49, 78/77, 81/80, 85/84
Comma list: 81/80, 99/98, 73728/73205


Mapping: {{mapping| 2 0 -8 -7 -12 -21 5 | 0 1 4 4 6 9 1 }}
Mapping: {{mapping| 2 1 -4 4 8 | 0 4 16 3 -2 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~7/5 = 600.000, ~3/2 = 693.852 (~21/20 = 93.852)
* WE: ~363/256 = 600.1011{{c}}, ~77/64 = 324.2923{{c}} (~7/6 = 275.8088{{c}})
* POTE: ~7/5 = 600.000, ~3/2 = 692.487 (~21/20 = 92.487)
* CWE: ~363/256 = 600.0000{{c}}, ~77/64 = 324.2463{{c}} (~7/6 = 275.7537{{c}})


Optimal ET sequence: {{Optimal ET sequence| 12f, 14cf, 26 }}
{{Optimal ET sequence|legend=0| 26, 48c, 74 }}


Badness: 0.018358
Badness (Sintel): 3.36


===== 19-limit =====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 50/49, 57/56, 78/77, 81/80, 85/84
Comma list: 81/80, 99/98, 144/143, 2200/2197


Mapping: {{mapping| 2 0 -8 -7 -12 -21 5 -1 | 0 1 4 4 6 9 1 3 }}
Mapping: {{mapping| 2 1 -4 4 8 2 | 0 4 16 3 -2 10 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~7/5 = 600.000, ~3/2 = 694.031 (~21/20 = 94.031)
* WE: ~55/39 = 600.0540{{c}}, ~77/64 = 324.2551{{c}} (~7/6 = 275.7989{{c}})
* POTE: ~7/5 = 600.000, ~3/2 = 692.299 (~21/20 = 92.299)
* CWE: ~55/39 = 600.0000{{c}}, ~77/64 = 324.2307{{c}} (~7/6 = 275.7693{{c}})


Optimal ET sequence: {{Optimal ET sequence| 12f, 14cf, 26 }}
{{Optimal ET sequence|legend=0| 26, 48c, 74 }}


Badness: 0.015118
Badness (Sintel): 2.21


==== Enjera ====
== Cloudtone ==
Subgroup: 2.3.5.7.11.13
The cloudtone temperament tempers out the [[cloudy comma]], 16807/16384 and the [[syntonic comma]], 81/80 in the 7-limit. It may be described as {{nowrap| 5 & 50 }}; its ploidacot is pentaploid monocot. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order.


Comma list: 27/26, 40/39, 45/44, 50/49
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 81/80, 16807/16384
 
{{Mapping|legend=1| 5 0 -20 14 | 0 1 4 0 }}


Mapping: {{mapping| 2 0 -8 -7 -12 -2 | 0 1 4 4 6 3 }}
: mapping generators: ~8/7, ~3


Optimal tunings:  
[[Optimal tuning]]s:  
* CTE: ~7/5 = 600.000, ~3/2 = 693.088 (~21/20 = 93.088)
* [[WE]]: ~8/7 = 240.4267{{c}}, ~3/2 = 696.9566{{c}} (~49/48 = 24.3235{{c}})
* POTE: ~7/5 = 600.000, ~3/2 = 694.121 (~21/20 = 94.121)
: [[error map]]: {{val| +2.133 -2.865 +1.513 -2.852 }}
* [[CWE]]: ~8/7 = 240.0000{{c}}, ~3/2 = 696.1637{{c}} (~49/48 = 23.8373{{c}})
: error map: {{val| 0.000 -5.791 -1.659 -8.826 }}


Optimal ET sequence: {{Optimal ET sequence| 10cdeef, 12f }}
{{Optimal ET sequence|legend=1| 5, 40c, 45, 50 }}


Badness: 0.026542
[[Badness]] (Sintel): 2.59


=== Injerous ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 33/32, 50/49, 55/54
Comma list: 81/80, 385/384, 2401/2376


Mapping: {{mapping| 2 0 -8 -7 10 | 0 1 4 4 -1 }}
Mapping: {{mapping| 5 0 -20 14 41 | 0 1 4 0 -3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~7/5 = 600.000, ~3/2 = 694.619 (~21/20 = 94.619)
* WE: ~8/7 = 240.2740{{c}}, ~3/2 = 697.3317{{c}} (~56/55 = 23.4904{{c}})
* POTE: ~7/5 = 600.000, ~3/2 = 690.548 (~21/20 = 90.548)
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.6269{{c}} (~56/55 = 23.3731{{c}})


Optimal ET sequence: {{Optimal ET sequence| 12e, 14c, 26e, 40cee }}
{{Optimal ET sequence|legend=0| 5, 45, 50 }}


Badness: 0.038577
Badness (Sintel): 2.33


=== Lahoh ===
=== 13-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 50/49, 56/55, 81/77
Comma list: 81/80, 105/104, 144/143, 2401/2376


Mapping: {{mapping| 2 0 -8 -7 7 | 0 1 4 4 0 }}
Mapping: {{mapping| 5 0 -20 14 41 -21 | 0 1 4 0 -3 5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~7/5 = 600.000, ~3/2 = 695.330 (~21/20 = 95.330)
* WE: ~8/7 = 240.2435{{c}}, ~3/2 = 696.8686{{c}} (~91/90 = 23.8618{{c}})
* POTE: ~7/5 = 600.000, ~3/2 = 699.001 (~21/20 = 99.001)
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.2653{{c}} (~91/90 = 23.7347{{c}})


Optimal ET sequence: {{Optimal ET sequence| 10cd, 12 }}
{{Optimal ET sequence|legend=0| 5, 45f, 50 }}


Badness: 0.043062
Badness (Sintel): 2.02


=== Teff ===
== Subgroup extensions ==
{{Main| Teff }}
=== Stützel (2.3.5.19) ===
[[Subgroup]]: 2.3.5.19


Teff, found and named by [[Mason Green]], is to injera what mohajira is to meantone; it splits the generator in half in order to accommodate higher limit intervals, creating a half-octave quarter-tone temperament.
[[Comma list]]: 81/80, 96/95


Subgroup: 2.3.5.7.11
{{Mapping|legend=2| 1 0 -4 9 | 0 1 4 -3 }}


Comma list: 50/49, 81/80, 864/847
{{Mapping|legend=3| 1 0 -4 0 0 0 0 9 | 0 1 4 0 0 0 0 -3 }}


Mapping: {{mapping| 2 1 -4 -3 8 | 0 2 8 8 -1 }}
: mapping generators: ~2, ~3


: mapping generators: ~7/5, ~16/11
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1199.5513{{c}}, ~3/2 = 697.6058{{c}}
: [[error map]]: {{val| -0.448 -4.798 +4.110 +6.977 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 697.8222{{c}}
: error map: {{val| 0.000 -4.133 +4.975 +9.020 }}


Optimal tunings:
{{Optimal ET sequence|legend=1| 5, 7, 12, 31, 43, 98h }}
* CTE: ~7/5 = 600.000, ~11/8 = 552.331 (~33/32 = 47.669)
* POTE: ~7/5 = 600.000, ~11/8 = 552.530 (~33/32 = 47.470)


Optimal ET sequence: {{Optimal ET sequence| 24d, 26, 50d }}
[[Badness]] (Sintel): 0.324


Badness: 0.070689
=== Hypnotone ===
Hypnotone is no-sevens [[#Flattone|flattone]].


==== 13-limit ====
[[Subgroup]]: 2.3.5.11
Subgroup: 2.3.5.7.11.13


Comma list: 50/49, 78/77, 81/80, 144/143
[[Comma list]]: 45/44, 81/80


Mapping: {{mapping| 2 1 -4 -3 8 2 | 0 2 8 8 -1 5 }}
{{Mapping|legend=2| 1 0 -4 -6 | 0 1 4 6 }}


Optimal tunings:
{{Mapping|legend=3| 1 0 -4 0 -6 | 0 1 4 0 6 }}
* CTE: ~7/5 = 600.000, ~11/8 = 552.297 (~33/32 = 47.703)
* POTE: ~7/5 = 600.000, ~11/8 = 552.532 (~33/32 = 47.468)


Optimal ET sequence: {{Optimal ET sequence| 24d, 26, 50d }}
: mapping generators: ~2, ~3


Badness: 0.040047
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1202.0621{{c}}, ~3/2 = 694.5448{{c}}
: [[error map]]: {{val| +2.062 -5.348 -8.135 +15.951 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.9085{{c}}
: error map: {{val| 0.000 -8.047 -10.680 +12.133 }}


==== 17-limit ====
{{Optimal ET sequence|legend=1| 7, 12, 19, 26, 45 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 50/49, 78/77, 81/80, 85/84, 144/143
[[Badness]] (Sintel): 0.326


Mapping: {{mapping| 2 1 -4 -3 8 2 6 | 0 2 8 8 -1 5 2 }}
==== 2.3.5.11.13 subgroup ====
Subgroup: 2.3.5.11.13


Optimal tunings:  
Comma list: 45/44, 65/64, 81/80
* CTE: ~7/5 = 600.000, ~11/8 = 552.249 (~34/33 = 47.751)
* POTE: ~7/5 = 600.000, ~11/8 = 552.656 (~34/33 = 47.344)


Optimal ET sequence: {{Optimal ET sequence| 24d, 26 }}
Subgroup-val mapping: {{mapping| 1 0 -4 -6 10 | 0 1 4 6 -4 }}


Badness: 0.029499
Gencom mapping: {{mapping| 1 0 -4 0 -6 10 | 0 1 4 0 6 -4 }}


==== 19-limit ====
Optimal tunings:
Subgroup: 2.3.5.7.11.13.17.19
* WE: ~2 = 1202.6916{{c}}, ~3/2 = 694.4181{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0870{{c}}


Comma list: 50/49, 57/56, 78/77, 81/80, 85/84, 144/143
{{Optimal ET sequence|legend=0| 7, 12, 19, 26, 45f }}


Mapping: {{mapping| 2 1 -4 -3 8 2 6 2 | 0 2 8 8 -1 5 2 6 }}
Badness (Sintel): 0.561


Optimal tunings:
=== Dequarter ===
* CTE: ~7/5 = 600.000, ~11/8 = 552.107 (~34/33 = 47.893)
[[Subgroup]]: 2.3.5.11
* POTE: ~7/5 = 600.000, ~11/8 = 552.638 (~34/33 = 47.362)


Optimal ET sequence: {{Optimal ET sequence| 24d, 26 }}
[[Comma list]]: 33/32, 55/54


Badness: 0.023133
{{Mapping|legend=2| 1 0 -4 5 | 0 1 4 -1 }}


== Pombe ==
{{Mapping|legend=3| 1 0 -4 0 5 | 0 1 4 0 -1 }}
Pombe (named after the African millet beer) is a variant of [[#Teff]] by [[User:Kaiveran|Kaiveran Lugheidh]] that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall.


[[Subgroup]]: 2.3.5.7
: mapping generators: ~2, ~3


[[Comma list]]: 81/80, 300125/294912
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1206.5832{{c}}, ~3/2 = 695.8763{{c}}
: [[error map]]: {{val| +6.583 +0.504 -2.809 -20.862 }}
* [[CWE]]: ~2 = 1200.000{{c}}, ~3/2 = 693.1206{{c}}
: error map: {{val| 0.000 -8.834 -13.831 -44.439 }}


{{Mapping|legend=1| 2 1 -4 11 | 0 2 8 -5 }}
{{Optimal ET sequence|legend=1| 5, 7, 19e, 26e }}


: mapping generators: ~735/512, ~35/24
[[Badness]] (Sintel): 0.451


{{Multival|legend=1| 4 16 -10 16 -27 -68 }}
==== Dreamtone ====
Subgroup: 2.3.5.11.13


[[Optimal tuning]]s:  
Comma list: 33/32, 55/54, 975/968
* [[CTE]]: ~735/512 = 600.000, ~48/35 = 551.845 (~36/35 = 48.155)
: [[error map]]: {{val| 0.000 -5.645 -1.075 -9.600 }}
* [[POTE]]: ~735/512 = 600.000, ~48/35 = 552.221 (~36/35 = 48.779)
: error map: {{val| 0.000 -6.229 -3.411 -8.140 }}


{{Optimal ET sequence|legend=1| 24, 26, 50, 126bcd, 176bcdd, 226bbcdd }}
Subgroup-val mapping: {{mapping| 1 0 -4 5 21 | 0 1 4 -1 -11 }}


[[Badness]]: 0.116104
Gencom mapping: {{mapping| 1 0 -4 0 5 21 | 0 1 4 0 -1 -11 }}
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 81/80, 245/242, 385/384
 
Mapping: {{mapping| 2 1 -4 11 8 | 0 2 8 -5 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~99/70 = 600.000, ~11/8 = 551.843 (~36/35 = 48.157)
* WE: ~2 = 1207.8248{{c}}, ~3/2 = 694.7806{{c}}
* POTE: ~99/70 = 600.000, ~11/8 = 552.093 (~36/35 = 47.907)
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 690.1826{{c}}


Optimal ET sequence: {{Optimal ET sequence| 24, 26, 50 }}
{{Optimal ET sequence|legend=0| 7, 19eff, 26eff, 33ceeff, 40ceeff }}
 
Badness: 0.052099
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 81/80, 105/104, 144/143, 245/242
 
Mapping: {{mapping| 2 1 -4 11 8 2 | 0 2 8 -5 -1 5 }}
 
Optimal tunings:
* CTE: ~99/70 = 600.000, ~11/8 = 551.848 (~36/35 = 48.152)
* POTE: ~99/70 = 600.000, ~11/8 = 552.150 (~36/35 = 47.850)
 
Optimal ET sequence: {{Optimal ET sequence| 24, 26, 50 }}
 
Badness: 0.031039
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 81/80, 105/104, 144/143, 245/242, 273/272
 
Mapping: {{mapping| 2 1 -4 11 8 2 6 | 0 2 8 -5 -1 5 2 }}
 
Optimal tunings:
* CTE: ~17/12 = 600.000, ~11/8 = 551.793 (~36/35 = 48.207)
* POTE: ~17/12 = 600.000, ~11/8 = 552.158 (~36/35 = 47.842)
 
Optimal ET sequence: {{Optimal ET sequence| 24, 26, 50 }}
 
Badness: 0.021260
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 81/80, 105/104, 133/132, 144/143, 171/170, 210/209
 
Mapping: {{mapping| 2 1 -4 11 8 2 6 2 | 0 2 8 -5 -1 5 2 6 }}
 
Optimal tunings:
* CTE: ~17/12 = 600.000, ~11/8 = 551.660 (~36/35 = 48.340)
* POTE: ~17/12 = 600.000, ~11/8 = 552.120 (~36/35 = 47.880)
 
Optimal ET sequence: {{Optimal ET sequence| 24, 26, 50 }}
 
Badness: 0.016548
 
== Orphic ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 81/80, 5898240/5764801
 
{{Mapping|legend=1| 2 1 -4 4 | 0 4 16 3 }}
 
: mapping generators: ~2401/1728, ~343/288
 
{{Multival|legend=1| 8 32 6 32 -13 -76 }}
 
[[Optimal tuning]]s:
* [[CTE]]: ~2401/1728 = 600.000, ~343/288 = 324.275 (~7/6 = 275.725)
: [[error map]]: {{val| 0.000 -4.854 +2.091 +4.000 }}
* [[POTE]]: ~2401/1728 = 600.000, ~343/288 = 324.206 (~7/6 = 275.794)
: error map: {{val| 0.000 -5.131 +0.983 +3.792 }}
 
{{Optimal ET sequence|legend=1| 26, 48c, 74 }}
 
[[Badness]]: 0.258825
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 81/80, 99/98, 73728/73205
 
Mapping: {{mapping| 2 1 -4 4 8 | 0 -4 -16 -3 2 }}
 
Optimal tunings:
* CTE: ~363/256 = 600.000, ~77/64 = 324.276 (~7/6 = 275.724)
* POTE: ~363/256 = 600.000, ~77/64 = 324.238 (~7/6 = 275.762)
 
Optimal ET sequence: {{Optimal ET sequence| 26, 48c, 74 }}
 
Badness: 0.101499
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 81/80, 99/98, 144/143, 2200/2197
 
Mapping: {{mapping| 2 1 -4 4 8 2 | 0 -4 -16 -3 2 -10 }}
 
Optimal tunings:
* CTE: ~55/39 = 600.000, ~77/64 = 324.250 (~7/6 = 275.750)
* POTE: ~55/39 = 600.000, ~77/64 = 324.226 (~7/6 = 275.774)
 
Optimal ET sequence: {{Optimal ET sequence| 26, 48c, 74 }}
 
Badness: 0.053482
 
== Cloudtone ==
The cloudtone temperament (5 &amp; 50) tempers out the [[cloudy comma]], 16807/16384 and the [[81/80|syntonic comma]], 81/80 in the 7-limit. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 81/80, 16807/16384
 
{{Mapping|legend=1| 5 0 -20 14 | 0 1 4 0 }}
 
: mapping generators: ~8/7, ~3
 
{{Multival|legend=1| 5 20 0 20 -14 -56 }}
 
[[Optimal tuning]]s:
* [[CTE]]: ~8/7 = 240.000, ~3/2 = 697.214 (~49/48 = 22.786)
: [[error map]]: {{val| 0.000 -4.741 +2.544 -8.826 }}
* [[POTE]]: ~8/7 = 240.000, ~3/2 = 695.720 (~49/48 = 24.280)
: error map: {{val| 0.000 -6.235 -3.435 -8.826 }}
 
{{Optimal ET sequence|legend=1| 5, 40c, 45, 50 }}
 
[[Badness]]: 0.102256
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 81/80, 385/384, 2401/2376
 
Mapping: {{mapping| 5 0 -20 14 41 | 0 1 4 0 -3 }}
 
Optimal tunings:
* CTE: ~8/7 = 240.000, ~3/2 = 697.034 (~56/55 = 22.966)
* POTE: ~8/7 = 240.000, ~3/2 = 696.536 (~56/55 = 23.464)
 
Optimal ET sequence: {{Optimal ET sequence| 5, 45, 50 }}
 
Badness: 0.070378
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 81/80, 105/104, 144/143, 2401/2376
 
Mapping: {{mapping| 5 0 -20 14 41 -21 | 0 1 4 0 -3 5 }}
 
Optimal tunings:
* CTE: ~8/7 = 240.000, ~3/2 = 696.749 (~91/90 = 23.251)
* POTE: ~8/7 = 240.000, ~3/2 = 696.162 (~91/90 = 23.838)
 
Optimal ET sequence: {{Optimal ET sequence| 5, 45f, 50 }}
 
Badness: 0.048829
 
== Subgroup extensions ==
=== Stützel (2.3.5.19) ===
[[Subgroup]]: 2.3.5.19
 
[[Comma list]]: 81/80, 96/95
 
{{Mapping|legend=2| 1 0 -4 9 | 0 1 4 -3 }}
 
: sval mapping generators: ~2, ~3
 
{{Mapping|legend=3| 1 0 -4 0 0 0 0 9 | 0 1 4 0 0 0 0 -3 }}
 
: [[gencom]]: [2 3; 81/80 96/95]
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~3/2 = 697.681
* [[POTE]]: ~2 = 1200.000, ~3/2 = 697.867
 
{{Optimal ET sequence|legend=1| 5, 7, 12, 31, 43 }}
 
[[Tp tuning #T2 tuning|RMS error]]: 1.378 cents
 
=== Hypnotone ===
[[Subgroup]]: 2.3.5.11
 
[[Comma list]]: 45/44, 81/80
 
{{Mapping|legend=2| 1 0 -4 -6 | 0 1 4 6 }}
 
: sval mapping generators: ~2, ~3
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~3/2 = 694.700
* [[CWE]]: ~2 = 1200.000, ~3/2 = 693.908
 
{{Optimal ET sequence|legend=1| 7, 12, 19, 26, 45 }}
 
[[Badness]]: 0.0104
 
==== 2.3.5.11.13 subgroup ====
Subgroup: 2.3.5.11.13
 
Comma list: 45/44, 65/64, 81/80
 
Sval mapping: {{mapping| 1 0 -4 -6 10 | 0 1 4 6 -4 }}
 
: sval mapping generators: ~2, ~3
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 693.951
* CTE: ~2 = 1200.000, ~3/2 = 693.087
 
Optimal ET sequence: {{Optimal ET sequence| 7, 12, 19, 26, 45f }}
 
Badness: 0.0141
 
=== Dequarter ===
[[Subgroup]]: 2.3.5.11
 
[[Comma list]]: 33/32, 55/54
 
{{Mapping|legend=2| 1 0 -4 5 | 0 1 4 -1 }}
 
: sval mapping generators: ~2, ~3
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~3/2 = 696.039
* [[CWE]]: ~2 = 1200.000, ~3/2 = 693.121
 
{{Optimal ET sequence|legend=1| 5, 7, 19e, 26e }}
 
[[Badness]]: 0.0145
 
==== Dreamtone ====
Subgroup: 2.3.5.11.13
 
Comma list: 33/32, 55/54, 975/968
 
Sval mapping: {{mapping| 1 0 -4 5 21 | 0 1 4 -1 -11 }}
 
: sval mapping generators: ~2, ~3
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 689.699
* CWE: ~2 = 1200.000, ~3/2 = 690.183


Optimal ET sequence: {{Optimal ET sequence| 7, 19eff, 26eff, 33ceeff, 40ceeff }}
Badness (Sintel): 1.40


Badness: 0.0353
== References ==
<references/>


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Meantone family| ]] <!-- main article -->
[[Category:Meantone family| ]] <!-- main article -->
[[Category:Meantone| ]] <!-- key article -->
[[Category:Meantone| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Listen]]
[[Category:Listen]]

Latest revision as of 00:14, 27 August 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The meantone family is the family of rank-2 temperaments that temper out the syntonic comma, 81/80, and thus can all be seen as extensions of meantone.

Meantone

Meantone is characterized by an octave period, a fifth generator, and the relationship that four fifths go to make up a 5th harmonic.

Subgroup: 2.3.5

Comma list: 81/80

Mapping[1 0 -4], 0 1 4]]

mapping generators: ~2, ~3

Optimal tunings:

  • WE: ~2 = 1201.3906 ¢, ~3/2 = 697.0455 ¢
error map: +1.391 -3.519 +1.868]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.6512 ¢
error map: 0.000 -5.304 +0.291]

Minimax tuning:

unchanged-interval (eigenmonzo) basis: 2.5

Tuning ranges:

Optimal ET sequence5, 7, 12, 19, 31, 50, 81, 131b

Badness (Sintel): 0.173

Overview to extensions

The second comma of the normal comma list defines which 7-limit family member we are looking at.

  • Flattertone adds [-24 17 0 -1, finding the ~7/4 at the double-augmented sixth, for a tuning between 33edo and 26edo.
  • Flattone adds [-17 9 0 1, finding the ~7/4 at the diminished seventh, for a tuning between 26edo and 19edo.
  • Septimal meantone adds [-13 10 0 -1, finding the ~7/4 at the augmented sixth, for a tuning between 19edo and 12edo.
  • Dominant adds [6 -2 0 -1, finding the ~7/4 at the minor seventh, for a tuning between 12edo and 5edo.
  • Sharptone adds [2 -3 0 1, finding the ~7/4 at the major sixth, for an exotemperament never exactly well-tuned, and where 5edo is the only diamond monotone tuning, with a terrible 5-limit part.

Those all have a fifth as generator.

  • Injera adds [-7 8 0 -2 with a half-octave period.
  • Mohajira adds [-23 11 0 2 and splits the fifth in two.
  • Godzilla adds [-4 -1 0 2 with an ~8/7 generator, two of which give the fourth.
  • Mothra adds [-10 1 0 3 with an ~8/7 generator, three of which give the fifth.
  • Liese adds [-9 11 0 -3 with a ~10/7 generator, three of which give the twelfth.
  • Squares adds [-3 9 0 -4 with a ~9/7 generator, four of which give the eleventh.
  • Jerome adds [3 7 0 -5 and slices the fifth in five.

Strong extensions

For any meantone generator tuning between 7\12 and 11\19, the augmented sixth is sharper than the diminished seventh and flatter than the minor seventh, befitting an approximation to interval class of 7. This coincides with interpreting the tritone (~9/8)3 as 7/5, leading to septimal meantone, a very elegant extension to the 7-limit.

For any tuning flatter than 11\19, the augmented sixth and diminished seventh swap their orders, so the diminished seventh becomes a better approximation to the interval class of 7, resulting in flattone. Likewise, for any tuning sharper than 7\12, the minor seventh is the proper approximation instead, resulting in dominant.

Another way to extend meantone to higher limits involves decomposing the meantone comma into products of smaller commas, or expressing some other comma of interest in terms of the ratio between the meantone comma and another comma. However, this often results in weak extensions. Another opportunity given by the meantone fifth being flat is that the most obvious ways of dividing it into n parts leave the part closer to just than usual, because we can allow – and indeed want – more flatwards tempering on the fifth, so may be recommended for this reason.

Splitting the meantone fifth into two (243/242)

By tempering out 243/242 we equate the distance from 9/8 to 10/9 (= S9) with the distance between 11/10 to 12/11 (= S11), leading to mohaha which is in some sense thus a trivial tuning of rastmic (as 81/80 and 121/120 vanish), but an important one, as it leads to the 11/9 being a more in-tune "hemififth" than in non-meantone rastmic temperaments (which require sharper fifths in good tunings), and it has a natural extension to the full 11-limit by finding 7/4 as the semi-diminished seventh, leading to mohajira, which inflates 64/63 to equate it with a small quarter-tone, which is characteristic. Mohajira can also be thought of as equating a slightly sharpened (5/4)2 with 11/7, which is also natural as meantone tempering usually has 5/4 slightly sharp. There is also the consideration that tempering out 121/120 leads to similarly high damage in the 11-limit as tempering 81/80 in the 5-limit, because both erase key distinctions of their respective JI subgroups.

Splitting the meantone fifth into three (1029/1024)

By tempering out 1029/1024 we equate the distance from 7/6 to 8/7 (= S7) with the distance from 8/7 to 9/8 (= S8), so that (8/7)3 is equated with 3/2, because of being able to be rewritten as (9/8)(8/7)(7/6) – this observation can be generalized to define the family of ultraparticular commas. This is an unusually natural extension, with a surprising coincidence: (36/35)/(64/63) = 81/80, or using the shorthand notation, S6/S8 = S9. As S6/S8 is already tempered out, it is natural to want 49/48 (S7), which is bigger than S8 and smaller than S6 to be equated with both, to avoid inconsistent mappings. This has the surprising consequence of meaning that splitting the meantone fifth into three 8/7's is equivalent to splitting 8/5 into three 7/6's by tempering (8/5)/(7/6)3 = 1728/1715 (S6/S7), the orwellisma.

This strategy leads to the 7-limit version of mothra, which is also sometimes called cynder, though confusingly cynder has a different mapping for 11 in the 11-limit. Though mothra is the simplest extension by a small margin, when measured in terms of generators required to reach 11, there is another extension that is perhaps more obvious, by noticing that because we have S6~S7~S8 with S9 tempered out, we can try S8~S10 by tempering out 176/175 (S8/S10), which is (11/7)/(5/4)2, taking advantage of 10/9 being tempered sharp in meantone so that we can distinguish 11/10 from it, thus finding 16/11 at 100/99 above the meantone diminished fifth, (6/5)2 = 36/25 = (3/2)/(25/24).

31edo as splitting the fifth into two, three and nine

31edo is unique as combining all aforementioned tempering strategies into one elegant 11-limit meantone temperament; it also combines yet more extensions of meantone not discussed here, and it has a very accurate 5/4 and 7/4 and an even more accurate 35/32. A tempering strategy not mentioned is splitting a flattened 3/2 into nine sharpened 25/24's, resulting in the 5-limit version of valentine so that 31edo is the unique tuning that combines them. Furthermore, splitting the meantone fifth into two and three in the ways described above leads to meantone + miracle without tempering out 225/224, which interestingly, though a rank-2 temperament, only has 31edo as a patent val tuning (corresponding to also tempering out 225/224).

Temperaments discussed elsewhere include

The rest are considered below.

Septimal meantone

Deutsch
English Wikipedia has an article on:

In septimal meantone, ten fifths get to the interval class for 7, so that 7/4 is an augmented sixth (C–A♯), 7/6 is an augmented second (C–D♯), 7/5 is an augmented fourth (C–F♯), and 21/16 is an augmented third (C–E♯). Septimal meantone tempers out the common 7-limit commas 126/125, 225/224, and 3136/3125 and in fact can be defined as the 7-limit temperament that tempers out any two of 81/80, 126/125 and 225/224.

Subgroup: 2.3.5.7

Comma list: 81/80, 126/125

Mapping[1 0 -4 -13], 0 1 4 10]]

Optimal tunings:

  • WE: ~2 = 1201.2358 ¢, ~3/2 = 697.2122 ¢
error map: +1.236 -3.507 +2.535 -0.412]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.6562 ¢
error map: 0.000 -5.299 +0.311 -2.264]

Minimax tuning:

projection map: [[1 0 0 0, [1 0 1/4 0, [0 0 1 0, [-3 0 5/2 0]
unchanged-interval (eigenmonzo) basis: 2.5

Tuning ranges:

  • 7- and 9-odd-limit diamond monotone: ~3/2 = [694.737, 700.000] (11\19 to 7\12)
  • 7-odd-limit diamond tradeoff: ~3/2 = [694.786, 701.955] (1/3-comma to Pyth.)
  • 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)

Algebraic generator: Cybozem, the real root of 15x3 - 10x2 - 18, 503.4257 cents. The recurrence converges quickly.

Optimal ET sequence12, 19, 31, 81, 112b, 143b

Badness (Sintel): 0.347

Undecimal meantone (huygens)

"Huygens" redirects here. For the Dutch mathematician, physicist and astronomer, see Wikipedia: Christiaan Huygens.

Undecimal meantone[1] a.k.a. huygens[2][3] maps the 11/8 to the double-augmented third (C–E𝄪), and tridecimal meantone maps the 13/8 to the double-augmented fifth (C–G𝄪). Note that the minor third conflates 13/11 with 6/5, and that 11/10~13/12 is a double-augmented unison; 12/11 is a double-diminished third; and 14/13 is a minor second.

Subgroup: 2.3.5.7.11

Comma list: 81/80, 99/98, 126/125

Mapping: [1 0 -4 -13 -25], 0 1 4 10 18]]

Optimal tunings:

  • WE: ~2 = 1200.7636 ¢, ~3/2 = 697.4122 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.0315 ¢

Minimax tuning:

  • 11-odd-limit: ~3/2 = [9/16 -1/8 0 0 1/16
projection map: [[1 0 0 0 0, [25/16 -1/8 0 0 1/16, [9/4 -1/2 0 0 1/4, [21/8 -5/4 0 0 5/8, [25/8 -9/4 0 0 9/8]
unchanged-interval (eigenmonzo) basis: 2.11/9

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [696.774, 700.000] (18\31 to 7\12)
  • 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)

Algebraic generator: Traverse, the positive real root of x4 + 2x - 13, or 696.9529 cents.

Optimal ET sequence: 12, 19e, 31, 105, 136b

Badness (Sintel): 0.563

Music

Tridecimal meantone

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 81/80, 99/98, 105/104

Mapping: [1 0 -4 -13 -25 -20], 0 1 4 10 18 15]]

Optimal tunings:

  • WE: ~2 = 1200.8149 ¢, ~3/2 = 697.1155 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.7085 ¢

Minimax tuning:

  • 13- and 15-odd-limit: ~3/2 = [9/16 -1/8 0 0 1/16
unchanged-interval (eigenmonzo) basis: 2.11/9

Optimal ET sequence: 12f, 19e, 31

Badness (Sintel): 0.746

Meantonic

Dubbed meantonic here, this extension maps the 17/16 to the octave-reduced triple-augmented seventh (C–B𝄪♯), and 19/16 to the quadruple-augmented unison (C–C𝄪𝄪). The major second is now 19/17, and 17/16 is conflated with 19/18, as do all the other extensions discussed below. 31edo also conflates 17/16~19/18 with 16/15 whereas 50edo conflates all of 17/16, 18/17, 19/18, and 20/19, so a good tuning would be somewhere in this range.

Subgroup: 2.3.5.7.11.13.17

Comma list: 66/65, 81/80, 99/98, 105/104, 121/119

Mapping: [1 0 -4 -13 -25 -20 -37], 0 1 4 10 18 15 26]]

Optimal tunings:

  • WE: ~2 = 1201.2376 ¢, ~3/2 = 697.0954 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.4563 ¢

Optimal ET sequence: 12fg, 19eg, 31, 50e

Badness (Sintel): 0.970

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 66/65, 77/76, 81/80, 99/98, 105/104, 121/119

Mapping: [1 0 -4 -13 -25 -20 -37 -40], 0 1 4 10 18 15 26 28]]

Optimal tunings:

  • WE: ~2 = 1201.4134 ¢, ~3/2 = 697.0933 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.3526 ¢

Optimal ET sequence: 12fghh, 19egh, 31, 50e

Badness (Sintel): 1.09

Huygens

Dubbed huygens here, this extension is perhaps the most practical, as it maps 17/16 to the minor second (C–D♭), and 19/16 to the minor third (C–E♭), suitable for a system generated by a mildly tempered fifth.

Subgroup: 2.3.5.7.11.13.17

Comma list: 66/65, 81/80, 99/98, 105/104, 120/119

Mapping: [1 0 -4 -13 -25 -20 12], 0 1 4 10 18 15 -5]]

Optimal tunings:

  • WE: ~2 = 1199.5548 ¢, ~3/2 = 696.7449 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.9823 ¢

Optimal ET sequence: 12f, 31

Badness (Sintel): 1.02

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 66/65, 81/80, 96/95, 99/98, 105/104, 120/119

Mapping: [1 0 -4 -13 -25 -20 12 9], 0 1 4 10 18 15 -5 -3]]

Optimal tunings:

  • WE: ~2 = 1199.0408 ¢, ~3/2 = 696.5824 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.1061 ¢

Optimal ET sequence: 12f, 31

Badness (Sintel): 1.10

Grosstone

Grosstone maps 13/8 to the double-diminished seventh (C–B♭♭♭).

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 99/98, 126/125, 144/143

Mapping: [1 0 -4 -13 -25 29], 0 1 4 10 18 -16]]

Optimal tunings:

  • WE: ~2 = 1199.9389 ¢, ~3/2 = 697.2282 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.2627 ¢

Minimax tuning:

  • 13- and 15-odd-limit: ~3/2 = [8/13 0 0 1/26 0 -1/26
eigenmonzo basis (unchanged-interval basis): 2.13/7

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = [696.774, 697.674] (18\31 to 25\43)
  • 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)

Optimal ET sequence: 12, 31, 43, 74

Badness (Sintel): 1.07

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 99/98, 120/119, 126/125, 144/143

Mapping: [1 0 -4 -13 -25 29 12], 0 1 4 10 18 -16 -5]]

Optimal tunings:

  • WE: ~2 = 1199.5811 ¢, ~3/2 = 697.0918 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.3303 ¢

Optimal ET sequence: 12, 31, 43, 74g

Badness (Sintel): 1.06

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 96/95, 99/98, 120/119, 126/125, 144/143

Mapping: [1 0 -4 -13 -25 29 12 9], 0 1 4 10 18 -16 -5 -3]]

Optimal tunings:

  • WE: ~2 = 1199.2931 ¢, ~3/2 = 696.9690 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.3736 ¢

Optimal ET sequence: 12, 31, 43, 74gh

Badness (Sintel): 1.07

Meridetone

Meridetone maps the 13/8 to the quadruple-augmented fourth (C–F𝄪𝄪).

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 81/80, 99/98, 126/125

Mapping: [1 0 -4 -13 -25 -39], 0 1 4 10 18 27]]

Optimal tunings:

  • WE: ~2 = 1199.9122 ¢, ~3/2 = 697.4779 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.5241 ¢

Minimax tuning:

  • 13- and 15-odd-limit: ~3/2 = [14/25 -2/25 0 0 0 1/25
unchanged-interval (eigenmonzo) basis: 2.13/9

Optimal ET sequence: 12f, 31f, 43

Badness (Sintel): 1.09

Meridetonic

Subgroup: 2.3.5.7.11.13.17

Comma list: 78/77, 81/80, 99/98, 126/125, 273/272

Mapping: [1 0 -4 -13 -25 -39 -56], 0 1 4 10 18 27 38]]

Optimal tunings:

  • WE: ~2 = 1199.9428 ¢, ~3/2 = 697.4804 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.5113 ¢

Optimal ET sequence: 12fg, 31fg, 43

Badness (Sintel): 1.41

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 78/77, 81/80, 99/98, 126/125, 153/152, 273/272

Mapping: [1 0 -4 -13 -25 -39 -56 -59], 0 1 4 10 18 27 38 40]]

Optimal tunings:

  • WE: ~2 = 1200.0089 ¢, ~3/2 = 697.4864 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.4815 ¢

Optimal ET sequence: 12fghh, 31fgh, 43

Badness (Sintel): 1.54

Sauveuric

Subgroup: 2.3.5.7.11.13.17

Comma list: 78/77, 81/80, 99/98, 120/119, 126/125

Mapping: [1 0 -4 -13 -25 -39 12], 0 1 4 10 18 27 -5]]

Optimal tunings:

  • WE: ~2 = 1199.3793 ¢, ~3/2 = 697.2833 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.6222 ¢

Optimal ET sequence: 12f, 43

Badness (Sintel): 1.22

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 78/77, 81/80, 96/95, 99/98, 120/119, 126/125

Mapping: [1 0 -4 -13 -25 -39 12 9], 0 1 4 10 18 27 -5 -3]]

Optimal tunings:

  • WE: ~2 = 1199.0260 ¢, ~3/2 = 697.1486 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.6887 ¢

Optimal ET sequence: 12f, 43

Badness (Sintel): 1.25

Hemimeantone

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 99/98, 126/125, 169/168

Mapping: [1 0 -4 -13 -25 -5], 0 2 8 20 36 11]]

mapping generators: ~2, ~26/15

Optimal tunings:

  • WE: ~2 = 1201.0387 ¢, ~26/15 = 949.2863 ¢
  • CWE: ~2 = 1200.0000 ¢, ~26/15 = 948.5065 ¢

Optimal ET sequence: 19e, 43, 62

Badness (Sintel): 1.30

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 99/98, 126/125, 169/168, 221/220

Mapping: [1 0 -4 -13 -25 -5 -22], 0 2 8 20 36 11 33]]

Optimal tunings:

  • WE: ~2 = 1201.0270 ¢, ~26/15 = 949.2892 ¢
  • CWE: ~2 = 1200.0000 ¢, ~26/15 = 948.5169 ¢

Optimal ET sequence: 19eg, 43, 62

Badness (Sintel): 1.19

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 99/98, 126/125, 153/152, 169/168, 221/220

Mapping: [1 0 -4 -13 -25 -5 -22 -25], 0 2 8 20 36 11 33 37]]

Optimal tunings:

  • WE: ~2 = 1201.0339 ¢, ~19/11 = 949.2902 ¢
  • CWE: ~2 = 1200.0000 ¢, ~19/11 = 948.5111 ¢

Optimal ET sequence: 19egh, 43, 62

Badness (Sintel): 1.15

Semimeantone

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 99/98, 126/125, 847/845

Mapping: [2 0 -8 -26 -50 -59], 0 1 4 10 18 21]]

mapping generators: ~55/39, ~3

Optimal tunings:

  • WE: ~55/39 = 600.3606 ¢, ~3/2 = 697.4241 ¢
  • CWE: ~55/39 = 600.0000 ¢, ~3/2 = 697.0545 ¢

Optimal ET sequence: 12f, …, 50eff, 62, 136b

Badness (Sintel): 1.68

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 99/98, 126/125, 221/220, 289/288

Mapping: [2 0 -8 -26 -50 -59 5], 0 1 4 10 18 21 1]]

Optimal tunings:

  • WE: ~17/12 = 600.5426 ¢, ~3/2 = 697.5571 ¢
  • CWE: ~17/12 = 600.0000 ¢, ~3/2 = 696.9858 ¢

Optimal ET sequence: 12f, 50eff, 62, 136bg

Badness (Sintel): 1.60

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 99/98, 126/125, 153/152, 209/208, 221/220

Mapping: [2 0 -8 -26 -50 -59 5 -1], 0 1 4 10 18 21 1 3]]

Optimal tunings:

  • WE: ~17/12 = 600.5959 ¢, ~3/2 = 697.5985 ¢
  • CWE: ~17/12 = 600.0000 ¢, ~3/2 = 696.9638 ¢

Optimal ET sequence: 12f, 50eff, 62

Badness (Sintel): 1.47

Meanpop

Meanpop[1][3] maps the 11/8 to the double-diminished fifth (C–G𝄫), and tridecimal meanpop still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a double-diminished third; 12/11~13/12, double-augmented unison; and 14/13, minor second.

Subgroup: 2.3.5.7.11

Comma list: 81/80, 126/125, 385/384

Mapping: [1 0 -4 -13 24], 0 1 4 10 -13]]

mapping generator: ~2, ~3

Optimal tunings:

  • WE: ~2 = 1201.3464 ¢, ~3/2 = 697.2159 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.4509 ¢

Minimax tuning:

  • 11-odd-limit: ~3/2 = [0 0 1/4
projection map: [[1 0 0 0 0, [1 0 1/4 0 0, [0 0 1 0 0, [-3 0 5/2 0 0, [11 0 -13/4 0 0]
unchanged-interval (eigenmonzo) basis: 2.5

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [694.737, 696.774] (11\19 to 18\31)
  • 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)

Algebraic generator: Cybozem; or else Radieubiz, the real root of 3x3 + 6x - 19. Unlike Cybozem, the recurrence for Radieubiz does not converge.

Optimal ET sequence: 12e, 19, 31, 81, 112b

Badness (Sintel): 0.712

Music

Tridecimal meanpop

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 105/104, 126/125, 144/143

Mapping: [1 0 -4 -13 24 -20], 0 1 4 10 -13 15]]

Optimal tunings:

  • WE: ~2 = 1201.0765 ¢, ~3/2 = 696.8361 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.2347 ¢

Minimax tuning:

  • 13- and 15-odd-limit: ~3/2 = [4/7 0 0 0 -1/28 1/28
unchanged-interval (eigenmonzo) basis: 2.13/11

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = [694.737, 696.774] (11\19 to 18\31)
  • 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)

Optimal ET sequence: 19, 31, 50, 81

Badness (Sintel): 0.863

Meanpoppic

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 105/104, 126/125, 144/143, 273/272

Mapping: [1 0 -4 -13 24 -20 -37], 0 1 4 10 -13 15 26]]

Optimal tunings:

  • WE: ~2 = 1201.0727 ¢, ~3/2 = 696.8168 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.2195 ¢

Optimal ET sequence: 19g, 31, 50, 81, 131bd

Badness (Sintel): 1.02

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 105/104, 126/125, 144/143, 153/152, 273/272

Mapping: [1 0 -4 -13 24 -20 -37 -40], 0 1 4 10 -13 15 26 28]]

Optimal tunings:

  • WE: ~2 = 1201.0719 ¢, ~3/2 = 696.8101 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.2137 ¢

Optimal ET sequence: 19gh, 31, 50, 81

Badness (Sintel): 1.08

Meanpoid

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 105/104, 120/119, 126/125, 144/143

Mapping: [1 0 -4 -13 24 -20 12], 0 1 4 10 -13 15 -5]]

Optimal tunings:

  • WE: ~2 = 1200.2768 ¢, ~3/2 = 696.5683 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.4114 ¢

Optimal ET sequence: 19, 31

Badness (Sintel): 1.17

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 77/76, 81/80, 96/95, 105/104, 120/119, 126/125

Mapping: [1 0 -4 -13 24 -20 12 9], 0 1 4 10 -13 15 -5 -3]]

Optimal tunings:

  • WE: ~2 = 1199.7905 ¢, ~3/2 = 696.3779 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.4973 ¢

Optimal ET sequence: 19, 31

Badness (Sintel): 1.25

Meanplop

Subgroup: 2.3.5.7.11.13

Comma list: 65/64, 78/77, 81/80, 91/90

Mapping: [1 0 -4 -13 24 10], 0 1 4 10 -13 -4]]

Optimal tunings:

  • WE: ~2 = 1202.3237 ¢, ~3/2 = 697.5502 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.2135 ¢

Minimax tuning:

  • 13- and 15-odd-limit: ~3/2 = [11/13 0 0 0 -1/13
unchanged-interval (eigenmonzo) basis: 2.11

Optimal ET sequence: 12e, 19, 31f

Badness (Sintel): 1.14

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 52/51, 65/64, 78/77, 81/80, 91/90

Mapping: [1 0 -4 -13 24 10 12], 0 1 4 10 -13 -4 -5]]

Optimal tunings:

  • WE: ~2 = 1201.4737 ¢, ~3/2 = 697.2690 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.4129 ¢

Optimal ET sequence: 12e, 19

Badness (Sintel): 1.37

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 39/38, 52/51, 65/64, 77/76, 81/80, 91/90

Mapping: [1 0 -4 -13 24 10 12 9], 0 1 4 10 -13 -4 -5 -3]]

Optimal tunings:

  • WE: ~2 = 1200.8839 ¢, ~3/2 = 697.0104 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.4949 ¢

Optimal ET sequence: 12e, 19

Badness (Sintel): 1.43

Meanenneadecal

Meanenneadecal maps the 11/8 to the augmented fourth (C–F♯), and tridecimal meanenneadecal still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a major second; 12/11~14/13, minor second; and 13/12, double-augmented unison.

Subgroup: 2.3.5.7.11

Comma list: 45/44, 56/55, 81/80

Mapping: [1 0 -4 -13 -6], 0 1 4 10 6]]

Optimal tunings:

  • WE: ~2 = 1199.6946 ¢, ~3/2 = 696.0729 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.2083 ¢

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [694.737, 700.000] (11\19 to 7\12)
  • 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 704.377]

Optimal ET sequence: 7d, 12, 19, 31e

Badness (Sintel): 0.708

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 56/55, 78/77, 81/80

Mapping: [1 0 -4 -13 -6 -20], 0 1 4 10 6 15]]

Optimal tunings:

  • WE: ~2 = 1199.7931 ¢, ~3/2 = 696.0258 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.1241 ¢

Optimal ET sequence: 7df, 12f, 19, 31e

Badness (Sintel): 0.875

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 45/44, 56/55, 78/77, 81/80, 120/119

Mapping: [1 0 -4 -13 -6 -20 12], 0 1 4 10 6 15 -5]]

Optimal tunings:

  • WE: ~2 = 1198.6665 ¢, ~3/2 = 695.8010 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.4998 ¢

Optimal ET sequence: 12f, 19, 31e

Badness (Sintel): 1.17

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 45/44, 56/55, 78/77, 81/80, 96/95, 120/119

Mapping: [1 0 -4 -13 -6 -20 12 9], 0 1 4 10 6 15 -5 -3]]

Optimal tunings:

  • WE: ~2 = 1198.2880 ¢, ~3/2 = 695.7123 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.6370 ¢

Optimal ET sequence: 12f, 19, 31e

Badness (Sintel): 1.23

Vincenzo

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 56/55, 65/64, 81/80

Mapping: [1 0 -4 -13 -6 10], 0 1 4 10 6 -4]]

Optimal tunings:

  • WE: ~2 = 1202.1684 ¢, ~3/2 = 696.3160 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 695.2045 ¢

Optimal ET sequence: 7d, 12, 19

Badness (Sintel): 1.02

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 45/44, 52/51, 56/55, 65/64, 81/80

Mapping: [1 0 -4 -13 -6 10 12], 0 1 4 10 6 -4 -5]]

Optimal tunings:

  • WE: ~2 = 1200.5137 ¢, ~3/2 = 696.1561 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 695.8771 ¢

Optimal ET sequence: 12, 19

Badness (Sintel): 1.30

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 81/80

Mapping: [1 0 -4 -13 -6 10 12 9], 0 1 4 10 6 -4 -5 -3]]

Optimal tunings:

  • WE: ~2 = 1199.8261 ¢, ~3/2 = 696.0298 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.1262 ¢

Optimal ET sequence: 12, 19

Badness (Sintel): 1.36

Meanundec

Subgroup: 2.3.5.7.11.13

Comma list: 27/26, 40/39, 45/44, 56/55

Mapping: [1 0 -4 -13 -6 -1], 0 1 4 10 6 3]]

Optimal tunings:

  • WE: ~2 = 1196.0359 ¢, ~3/2 = 694.9504 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.7474 ¢

Optimal ET sequence: 7d, 12f, 19f

Badness (Sintel): 1.00

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 27/26, 34/33, 40/39, 45/44, 56/55

Mapping: [1 0 -4 -13 -6 -1 -7], 0 1 4 10 6 3 7]]

Optimal tunings:

  • WE: ~2 = 1196.8604 ¢, ~3/2 = 695.7613 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.1744 ¢

Optimal ET sequence: 7dg, 12f

Badness (Sintel): 1.09

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 27/26, 34/33, 40/39, 45/44, 56/55, 57/55

Mapping: [1 0 -4 -13 -6 -1 -7 -10], 0 1 4 10 6 3 7 9]]

Optimal tunings:

  • WE: ~2 = 1196.9296 ¢, ~3/2 = 696.3321 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.7122 ¢

Optimal ET sequence: 7dgh, 12f

Badness (Sintel): 1.16

Meanundeci

Meanundeci is a low-complexity low-accuracy entry that maps the 11/8 to the perfect fourth (C–F), and tridecimal meanundeci maps the 13/8 to the minor sixth (C–A♭).

Subgroup: 2.3.5.7.11

Comma list: 33/32, 55/54, 77/75

Mapping: [1 0 -4 -13 5], 0 1 4 10 -1]]

Optimal tunings:

  • WE: ~2 = 1205.7146 ¢, ~3/2 = 697.9977 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 695.1805 ¢

Optimal ET sequence: 7d, 12e, 19e

Badness (Sintel): 1.04

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 33/32, 55/54, 65/64, 77/75

Mapping: [1 0 -4 -13 5 10], 0 1 4 10 -1 -4]]

Optimal tunings:

  • WE: ~2 = 1205.5631 ¢, ~3/2 = 697.9847 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 695.0144 ¢

Optimal ET sequence: 7d, 12e, 19e

Badness (Sintel): 1.09

Bimeantone

11/8 is mapped to half octave minus the meantone diesis.

Subgroup: 2.3.5.7.11

Comma list: 81/80, 126/125, 245/242

Mapping: [2 0 -8 -26 -31], 0 1 4 10 12]]

mapping generators: ~63/44, ~3

Optimal tunings:

  • WE: ~63/44 = 600.7492 ¢, ~3/2 = 696.8853 ¢
  • CWE: ~63/44 = 600.0000 ¢, ~3/2 = 696.1908 ¢

Optimal ET sequence: 12, 26de, 38d, 50

Badness (Sintel): 1.26

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 105/104, 126/125, 245/242

Mapping: [2 0 -8 -26 -31 -40], 0 1 4 10 12 15]]

Optimal tunings:

  • WE: ~55/39 = 600.8309 ¢, ~3/2 = 696.8000 ¢
  • CWE: ~55/39 = 600.0000 ¢, ~3/2 = 696.0066 ¢

Optimal ET sequence: 12f, 26deff, 38df, 50

Badness (Sintel): 1.19

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 105/104, 126/125, 189/187, 221/220

Mapping: [2 0 -8 -26 -31 -40 5], 0 1 4 10 12 15 1]]

Optimal tunings:

  • WE: ~17/12 = 600.9234 ¢, ~3/2 = 696.8536 ¢
  • CWE: ~17/12 = 600.0000 ¢, ~3/2 = 695.9317 ¢

Optimal ET sequence: 12f, 38df, 50

Badness (Sintel): 1.15

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 105/104, 126/125, 153/152, 189/187, 221/220

Mapping: [2 0 -8 -26 -31 -40 5 -1], 0 1 4 10 12 15 1 3]]

Optimal tunings:

  • WE: ~17/12 = 600.9845 ¢, ~3/2 = 696.8939 ¢
  • CWE: ~17/12 = 600.0000 ¢, ~3/2 = 695.8947 ¢

Optimal ET sequence: 12f, 26deff, 38df, 50

Badness (Sintel): 1.08

Trimean

Subgroup: 2.3.5.7.11

Comma list: 81/80, 126/125, 1344/1331

Mapping: [1 2 4 7 5], 0 -3 -12 -30 -11]]

mapping generators: ~2, ~11/10

Optimal tunings:

  • WE: ~2 = 1200.7155 ¢, ~11/10 = 167.9055 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/10 = 167.7749 ¢

Optimal ET sequence: 7d, 36d, 43, 50, 93

Badness (Sintel): 1.68

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 126/125, 144/143, 364/363

Mapping: [1 2 4 7 5 3], 0 -3 -12 -30 -11 5]]

Optimal tunings:

  • WE: ~2 = 1200.6104 ¢, ~11/10 = 167.8749 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/10 = 167.7728 ¢

Optimal ET sequence: 7d, 43, 50, 93

Badness (Sintel): 1.46

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 126/125, 144/143, 189/187, 221/220

Mapping: [1 2 4 7 5 3 8], 0 -3 -12 -30 -11 5 -28]]

Optimal tunings:

  • WE: ~2 = 1200.6144 ¢, ~11/10 = 167.8716 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/10 = 167.7682 ¢

Optimal ET sequence: 7dg, 43, 50, 93

Badness (Sintel): 1.28

Flattone

In flattone tunings, the fifth is typically even flatter than that of 19edo. Here, 9 fourths get to the interval class for 7, so that 7/4 is a diminished seventh (C–B𝄫), 7/6 is a diminished third (C–E𝄫), and 7/5 is a double-diminished fifth (C–G𝄫). In general, septimal subminor intervals are diminished and septimal supermajor intervals are augmented, which makes it quite easy to learn flattone notation. Good tunings for flattone are 45edo, 64edo, and 71edo.

Subgroup: 2.3.5.7

Comma list: 81/80, 525/512

Mapping[1 0 -4 17], 0 1 4 -9]]

Optimal tunings:

  • WE: ~2 = 1203.6308 ¢, ~3/2 = 695.8782 ¢
error map: +3.631 -2.446 -2.801 -2.684]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 693.7334 ¢
error map: 0.000 -8.222 -11.380 -12.426]

Minimax tuning:

projection map: [[1 0 0 0, [21/13 0 1/13 -1/13, [32/13 0 4/13 -4/13, [32/13 0 -9/13 9/13]
unchanged-interval (eigenmonzo) basis: 2.7/5
projection map: [[1 0 0 0, [17/11 2/11 0 -1/11, [24/11 8/11 0 -4/11, [34/11 -18/11 0 9/11]
unchanged-interval (eigenmonzo) basis: 2.9/7

Tuning ranges:

  • 7- and 9-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
  • 7-odd-limit diamond tradeoff: ~3/2 = [692.353, 701.955]
  • 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955]

Algebraic generator: Squarto, the positive root of 8x2 - 4x - 9, at 506.3239 cents, equal to (1 + sqrt (19))/4.

Optimal ET sequence7, 19, 26, 45

Badness (Sintel): 0.976

11-limit

This can also be considered a no-sevens temperament: hypnotone.

Subgroup: 2.3.5.7.11

Comma list: 45/44, 81/80, 385/384

Mapping: [1 0 -4 17 -6], 0 1 4 -9 6]]

Optimal tuning:

  • WE: ~2 = 1202.3247 ¢, ~3/2 = 694.4688 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 693.1467 ¢

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
  • 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]

Optimal ET sequence: 7, 19, 26, 45, 71bc, 116bcde

Badness (Sintel): 1.12

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 65/64, 78/77, 81/80

Mapping: [1 0 -4 17 -6 10], 0 1 4 -9 6 -4]]

Optimal tunings:

  • WE: ~2 = 1202.5156 ¢, ~3/2 = 694.5107 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 693.0538 ¢

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
  • 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]

Optimal ET sequence: 7, 19, 26, 45f, 71bcf, 116bcdef

Badness (Sintel): 0.920

Flattertone

Flattertone tunings are typically at least as flat as 26edo. Here, 17 fifths get to the interval class for 7, so that 7/4 is a double-augmented sixth (C–Ax). 26edo and 33cd-edo are the two primary flattertone tunings. 1/2-comma meantone is also encompassed within flattertone's range. Any flatter than this, the meantone mapping for 5/4 is too inaccurate (it becomes more of a 16/13 or 27/22), and deeptone temperament's mapping is more logical.

Subgroup: 2.3.5.7

Comma list: 81/80, 1875/1792

Mapping[1 0 -4 -24], 0 1 4 17]]

mapping generators: ~2, ~3

Optimal tunings:

  • WE: ~2 = 1204.4511 ¢, ~3/2 = 694.3258 ¢
error map: +4.451 -3.178 -9.011 +3.554]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 692.0479 ¢
error map: 0.000 -9.907 -18.122 -4.012]

Optimal ET sequence7d, 19d, 26, 59bcd, 85bccd

Badness (Sintel): 2.43

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 81/80, 1375/1344

Mapping: [1 0 -4 -24 -6], 0 1 4 17 6]]

Optimal tunings:

  • WE: ~2 = 1203.4653 ¢, ~3/2 = 693.8144 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 692.0422 ¢

Optimal ET sequence: 7d, 19d, 26

Badness (Sintel): 1.53

Music

Dominant

The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh (C–Bb). The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is 12edo, but it also works well with the Pythagorean tuning of pure 3/2 fifths, and with 29edo, 41edo, or 53edo.

Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension neutrominant, splitting the fifth as well as the chromatic semitone in two like in all rastmic temperaments.

Subgroup: 2.3.5.7

Comma list: 36/35, 64/63

Mapping[1 0 -4 6], 0 1 4 -2]]

Optimal tunings:

  • WE: ~2 = 1195.3384 ¢, ~3/2 = 698.8478 ¢
error map: -4.662 -7.769 +9.077 +14.832]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 701.1125 ¢
error map: 0.000 -0.842 +18.136 +28.949]

Tuning ranges:

Optimal ET sequence5, 7, 12, 41cd, 53cdd, 65ccddd

Badness (Sintel): 0.524

11-limit

Subgroup: 2.3.5.7.11

Comma list: 36/35, 56/55, 64/63

Mapping: [1 0 -4 6 13], 0 1 4 -2 -6]]

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [700.000, 705.882] (7\12 to 10\17)
  • 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]

Optimal tunings:

  • WE: ~2 = 1194.0169 ¢, ~3/2 = 699.7473 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 703.2672 ¢

Optimal ET sequence: 5, 12, 17c, 29cde

Badness (Sintel): 0.799

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 56/55, 64/63, 66/65

Mapping: [1 0 -4 6 13 18], 0 1 4 -2 -6 -9]]

Optimal tunings:

  • WE: ~2 = 1193.8055 ¢, ~3/2 = 700.0042 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 703.8254 ¢

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = 705.882 (10\17)
  • 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]

Optimal ET sequence: 12f, 17c, 29cdef

Badness (Sintel): 0.996

Dominion

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 36/35, 56/55, 64/63

Mapping: [1 0 -4 6 13 -9], 0 1 4 -2 -6 8]]

Optimal tunings:

  • WE: ~2 = 1195.0293 ¢, ~3/2 = 701.9847 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 704.7698 ¢

Optimal ET sequence: 5, 12, 17c

Badness (Sintel): 1.13

Domineering

Subgroup: 2.3.5.7.11

Comma list: 36/35, 45/44, 64/63

Mapping: [1 0 -4 6 -6], 0 1 4 -2 6]]

Optimal tunings:

  • WE: ~2 = 1194.7102 ¢, ~3/2 = 695.6962 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 698.1765 ¢

Optimal ET sequence: 5e, 7, 12

Badness (Sintel): 0.727

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 45/44, 52/49, 64/63

Mapping: [1 0 -4 6 -6 10], 0 1 4 -2 6 -4]]

Optimal tunings:

  • WE: ~2 = 1198.1958 ¢, ~3/2 = 694.7159 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 695.6809 ¢

Optimal ET sequence: 7, 12

Badness (Sintel): 1.12

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 36/35, 45/44, 51/49, 52/49, 64/63

Mapping: [1 0 -4 6 -6 10 12], 0 1 4 -2 6 -4 -5]]

Optimal tunings:

  • WE: ~2 = 1197.7959 ¢, ~3/2 = 694.8362 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.0834 ¢

Optimal ET sequence: 7, 12

Badness (Sintel): 1.25

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 36/35, 39/38, 45/44, 51/49, 52/49, 57/56

Mapping: [1 0 -4 6 -6 10 12 9], 0 1 4 -2 6 -4 -5 -3]]

Optimal tunings:

  • WE: ~2 = 1197.6198 ¢, ~3/2 = 694.8362 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.2075 ¢

Optimal ET sequence: 5ef, 7, 12, 19d, 31def

Badness (Sintel): 1.24

Dominatrix

Subgroup: 2.3.5.7.11.13

Comma list: 27/26, 36/35, 45/44, 64/63

Mapping: [1 0 -4 6 -6 -1], 0 1 4 -2 6 3]]

Optimal tunings:

  • WE: ~2 = 1193.1574 ¢, ~3/2 = 694.5610 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.7268 ¢

Optimal ET sequence: 5e, 7, 12f

Badness (Sintel): 0.756

Domination

Subgroup: 2.3.5.7.11

Comma list: 36/35, 64/63, 77/75

Mapping: [1 0 -4 6 -14], 0 1 4 -2 11]]

Optimal tunings:

  • WE: ~2 = 1194.8645 ¢, ~3/2 = 701.9872 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 704.5945 ¢

Optimal ET sequence: 5e, 12e, 17c

Badness (Sintel): 1.21

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 36/35, 64/63, 66/65

Mapping: [1 0 -4 6 -14 -9], 0 1 4 -2 11 8]]

Optimal tunings:

  • WE: ~2 = 1195.1324 ¢, ~3/2 = 702.6343 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 705.0791 ¢

Optimal ET sequence: 5e, 12e, 17c

Badness (Sintel): 1.13

Arnold

Subgroup: 2.3.5.7.11

Comma list: 22/21, 33/32, 36/35

Mapping: [1 0 -4 6 5], 0 1 4 -2 -1]]

Optimal tunings:

  • WE: ~2 = 1199.8507 ¢, ~3/2 = 698.4045 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 698.4822 ¢

Optimal ET sequence: 5, 7, 12e

Badness (Sintel): 0.864

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 22/21, 27/26, 33/32, 36/35

Mapping: [1 0 -4 6 5 -1], 0 1 4 -2 -1 3]]

Optimal tunings:

  • WE: ~2 = 1197.8123 ¢, ~3/2 = 695.4727 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.5713 ¢

Optimal ET sequence: 5, 7

Badness (Sintel): 0.963

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 22/21, 27/26, 33/32, 36/35, 51/49

Mapping: [1 0 -4 6 5 -1 12], 0 1 4 -2 -1 3 -5]]

Optimal tunings:

  • WE: ~2 = 1197.6327 ¢, ~3/2 = 695.6030 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 696.9316 ¢

Optimal ET sequence: 5, 7

Badness (Sintel): 1.25

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 22/21, 27/26, 33/32, 36/35, 51/49, 57/56

Mapping: [1 0 -4 6 5 -1 12 9], 0 1 4 -2 -1 3 -5 -3]]

Optimal tunings:

  • WE: ~2 = 1197.5295 ¢, ~3/2 = 695.6325 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.0579 ¢

Optimal ET sequence: 5, 7, 12ef, 19def

Badness (Sintel): 1.28

Sharptone

Sharptone is a low-accuracy temperament tempering out 21/20 and 28/27. In sharptone, 7/4 is a major sixth, 7/6 a whole tone, and 7/5 a fourth. Genuinely septimal sounding harmony therefore cannot be expected, but it can be used to translate, more or less, 7-limit JI into 5-limit meantone. 12edo tuning does sharptone about as well as such a thing can be done, of course not in its patent val.

However, while 12edo ends up near-optimal, the only valid diamond monotone tuning for sharptone is 5edo. Anything flat of it has ~12/7 and ~7/4 in the wrong order (and so should be dominant) and anything sharp of it has ~5/4 and ~4/3 in the wrong order (and so should not be meantone).

The 11-limit extension was named by Gene Ward Smith in 2004[3].

Subgroup: 2.3.5.7

Comma list: 21/20, 28/27

Mapping[1 0 -4 -2], 0 1 4 3]]

Optimal tunings:

  • WE: ~2 = 1204.2961 ¢, ~3/2 = 702.6463 ¢
error map: +4.296 +4.987 +24.271 -56.591]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 701.4928 ¢
error map: 0.000 -0.462 +19.657 -64.347]

Optimal ET sequence5, 7d, 12d

Badness (Sintel): 0.629

Meanertone

Subgroup: 2.3.5.7.11

Comma list: 21/20, 28/27, 33/32

Mapping: [1 0 -4 -2 5], 0 1 4 3 -1]]

Optimal tunings:

  • WE: ~2 = 1208.5304 ¢, ~3/2 = 701.5669 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 698.1117 ¢

Optimal ET sequence: 5, 7d, 12de

Badness (Sintel): 0.832

Supermean

Supermean tempers out 672/625 and finds the interval class of 7 at 15 generators up, as a double-augmented fifth (C–Gx). As such, it extends leapfrog.

Subgroup: 2.3.5.7

Comma list: 81/80, 672/625

Mapping[1 0 -4 -21], 0 1 4 15]]

Optimal tunings:

  • WE: ~2 = 1195.4372 ¢, ~3/2 = 702.2086 ¢
error map: -4.563 -4.309 +22.521 -8.319]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 704.5375 ¢
error map: 0.000 +2.583 +31.836 -0.763]

Optimal ET sequence5d, 12d, 17c

Badness (Sintel): 3.40

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 81/80, 132/125

Mapping: [1 0 -4 -21 -14], 0 1 4 15 11]]

Optimal tunings:

  • WE: ~2 = 1195.7270 ¢, ~3/2 = 702.5848 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 704.7471 ¢

Optimal ET sequence: 5de, 12de, 17c

Badness (Sintel): 2.09

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 56/55, 66/65, 81/80

Mapping: [1 0 -4 -21 -14 -9], 0 1 4 15 11 8]]

Optimal tunings:

  • WE: ~2 = 1196.3958 ¢, ~3/2 = 702.9766 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 704.7940 ¢

Optimal ET sequence: 5de, 12de, 17c, 29c

Badness (Sintel): 1.67

Mohajira

Mohajira can be viewed as derived from mohaha which maps the interval half a chroma flat of the minor seventh to ~7/4 so that 7/4 is mapped to a semidiminished seventh (C–Bdb), although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the porwell comma. It can be described as 24 & 31; its ploidacot is dicot. 31edo makes for an excellent mohajira tuning, with generator 9\31.

Subgroup: 2.3.5.7

Comma list: 81/80, 6144/6125

Mapping[1 1 0 6], 0 2 8 -11]]

mapping generators: ~2, ~128/105

Optimal tunings:

  • WE: ~2 = 1200.8160 ¢, ~128/105 = 348.6518 ¢
error map: +0.816 -3.835 +2.901 +0.900]
  • CWE: ~2 = 1200.0000 ¢, ~128/105 = 348.4194 ¢
error map: 0.000 -5.116 +1.041 -1.439]

Minimax tuning:

projection map: [[1 0 0 0, [1 0 1/4 0, [0 0 1 0, [6 0 -11/8 0]
Unchanged-interval (eigenmonzo) basis: 2.5

Tuning ranges:

  • 7- and 9-odd-limit diamond monotone: ~128/105 = [347.368, 350.000] (11\38 to 7\24)
  • 7-odd-limit diamond tradeoff: ~128/105 = [347.393, 350.978]
  • 9-odd-limit diamond tradeoff: ~128/105 = [345.601, 350.978]

Algebraic generator: Mohabis, real root of 3x3 - 3x2 - 1, 348.6067 cents. Corresponding recurrence converges quickly.

Optimal ET sequence7, 24, 31

Badness (Sintel): 1.41

Scales: mohaha7, mohaha10

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 121/120, 176/175

Mapping: [1 1 0 6 2], 0 2 8 -11 5]]

Optimal tunings:

  • WE: ~2 = 1201.1562 ¢, ~11/9 = 348.8124 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/9 = 348.4910 ¢

Minimax tuning:

  • 11-odd-limit: ~11/9 = [0 0 1/8
projection map: [[1 0 0 0 0, [1 0 1/4 0 0, [0 0 1 0 0, [6 0 -11/8 0 0, [2 0 5/8 0 0]
unchanged-interval (eigenmonzo) basis: 2.5

Tuning ranges:

  • 11-odd-limit diamond monotone: ~11/9 = [348.387, 350.000] (9\31 to 7\24)
  • 11-odd-limit diamond tradeoff: ~11/9 = [344.999, 350.978]

Optimal ET sequence: 7, 24, 31

Badness (Sintel): 0.862

Scales: mohaha7, mohaha10

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 81/80, 105/104, 121/120

Mapping: [1 1 0 6 2 4], 0 2 8 -11 5 -1]]

Optimal tunings:

  • WE: ~2 = 1200.4256 ¢, ~11/9 = 348.6819 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/9 = 348.5622 ¢

Optimal ET sequence: 7, 24, 31

Badness (Sintel): 0.966

Scales: mohaha7, mohaha10

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 66/65, 81/80, 105/104, 121/120, 154/153

Mapping: [1 1 0 6 2 4 7], 0 2 8 -11 5 -1 -10]]

Optimal tunings:

  • WE: ~2 = 1200.0382 ¢, ~11/9 = 348.7471 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/9 = 348.7360 ¢

Optimal ET sequence: 7, 24, 31

Badness (Sintel): 1.05

Scales: mohaha7, mohaha10

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 66/65, 77/76, 81/80, 96/95, 105/104, 153/152

Mapping: [1 1 0 6 2 4 7 6], 0 2 8 -11 5 -1 -10 -6]]

Optimal tunings:

  • WE: ~2 = 1199.7469 ¢, ~11/9 = 348.7367 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/9 = 348.8117 ¢

Optimal ET sequence: 7, 24, 31, 55

Badness (Sintel): 1.05

Scales: mohaha7, mohaha10

Mohamaq

Mohamaq is a lower-accuracy alternative to mohajira that favors tunings sharp of 24edo. It may be described as 17c & 24; its ploidacot is dicot, the same as mohajira.

Subgroup: 2.3.5.7

Comma list: 81/80, 392/375

Mapping[1 1 0 -1], 0 2 8 13]]

mapping generators: ~2, ~25/21

Optimal tunings:

  • WE: ~2 = 1199.0661 ¢, ~25/21 = 350.3127 ¢
error map: -0.934 -2.264 +16.188 -13.827]
  • CWE: ~2 = 1200.0000 ¢, ~25/21 = 350.4856 ¢
error map: 0.000 -0.984 +17.571 -12.513]

Optimal ET sequence7d, 17c, 24

Badness (Sintel): 1.97

Scales: mohaha7, mohaha10

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 77/75, 243/242

Mapping: [1 1 0 -1 2], 0 2 8 13 5]]

Optimal tunings:

  • WE: ~2 = 1199.1924 ¢, ~11/9 = 350.3286 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/9 = 350.4821 ¢

Optimal ET sequence: 7d, 17c, 24

Badness (Sintel): 1.20

Scales: mohaha7, mohaha10

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 66/65, 77/75, 243/242

Mapping: [1 1 0 -1 2 4], 0 2 8 13 5 -1]]

Optimal tunings:

  • WE: ~2 = 1198.5986 ¢, ~11/9 = 350.3353 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/9 = 350.6459 ¢

Optimal ET sequence: 7d, 17c, 24, 41c

Badness (Sintel): 1.19

Scales: mohaha7, mohaha10

Liese

Deutsch

Liese splits the perfect twelfth into three generators of ~10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. It may be described as 17c & 19; its ploidacot is alpha-tricot. It is a very natural 13-limit tuning, given the generator is so near 13/9. 74edo makes for a good liese tuning, though 19edo can be used. The tuning is well-supplied with mos scales: 7, 9, 11, 13, 15, 17, 19, 36, 55.

Subgroup: 2.3.5.7

Comma list: 81/80, 686/675

Mapping[1 0 -4 -3], 0 3 12 11]]

mapping generators: ~2, ~10/7

Optimal tunings:

  • WE: ~2 = 1201.5548 ¢, ~10/7 = 633.2251 ¢
error map: +1.555 -2.280 +6.168 -8.015]
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 632.5640 ¢
error map: 0.000 -4.263 +4.454 -10.622]

Minimax tuning:

projection map: [[1 0 0 0, [1 0 1/4 0, [0 0 1 0, [2/3 0 11/12 0]
unchanged-interval (eigenmonzo) basis: 2.5

Algebraic generator: Radix, the real root of x5 - 2x4 + 2x3 - 2x2 + 2x - 2, also a root of x6 - x5 - 2. The recurrence converges.

Optimal ET sequence17c, 19, 55, 74d

Badness (Sintel): 1.18

Liesel

Subgroup: 2.3.5.7.11

Comma list: 56/55, 81/80, 540/539

Mapping: [1 0 -4 -3 4], 0 3 12 11 -1]]

Optimal tunings:

  • WE: ~2 = 1198.8507 ¢, ~10/7 = 632.4668 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 632.9963 ¢

Optimal ET sequence: 17c, 19, 36

Badness (Sintel): 1.35

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 78/77, 81/80, 91/90

Mapping: [1 0 -4 -3 4 0], 0 3 12 11 -1 7]]

Optimal tunings:

  • WE: ~2 = 1199.4968 ¢, ~10/7 = 632.7766 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 633.0082 ¢

Optimal ET sequence: 17c, 19, 36

Badness (Sintel): 1.13

Elisa

Subgroup: 2.3.5.7.11

Comma list: 77/75, 81/80, 99/98

Mapping: [1 0 -4 -3 -5], 0 3 12 11 16]]

Optimal tunings:

  • WE: ~2 = 1201.0489 ¢, ~10/7 = 633.6147 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 633.1644 ¢

Optimal ET sequence: 17c, 19e, 36e

Badness (Sintel): 1.37

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 77/75, 81/80, 99/98

Mapping: [1 0 -4 -3 -5 0], 0 3 12 11 16 7]]

Optimal tunings:

  • WE: ~2 = 1201.4815 ¢, ~10/7 = 633.7720 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 633.1281 ¢

Optimal ET sequence: 17c, 19e, 36e

Badness (Sintel): 1.11

Lisa

Subgroup: 2.3.5.7.11

Comma list: 45/44, 81/80, 343/330

Mapping: [1 0 -4 -3 -6], 0 3 12 11 18]]

Optimal tunings:

  • WE: ~2 = 1202.6773 ¢, ~10/7 = 632.7783 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 631.6175 ¢

Optimal ET sequence: 17cee, 19

Badness (Sintel): 1.81

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 81/80, 91/88, 147/143

Mapping: [1 0 -4 -3 -6 0], 0 3 12 11 18 7]]

Optimal tunings:

  • WE: ~2 = 1203.6086 ¢, ~10/7 = 633.1193 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 631.5346 ¢

Optimal ET sequence: 17cee, 19

Badness (Sintel): 1.49

Superpine

The superpine temperament is generated by 1/3 of a fourth, represented by ~35/32, which resembles porcupine, but it favors flat fifths instead of sharp ones. It may be described as 36 & 43; its ploidacot is omega-tricot. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent 6/5 – harmonics other than 3 all require the 15-tone mos (7L 8s) to properly utilize. This temperament has an obvious 11-limit interpretation by treating the generator as 11/10 as in porcupine, which makes 11/8 high-complexity like the other harmonics, but in the 13-limit 5 generators up closely approximates 13/8. 43edo is a good tuning especially for the higher-limit extensions.

Subgroup: 2.3.5.7

Comma list: 81/80, 1119744/1071875

Mapping[1 2 4 1], 0 -3 -12 13]]

Optimal tunings:

  • WE: ~2 = 1199.3652 ¢, ~35/32 = 167.1615 ¢
error map: -0.635 -4.709 +5.209 +3.639]
  • CWE: ~2 = 1200.0000 ¢, ~35/32 = 167.2561 ¢
error map: 0.000 -3.723 +6.613 +5.503]

Optimal ET sequence7, 36, 43, 79c

Badness (Sintel): 3.46

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 176/175, 864/847

Mapping: [1 2 4 1 5], 0 -3 -12 13 -11]]

Optimal tunings:

  • WE: ~2 = 1199.0522 ¢, ~11/10 = 167.1904 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/10 = 167.3382 ¢

Optimal ET sequence: 7, 36, 43

Badness (Sintel): 1.90

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 81/80, 144/143, 176/175

Mapping: [1 2 4 1 5 3], 0 -3 -12 13 -11 5]]

Optimal tunings:

  • WE: ~2 = 1199.4286 ¢, ~11/10 = 167.3105 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/10 = 167.3958 ¢

Optimal ET sequence: 7, 36, 43

Badness (Sintel): 1.52

Lithium

Lithium is named after the 3rd element for having a 3rd-octave period (and also for lithium's molar mass of 6.9 g/mol since 69edo supports it). Its ploidacot is triploid monocot. It supports a 3L 6s scale and thus intuitively can be thought of as "tcherepnin meantone" in that context.

Subgroup: 2.3.5.7

Comma list: 81/80, 3125/3087

Mapping[3 0 -12 -20], 0 1 4 6]]

mapping generators: ~56/45, ~3

Optimal tunings:

  • WE: ~56/45 = 400.6744 ¢, ~3/2 = 695.8474 ¢ {~15/14 = 105.5015 ¢)
error map: +2.023 -4.084 -2.924 +4.910]
  • CWE: ~56/45 = 400.0000 ¢, ~3/2 = 695.1413 ¢ {~15/14 = 104.8587 ¢)
error map: 0.000 -6.814 -5.748 +2.022]

Optimal ET sequence12, 33cd, 45, 57

Badness (Sintel): 1.75

Squares

Squares splits the 6th harmonic into four subminor sixths of 11/7~14/9 (or splits a perfect eleventh into four supermajor thirds of 9/7~14/11), and uses it for a generator. It may be described as 14c & 17c; its ploidacot is beta-tetracot. 31edo, with a generator of 11/31, makes for a good squares tuning, with 8-, 11-, and 14-note mos scales available. Squares tempers out 2401/2400, the breedsma, as well as 2430/2401.

Subgroup: 2.3.5.7

Comma list: 81/80, 2401/2400

Mapping[1 -1 -8 -3], 0 4 16 9]]

mapping generators: ~2, ~14/9

Optimal tunings:

  • WE: ~2 = 1201.2488 ¢, ~14/9 = 774.8640 ¢
error map: +1.249 -3.748 +1.520 +1.204]
  • CWE: ~2 = 1200.0000 ¢, ~14/9 = 774.1560 ¢
error map: 0.000 -5.331 +0.183 -1.422]

Minimax tuning:

projection map: [[1 0 0 0, [1 0 1/4 0, [0 0 1 0, [3/2 0 9/16 0]
unchanged-interval (eigenmonzo) basis: 2.5

Algebraic generator: Sceptre2, the positive root of 9x2 + x - 16, or (sqrt (577) - 1)/18, which is 425.9311 cents.

Optimal ET sequence14c, 17c, 31, 169b, 200b

Badness (Sintel): 1.16

Scales: skwares8, skwares11, skwares14

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 99/98, 121/120

Mapping: [1 -1 -8 -3 -3], 0 4 16 9 10]]

Optimal tunings:

  • WE: ~2 = 1201.6657 ¢, ~11/7 = 775.1171 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/7 = 774.1754 ¢

Optimal ET sequence: 14c, 17c, 31, 130bee, 169beee

Badness (Sintel): 0.715

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 81/80, 99/98, 121/120

Mapping: [1 -1 -8 -3 -3 5], 0 4 16 9 10 -2]]

Optimal tunings:

  • WE: ~2 = 1199.8419 ¢, ~11/7 = 774.3484 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/7 = 774.4422 ¢

Optimal ET sequence: 14c, 17c, 31, 79cf

Badness (Sintel): 1.05

Squad

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 81/80, 91/90, 99/98

Mapping: [1 -1 -8 -3 -3 -6], 0 4 16 9 10 15]]

Optimal tunings:

  • WE: ~2 = 1202.0312 ¢, ~11/7 = 775.5589 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/7 = 774.4140 ¢

Optimal ET sequence: 14cf, 17c, 31f

Badness (Sintel): 1.11

Agora

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 99/98, 105/104, 121/120

Mapping: [1 -1 -8 -3 -3 -15], 0 4 16 9 10 29]]

Optimal tunings:

  • WE: ~2 = 1202.3228 ¢, ~11/7 = 775.2214 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/7 = 773.8617 ¢

Optimal ET sequence: 14cf, 31, 45ef, 76e

Badness (Sintel): 1.01

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 99/98, 105/104, 120/119, 121/119

Mapping: [1 -1 -8 -3 -3 -15 -3], 0 4 16 9 10 29 11]]

Optimal tunings:

  • WE: ~2 = 1201.4340 ¢, ~11/7 = 774.7375 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/7 = 773.8955 ¢

Optimal ET sequence: 14cf, 31

Badness (Sintel): 1.15

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 77/76, 81/80, 99/98, 105/104, 120/119, 121/119

Mapping: [1 -1 -8 -3 -3 -15 -3 -8], 0 4 16 9 10 29 11 19]]

Optimal tunings:

  • WE: ~2 = 1201.2461 ¢, ~11/7 = 774.5783 ¢
  • CWE: ~2 = 1200.0000 ¢, ~11/7 = 773.8479 ¢

Optimal ET sequence: 14cf, 31

Badness (Sintel): 1.15

Cuboctahedra

Subgroup: 2.3.5.7.11

Comma list: 81/80, 385/384, 1375/1372

Mapping: [1 -1 -8 -3 17], 0 4 16 9 -21]]

Optimal tunings:

  • WE: ~2 = 1201.4436 ¢, ~14/9 = 774.9386 ¢
  • CWE: ~2 = 1200.0000 ¢, ~14/9 = 774.0243 ¢

Optimal ET sequence: 31, 107b, 138b, 169be, 200be

Badness (Sintel): 1.88

Jerome

Jerome is related to Hieronymus' tuning; the Hieronymus generator is 51/20, or 139.316 cents. It may be described as 17c & 26; its ploidacot is pentacot. While the generator represents both 13/12 and 12/11, the CTE/CWE and Hieronymus generators are close to 13/12 in size.

Subgroup: 2.3.5.7

Comma list: 81/80, 17280/16807

Mapping[1 1 0 2], 0 5 20 7]]

mapping generators: ~2, ~54/49

Optimal tunings:

  • WE: ~2 = 1200.1640 ¢, ~54/49 = 139.3624 ¢
error map: +0.164 -4.979 +0.934 +7.039]
  • CWE: ~2 = 1200.0000 ¢, ~54/49 = 139.3528 ¢
error map: 0.000 -5.191 +0.741 +6.643]

Optimal ET sequence17c, 26, 43

Badness (Sintel): 2.75

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 99/98, 864/847

Mapping: [1 1 0 2 3], 0 5 20 7 4]]

Optimal tunings:

  • WE: ~2 = 1201.4436 ¢, ~12/11 = 139.3714 ¢
  • CWE: ~2 = 1200.0000 ¢, ~12/11 = 139.4038 ¢

Optimal ET sequence: 17c, 26, 43

Badness (Sintel): 1.58

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 81/80, 99/98, 144/143

Mapping: [1 1 0 2 3 3], 0 5 20 7 4 6]]

Optimal tunings:

  • WE: ~2 = 1199.8860 ¢, ~13/12 = 139.3737 ¢
  • CWE: ~2 = 1200.0000 ¢, ~13/12 = 139.3817 ¢

Optimal ET sequence: 17c, 26, 43

Badness (Sintel): 1.21

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 78/77, 81/80, 99/98, 144/143, 189/187

Mapping: [1 1 0 2 3 3 2], 0 5 20 7 4 6 18]]

Optimal tunings:

  • WE: ~2 = 1199.8346 ¢, ~13/12 = 139.3431 ¢
  • CWE: ~2 = 1200.0000 ¢, ~13/12 = 139.3544 ¢

Optimal ET sequence: 17cg, 26, 43

Badness (Sintel): 1.06

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 78/77, 81/80, 99/98, 120/119, 135/133, 144/143

Mapping: [1 1 0 2 3 3 2 1], 0 5 20 7 4 6 18 28]]

Optimal tunings:

  • WE: ~2 = 1199.8891 ¢, ~13/12 = 139.3001 ¢
  • CWE: ~2 = 1200.0000 ¢, ~13/12 = 139.3080 ¢

Optimal ET sequence: 17cgh, 26, 43, 69

Badness (Sintel): 1.11

Meantritone

The meantritone temperament tempers out the mirkwai comma (16875/16807) and trimyna comma (50421/50000) in the 7-limit. In this temperament, the 6th harmonic is split into five generators of ~10/7; the ploidacot of this temperament is beta-pentacot. The name meantritone is a portmanteau of meantone and tritone, the latter is a generator of this temperament.

Subgroup: 2.3.5.7

Comma list: 81/80, 16875/16807

Mapping[1 -1 -8 -7], 0 5 20 19]]

mapping generators: ~2, ~10/7

Optimal tunings:

  • WE: ~2 = 1201.3832 ¢, ~10/7 = 619.9478 ¢
error map: +1.383 -3.599 +1.576 +0.499]
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 619.3176 ¢
error map: 0.000 -5.367 +0.038 -1.791]

Optimal ET sequence29cd, 31, 188bcd, 219bbcd

Badness (Sintel): 2.08

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 99/98, 2541/2500

Mapping: [1 -1 -8 -7 -11], 0 5 20 19 28]]

Optimal tunings:

  • WE: ~2 = 1201.2054 ¢, ~10/7 = 619.9752 ¢
  • CWE: ~2 = 1200.0000 ¢, ~10/7 = 619.4223 ¢

Optimal ET sequence: 29cde, 31

Badness (Sintel): 1.42

Injera

Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a ~15/14 semitone difference between a half-octave and a perfect fifth. Injera may be described as 12 & 26; its ploidacot is diploid monocot. It tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. 38edo, which is two parallel 19edos, is an excellent tuning for injera.

Origin of the name

Subgroup: 2.3.5.7

Comma list: 50/49, 81/80

Mapping[2 0 -8 -7], 0 1 4 4]]

mapping generators: ~7/5, ~3

Optimal tunings:

  • WE: ~7/5 = 600.6662 ¢, ~3/2 = 695.1463 ¢ (~21/20 = 94.4801 ¢)
error map: +1.332 -5.476 -5.729 +12.425]
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 694.7712 ¢ (~21/20 = 94.7712 ¢)
error map: 0.000 -7.184 -7.229 +10.259]

Tuning ranges:

  • 7- and 9-odd-limit diamond monotone: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
  • 7-odd-limit diamond tradeoff: ~3/2 = [688.957, 701.955]
  • 9-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]

Optimal ET sequence12, 26, 38

Badness (Sintel): 0.788

Music

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 81/80

Mapping: [2 0 -8 -7 -12], 0 1 4 4 6]]

Optimal tunings:

  • WE: ~7/5 = 600.9350 ¢, ~3/2 = 693.9198 ¢ (~21/20 = 92.9848 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 693.3539 ¢ (~21/20 = 93.3539 ¢)

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
  • 11-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]

Optimal ET sequence: 12, 26

Badness (Sintel): 0.764

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 81/80

Mapping: [2 0 -8 -7 -12 -21], 0 1 4 4 6 9]]

Optimal tunings:

  • WE: ~7/5 = 600.9982 ¢, ~3/2 = 693.8249 ¢ (~21/20 = 92.8267 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 693.0992 ¢ (~21/20 = 93.0992 ¢)

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = 692.308 (15\26)
  • 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]

Optimal ET sequence: 12f, 14cf, 26

Badness (Sintel): 0.891

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 45/44, 50/49, 78/77, 81/80, 85/84

Mapping: [2 0 -8 -7 -12 -21 5], 0 1 4 4 6 9 1]]

Optimal tunings:

  • WE: ~7/5 = 601.1757 ¢, ~3/2 = 693.8441 ¢ (~21/20 = 92.6684 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 692.8879 ¢ (~21/20 = 92.8879 ¢)

Optimal ET sequence: 12f, 14cf, 26

Badness (Sintel): 0.935

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 45/44, 50/49, 57/56, 78/77, 81/80, 85/84

Mapping: [2 0 -8 -7 -12 -21 5 -1], 0 1 4 4 6 9 1 3]]

Optimal tunings:

  • WE: ~7/5 = 601.4245 ¢, ~3/2 = 693.9426 ¢ (~21/20 = 92.5181 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 692.7606 ¢ (~21/20 = 92.7606 ¢)

Optimal ET sequence: 12f, 14cf, 26

Badness (Sintel): 0.920

Enjera

Subgroup: 2.3.5.7.11.13

Comma list: 27/26, 40/39, 45/44, 50/49

Mapping: [2 0 -8 -7 -12 -2], 0 1 4 4 6 3]]

Optimal tunings:

  • WE: ~7/5 = 599.1863 ¢, ~3/2 = 693.1791 ¢ (~21/20 = 93.9929 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 693.6809 ¢ (~21/20 = 93.6809 ¢)

Optimal ET sequence: 10cdeef, 12f

Badness (Sintel): 1.10

Injerous

Subgroup: 2.3.5.7.11

Comma list: 33/32, 50/49, 55/54

Mapping: [2 0 -8 -7 10], 0 1 4 4 -1]]

Optimal tunings:

  • WE: ~7/5 = 603.1682 ¢, ~3/2 = 694.1945 ¢ (~21/20 = 91.0264 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 691.6107 ¢ (~21/20 = 91.6107 ¢)

Optimal ET sequence: 12e, 14c, 26e, 40cee

Badness (Sintel): 1.28

Lahoh

Subgroup: 2.3.5.7.11

Comma list: 50/49, 56/55, 81/77

Mapping: [2 0 -8 -7 7], 0 1 4 4 0]]

Optimal tunings:

  • WE: ~7/5 = 597.3179 ¢, ~3/2 = 695.8759 ¢ (~21/20 = 98.5581 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 697.8757 ¢ (~21/20 = 97.8757 ¢)

Optimal ET sequence: 10cd, 12

Badness (Sintel): 1.42

Teff

Teff, found and named by Mason Green, is to injera what mohajira is to meantone; it splits the generator in halves in order to accommodate higher-limit intervals, creating a half-octave quartertone temperament. Its ploidacot is diploid alpha-dicot.

Subgroup: 2.3.5.7.11

Comma list: 50/49, 81/80, 864/847

Mapping: [2 1 -4 -3 8], 0 2 8 8 -1]]

mapping generators: ~7/5, ~16/11

Optimal tunings:

  • WE: ~7/5 = 600.2802 ¢, ~16/11 = 647.7720 ¢ (~33/32 = 47.4918 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~16/11 = 647.5224 ¢ (~33/32 = 47.5224 ¢)

Optimal ET sequence: 24d, 26, 50d

Badness (Sintel): 2.34

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 78/77, 81/80, 144/143

Mapping: [2 1 -4 -3 8 2], 0 2 8 8 -1 5]]

Optimal tunings:

  • WE: ~7/5 = 600.3037 ¢, ~16/11 = 647.7954 ¢ (~33/32 = 47.4917 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~16/11 = 647.5256 ¢ (~33/32 = 47.5256 ¢)

Optimal ET sequence: 24d, 26, 50d

Badness (Sintel): 1.65

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 50/49, 78/77, 81/80, 85/84, 144/143

Mapping: [2 1 -4 -3 8 2 6], 0 2 8 8 -1 5 2]]

Optimal tunings:

  • WE: ~7/5 = 600.5123 ¢, ~16/11 = 647.8970 ¢ (~34/33 = 47.3846 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~16/11 = 647.4314 ¢ (~34/33 = 47.4314 ¢)

Optimal ET sequence: 24d, 26

Badness (Sintel): 1.50

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 50/49, 57/56, 78/77, 81/80, 85/84, 144/143

Mapping: [2 1 -4 -3 8 2 6 2], 0 2 8 8 -1 5 2 6]]

Optimal tunings:

  • WE: ~7/5 = 600.6308 ¢, ~16/11 = 648.0424 ¢ (~34/33 = 47.4116 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~16/11 = 647.4715 ¢ (~34/33 = 47.4715 ¢)

Optimal ET sequence: 24d, 26

Badness (Sintel): 1.41

Pombe

Pombe (named after the African millet beer) is a variant of #Teff by Kaiveran Lugheidh that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Its ploidacot is diploid alpha-dicot, the same as teff. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall.

Subgroup: 2.3.5.7

Comma list: 81/80, 300125/294912

Mapping[2 1 -4 11], 0 2 8 -5]]

mapping generators: ~735/512, ~35/24

Optimal tunings:

  • WE: ~735/512 = 601.0652 ¢, ~35/24 = 648.9295 ¢ (~36/35 = 47.8642 ¢)
error map: +2.130 -3.031 +0.861 -1.756]
  • CWE: ~735/512 = 600.0000 ¢, ~35/24 = 647.8628 ¢ (~36/35 = 47.8628 ¢)
error map: 0.000 -6.229 -3.411 -8.140]

Optimal ET sequence24, 26, 50, 126bcd, 176bcdd, 226bbcdd

Badness (Sintel): 2.94

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 245/242, 385/384

Mapping: [2 1 -4 11 8], 0 2 8 -5 -1]]

Optimal tunings:

  • WE: ~99/70 = 600.7890 ¢, ~16/11 = 648.7592 ¢ (~36/35 = 47.9701 ¢)
  • CWE: ~99/70 = 600.0000 ¢, ~16/11 = 647.9516 ¢ (~36/35 = 47.9516 ¢)

Optimal ET sequence: 24, 26, 50

Badness (Sintel): 1.72

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 105/104, 144/143, 245/242

Mapping: [2 1 -4 11 8 2], 0 2 8 -5 -1 5]]

Optimal tunings:

  • WE: ~99/70 = 600.6971 ¢, ~16/11 = 648.6029 ¢ (~36/35 = 47.9058 ¢)
  • CWE: ~99/70 = 600.0000 ¢, ~16/11 = 647.8990 ¢ (~36/35 = 47.8990 ¢)

Optimal ET sequence: 24, 26, 50

Badness (Sintel): 1.28

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 105/104, 144/143, 245/242, 273/272

Mapping: [2 1 -4 11 8 2 6], 0 2 8 -5 -1 5 2]]

Optimal tunings:

  • WE: ~17/12 = 600.7610 ¢, ~16/11 = 648.6638 ¢ (~36/35 = 47.9028 ¢)
  • CWE: ~17/12 = 600.0000 ¢, ~16/11 = 647.8990 ¢ (~36/35 = 47.8990 ¢)

Optimal ET sequence: 24, 26, 50

Badness (Sintel): 1.08

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 105/104, 133/132, 144/143, 171/170, 210/209

Mapping: [2 1 -4 11 8 2 6 2], 0 2 8 -5 -1 5 2 6]]

Optimal tunings:

  • WE: ~17/12 = 600.8048 ¢, ~16/11 = 648.7494 ¢ (~36/35 = 47.9446 ¢)
  • CWE: ~17/12 = 600.0000 ¢, ~16/11 = 647.9425 ¢ (~36/35 = 47.9425 ¢)

Optimal ET sequence: 24, 26, 50

Badness (Sintel): 1.01

Orphic

Orphic has a semi-octave period and four generators plus a period gives the 3rd harmonic; its ploidacot is diploid alpha-tetracot.

Subgroup: 2.3.5.7

Comma list: 81/80, 5898240/5764801

Mapping[2 1 -4 4], 0 4 16 3]]

mapping generators: ~2401/1728, ~343/288

Optimal tunings:

  • WE: ~2401/1728 = 600.1767 ¢, ~343/288 = 324.3015 ¢ (~7/6 = 275.8751 ¢)
error map: +0.353 -4.572 +1.804 +4.785]
  • CWE: ~2401/1728 = 600.0000 ¢, ~343/288 = 324.2285 ¢ (~7/6 = 275.7715 ¢)
error map: 0.000 -5.041 +1.342 +3.860]

Optimal ET sequence26, 48c, 74

Badness (Sintel): 6.55

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 99/98, 73728/73205

Mapping: [2 1 -4 4 8], 0 4 16 3 -2]]

Optimal tunings:

  • WE: ~363/256 = 600.1011 ¢, ~77/64 = 324.2923 ¢ (~7/6 = 275.8088 ¢)
  • CWE: ~363/256 = 600.0000 ¢, ~77/64 = 324.2463 ¢ (~7/6 = 275.7537 ¢)

Optimal ET sequence: 26, 48c, 74

Badness (Sintel): 3.36

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 99/98, 144/143, 2200/2197

Mapping: [2 1 -4 4 8 2], 0 4 16 3 -2 10]]

Optimal tunings:

  • WE: ~55/39 = 600.0540 ¢, ~77/64 = 324.2551 ¢ (~7/6 = 275.7989 ¢)
  • CWE: ~55/39 = 600.0000 ¢, ~77/64 = 324.2307 ¢ (~7/6 = 275.7693 ¢)

Optimal ET sequence: 26, 48c, 74

Badness (Sintel): 2.21

Cloudtone

The cloudtone temperament tempers out the cloudy comma, 16807/16384 and the syntonic comma, 81/80 in the 7-limit. It may be described as 5 & 50; its ploidacot is pentaploid monocot. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order.

Subgroup: 2.3.5.7

Comma list: 81/80, 16807/16384

Mapping[5 0 -20 14], 0 1 4 0]]

mapping generators: ~8/7, ~3

Optimal tunings:

  • WE: ~8/7 = 240.4267 ¢, ~3/2 = 696.9566 ¢ (~49/48 = 24.3235 ¢)
error map: +2.133 -2.865 +1.513 -2.852]
  • CWE: ~8/7 = 240.0000 ¢, ~3/2 = 696.1637 ¢ (~49/48 = 23.8373 ¢)
error map: 0.000 -5.791 -1.659 -8.826]

Optimal ET sequence5, 40c, 45, 50

Badness (Sintel): 2.59

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 385/384, 2401/2376

Mapping: [5 0 -20 14 41], 0 1 4 0 -3]]

Optimal tunings:

  • WE: ~8/7 = 240.2740 ¢, ~3/2 = 697.3317 ¢ (~56/55 = 23.4904 ¢)
  • CWE: ~8/7 = 240.0000 ¢, ~3/2 = 696.6269 ¢ (~56/55 = 23.3731 ¢)

Optimal ET sequence: 5, 45, 50

Badness (Sintel): 2.33

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 105/104, 144/143, 2401/2376

Mapping: [5 0 -20 14 41 -21], 0 1 4 0 -3 5]]

Optimal tunings:

  • WE: ~8/7 = 240.2435 ¢, ~3/2 = 696.8686 ¢ (~91/90 = 23.8618 ¢)
  • CWE: ~8/7 = 240.0000 ¢, ~3/2 = 696.2653 ¢ (~91/90 = 23.7347 ¢)

Optimal ET sequence: 5, 45f, 50

Badness (Sintel): 2.02

Subgroup extensions

Stützel (2.3.5.19)

Subgroup: 2.3.5.19

Comma list: 81/80, 96/95

Subgroup-val mapping[1 0 -4 9], 0 1 4 -3]]

Gencom mapping[1 0 -4 0 0 0 0 9], 0 1 4 0 0 0 0 -3]]

mapping generators: ~2, ~3

Optimal tunings:

  • WE: ~2 = 1199.5513 ¢, ~3/2 = 697.6058 ¢
error map: -0.448 -4.798 +4.110 +6.977]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 697.8222 ¢
error map: 0.000 -4.133 +4.975 +9.020]

Optimal ET sequence5, 7, 12, 31, 43, 98h

Badness (Sintel): 0.324

Hypnotone

Hypnotone is no-sevens flattone.

Subgroup: 2.3.5.11

Comma list: 45/44, 81/80

Subgroup-val mapping[1 0 -4 -6], 0 1 4 6]]

Gencom mapping[1 0 -4 0 -6], 0 1 4 0 6]]

mapping generators: ~2, ~3

Optimal tunings:

  • WE: ~2 = 1202.0621 ¢, ~3/2 = 694.5448 ¢
error map: +2.062 -5.348 -8.135 +15.951]
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 693.9085 ¢
error map: 0.000 -8.047 -10.680 +12.133]

Optimal ET sequence7, 12, 19, 26, 45

Badness (Sintel): 0.326

2.3.5.11.13 subgroup

Subgroup: 2.3.5.11.13

Comma list: 45/44, 65/64, 81/80

Subgroup-val mapping: [1 0 -4 -6 10], 0 1 4 6 -4]]

Gencom mapping: [1 0 -4 0 -6 10], 0 1 4 0 6 -4]]

Optimal tunings:

  • WE: ~2 = 1202.6916 ¢, ~3/2 = 694.4181 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 693.0870 ¢

Optimal ET sequence: 7, 12, 19, 26, 45f

Badness (Sintel): 0.561

Dequarter

Subgroup: 2.3.5.11

Comma list: 33/32, 55/54

Subgroup-val mapping[1 0 -4 5], 0 1 4 -1]]

Gencom mapping[1 0 -4 0 5], 0 1 4 0 -1]]

mapping generators: ~2, ~3

Optimal tunings:

  • WE: ~2 = 1206.5832 ¢, ~3/2 = 695.8763 ¢
error map: +6.583 +0.504 -2.809 -20.862]
  • CWE: ~2 = 1200.000 ¢, ~3/2 = 693.1206 ¢
error map: 0.000 -8.834 -13.831 -44.439]

Optimal ET sequence5, 7, 19e, 26e

Badness (Sintel): 0.451

Dreamtone

Subgroup: 2.3.5.11.13

Comma list: 33/32, 55/54, 975/968

Subgroup-val mapping: [1 0 -4 5 21], 0 1 4 -1 -11]]

Gencom mapping: [1 0 -4 0 5 21], 0 1 4 0 -1 -11]]

Optimal tunings:

  • WE: ~2 = 1207.8248 ¢, ~3/2 = 694.7806 ¢
  • CWE: ~2 = 1200.0000 ¢, ~3/2 = 690.1826 ¢

Optimal ET sequence: 7, 19eff, 26eff, 33ceeff, 40ceeff

Badness (Sintel): 1.40

References