Marvel family
The marvel family is the set of temperaments that temper out the 7-limit marvel comma (225/224 = [-5 2 2 -1⟩) which is also named septimal kleisma. These temperaments hence equate 16/15 and 15/14, or equivalently they equate two 5/4's and one 14/9. The marvel comma is noteworthy in that it is tempered out by many common edos and rank-2 temperaments.
The marvel comma can also be viewed as a comma of the 2.9.25.7 subgroup. Hence it is tempered out by any subset edos of marvel-supporting edos that have this subgroup, such as 11edo and 17edo which are subsets of 22edo and 34edo (when using the 34b val) which temper out the marvel comma.
Marvel
- Main article: Marvel
The head of the marvel family is marvel, which tempers out 225/224. Marvel has a normal list basis of [2, 3, 5]; hence a 5-limit scale can be converted to marvel simply by tempering it. One way to do that, and an excellent marvel tuning, is given by 197edo.
Little is gained in tuning accuracy by not tempering out 4375/4374 as well as 225/224, leading to catakleismic temperament. Another temperament which does little damage to tuning accuracy is compton temperament, for which 240edo may be used. See marvel temperaments for some other rank-2 temperaments.
Subgroup: 2.3.5.7
Comma list: 225/224
Mapping: [⟨1 0 0 -5], ⟨0 1 0 2], ⟨0 0 1 2]]
Mapping generators: ~2, ~3, ~5
Map to lattice: [⟨0 0 -1 -2], ⟨0 1 -1 0]]
Lattice basis:
- secor length = 1.256, 3/2 length = 1.369
- Angle (secor, 3/2) = 106.958 degrees
Optimal tuning (POTE): ~3/2 = 700.4075, ~5/4 = 383.6376
- 7-odd-limit: 3 and 5 1/4c flat, 7 just
- [[1 0 0 0⟩, [5/4 1/2 -1/2 1/4⟩, [5/4 -1/2 1/2 1/4⟩, [0 0 0 1⟩]
- Eigenmonzo subgroup: 2.5/3.7
- 9-odd-limit: 3 1/6c flat, 5 1/3c flat, 7 just
- [[1 0 0 0⟩, [5/6 2/3 -1/3 1/6⟩, [5/3 -2/3 1/3 1/3⟩, [0 0 0 1⟩]
- Eigenmonzo subgroup: 2.9/5.7
Optimal GPV sequence: 9, 10, 12, 19, 31, 41, 53, 72, 197, 269c
Badness: 0.0365 × 10-3
Projection pairs: 7 225/32
Complexity spectrum: 4/3, 5/4, 7/5, 7/6, 8/7, 6/5, 9/8, 9/7, 10/9
Associated temperament: catakleismic
Scales: marvel9, marvel10, marvel11, marvel12, marvel19, marvel22, pump12_1, pump12_2, pump13, pump14, pump15, pump16, pump17, pump18
{2, 3, 5} subgroup
- 8: 16/15, 250/243
- 9: 135/128, 128/125
- 10: 25/24, 2048/2025
- 11: 135/128, 2048/1875
- 12: 2048/2025, 128/125
- 15: 128/125, 32768/30375
- 17: 25/24, 2278125/2097152
- 19: 16875/16384, 81/80
- 21: 128/125, 273375/262144
- 22: 2048/2025, 3125/3072
- 29: 16875/16384, 32805/32768
- 31: 81/80, 34171875/33554432
- 41: 34171875/33554432, 3125/3072
Overview to extensions
The second comma of the normal comma list defines which 11-limit family member we are looking at.
- 4125/4096 gives unidecimal marvel,
- 91125/90112 gives prodigy,
- 5632/5625 gives minerva,
- 243/242 gives spectacle,
as well as others considered below. Temperaments discussed elsewhere include supernatural (→ Keemic family).
Undecimal marvel (unimarv)
Subgroup: 2.3.5.7.11
Comma list: 225/224, 385/384
Mapping: [⟨1 0 0 -5 12], ⟨0 1 0 2 -1], ⟨0 0 1 2 -3]]
Map to lattice: [⟨0 -1 0 -2 1], ⟨0 -1 1 0 -2]]
Lattice basis:
- secor length = 1.0364, 5/4 length = 1.0759
- Angle (secor, 5/4) = 104.028 degrees
Optimal tuning (POTE): ~3/2 = 700.3887, ~5/4 = 383.5403
- 11-odd-limit
- [[1 0 0 0 0⟩, [4/3 8/9 -1/3 0 -1/9⟩, [8/3 -2/9 1/3 0 -2/9⟩, [3 4/3 0 0 -2/3⟩, [8/3 -2/9 -2/3 0 7/9⟩]
- Eigenmonzo subgroup: 2.9/5.11/9
Optimal GPV sequence: 9, 10, 12e, 19, 22, 31, 41, 53, 72, 166, 197e, 238c, 269ce, 341ce
Badness: 0.255 × 10-3
Projection pairs: 7 225/32 11 4096/375
Complexity spectrum: 5/4, 4/3, 7/6, 8/7, 7/5, 6/5, 9/7, 12/11, 9/8, 11/8, 11/9, 10/9, 11/10, 14/11
Associated temperament: catakleismic
Scales: marvel22_11, unimarv19, unimarv22
{2, 3, 5} subgroup
- 12: 128/125, 2048/2025
- 15: 128/125, 32768/30375
- 19: 16875/16384, 81/80
- 22: 2048/2025, 2109375/2097152
- 31: 2109375/2097152, 81/80
- 41: 3125/3072, 34171875/33554432
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 351/350, 385/384
Mapping: [⟨1 0 0 -5 12 -4], ⟨0 1 0 2 -1 -1], ⟨0 0 1 2 -3 4]]
Optimal tuning (POTE): ~3/2 = 699.7367, ~5/4 = 384.0613
Minimax tuning:
- 13-odd-limit eigenmonzo subgroup: 2.11/9.13/9
- 15-odd-limit eigenmonzo subgroup: 2.15/11.15/13
Optimal GPV sequence: 19, 22, 31, 50, 53, 72, 103, 175f, 300ceff, 403bceeff, 578bbccdeeefff
Badness: 0.690 × 10-3
Complexity spectrum: 5/4, 4/3, 16/15, 15/14, 9/7, 6/5, 7/6, 11/8, 7/5, 9/8, 8/7, 10/9, 12/11, 13/10, 11/10, 15/11, 16/13, 11/9, 15/13, 14/13, 13/12, 14/11, 18/13, 13/11
Hecate
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 325/324, 385/384
Mapping: [⟨1 0 0 -5 12 2], ⟨0 1 0 2 -1 4], ⟨0 0 1 2 -3 -2]]
Optimal tuning (POTE): ~3/2 = 700.9779, ~5/4 = 383.1622
Minimax tuning:
- 13-odd-limit eigenmonzo subgroup: 2.7.13/5
- 15-odd-limit eigenmonzo subgroup: 2.7.15/13
Optimal GPV sequence: 19, 22f, 31f, 41, 53, 72, 125f, 166, 238cf
Badness: 0.721 × 10-3
Projection pairs: 7 225/32 11 4096/375 13 324/25
Complexity spectrum: 4/3, 5/4, 16/15, 15/14, 6/5, 9/8, 7/5, 9/7, 7/6, 10/9, 8/7, 18/13, 11/8, 12/11, 13/12, 11/9, 11/10, 15/13, 15/11, 16/13, 13/11, 14/13, 13/10, 14/11
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 225/224, 325/324, 385/384, 595/594
Mapping: [⟨1 0 0 -5 12 2 18], ⟨0 1 0 2 -1 4 0], ⟨0 0 1 2 -3 -2 -6]]
Optimal tuning (POTE): ~3/2 = 700.9619, ~5/4 = 383.0310
Optimal GPV sequence: 19, 22f, 31fg, 41, 53g, 72, 166g, 238cfg, 404ccefgg
Badness: 0.869 × 10-3
Enodia
Subgroup: 2.3.5.7.11.13.17
Comma list: 225/224, 325/324, 375/374, 385/384
Mapping: [⟨1 0 0 -5 12 2 18], ⟨0 1 0 2 -1 4 0], ⟨0 0 1 2 -3 -2 6]]
Optimal tuning (POTE): ~3/2 = 700.9658, ~5/4 = 383.3063
Optimal GPV sequence: 19g, 22f, 31f, 41g, 53, 72, 166g, 238cfg, 404ccefgg
Badness: 0.917 × 10-3
Marvell
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 385/384, 1573/1568
Mapping: [⟨1 0 0 -5 12 -29], ⟨0 1 0 2 -1 6], ⟨0 0 1 2 -3 10]]
Optimal tuning (POTE): ~3/2 = 700.3937, ~5/4 = 383.5725
Minimax tuning:
- 13-odd-limit eigenmonzo subgroup: 2.9/5.11/9
- 15-odd-limit eigenmonzo subgroup: 2.7.15/13
Optimal GPV sequence: 9, 22f, 31, 63, 72, 103, 166, 238cf, 269ce, 507bcceff, 610bcceeff
Badness: 0.862 × 10-3
Isis
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 275/273, 385/384
Mapping: [⟨1 0 0 -5 12 17], ⟨0 1 0 2 -1 4], ⟨0 0 1 2 -3 -3]]
Optimal tuning (POTE): ~3/2 = 701.9156, ~5/4 = 383.2445
Optimal GPV sequence: 10, 19f, 22, 31, 41, 53, 94
Badness: 0.866 × 10-3
Projection pairs: 7 225/32 11 4096/375 13 131072/10125
Deecee
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 364/363, 385/384
Mapping: [⟨1 0 0 -5 12 27], ⟨0 1 0 2 -1 -3], ⟨0 0 1 2 -3 -8]]
Optimal tuning (POTE): ~3/2 = 700.4560, ~5/4 = 382.8177
Minimax tuning:
- 13-odd-limit eigenmonzo subgroup: 2.9/5.13/9
- 15-odd-limit eigenmonzo subgroup: 2.3.13/5
Optimal GPV sequence: 9, 19f, 22, 31f, 41, 63, 72, 185cf, 257cff
Badness: 0.920 × 10-3
Projection pairs: 7 225/32 11 4096/375 13 134217728/10546875
Tripod
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 144/143, 196/195
Mapping: [⟨1 0 0 -5 12 -8], ⟨0 1 0 2 -1 3], ⟨0 0 1 2 -3 3]]
Optimal tuning (POTE): ~3/2 = 699.2335, ~5/4 = 382.9775
Minimax tuning:
- 13-odd-limit eigenmonzo subgroup: 2.9/7.13/11
- 15-odd-limit eigenmonzo subgroup: 2.5/3.13/11
Optimal GPV sequence: 9, 10, 19, 22f, 31, 41, 72f, 91, 122f, 163df
Badness: 0.745 × 10-3
Projection pairs: 7 225/32 11 4096/375 13 3375/256
Marvelcat
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 225/224, 385/384
Mapping: [⟨1 0 0 -5 12 -1], ⟨0 2 0 4 -2 3], ⟨0 0 1 2 -3 1]]
Mapping generators: ~2, ~26/15, ~5
Optimal tuning (POTE): ~15/13 = 249.7138, ~5/4 = 383.5816
Optimal GPV sequence: 9, 10, 19, 44, 53, 72, 125f, 197ef, 269ceff
Badness: 0.9997 × 10-3
Minerva
Subgroup: 2.3.5.7.11
Comma list: 99/98, 176/175
Mapping: [⟨1 0 0 -5 -9], ⟨0 1 0 2 2], ⟨0 0 1 2 4]]
Map to lattice: [⟨0 -1 0 -2 -2], ⟨0 -1 1 0 2]]
Lattice basis:
- 16/15 length = 0.8997, 5/4 length = 1.0457
- Angle (16/15, 5/4) = 98.6044 degrees
Optimal tuning (POTE): ~3/2 = 700.2593, ~5/4 = 386.5581
Minimax tuning: 11-odd-limit eigenmonzo subgroup: 2.7/5.11/9
Optimal GPV sequence: 9, 12, 19e, 22, 31, 53, 84e, 96, 127
Badness: 0.381 × 10-3
Projection pairs: 7 225/32 11 5625/512
Scales (Scala files): minerva12, minerva22x
Associated temperament: würschmidt
Athene
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 176/175, 275/273
Mapping: [⟨1 0 0 -5 -9 -4], ⟨0 1 0 2 2 -1], ⟨0 0 1 2 4 4]]
Optimal tuning (POTE): ~3/2 = 701.2342, ~5/4 = 385.9594
Minimax tuning:
- 13-odd-limit eigenmonzo subgroup: 2.11/9.13/7
- 15-odd-limit eigenmonzo subgroup: 2.11/9.13/7
Optimal GPV sequence: 12f, 19e, 22, 31, 53, 84e, 118d, 171de, 202def
Badness: 0.818 × 10-3
Projection pairs: 7 225/32 11 5625/512 13 625/48
Apollo
Subgroup: 2.3.5.7.11
Comma list: 100/99, 225/224
Mapping: [⟨1 0 0 -5 2], ⟨0 1 0 2 -2], ⟨0 0 1 2 2]]
Optimal tuning (POTE): ~3/2 = 703.4846, ~5/4 = 381.6033
Minimax tuning: 11-odd-limit eigenmonzo subgroup: 2.7/5.11/9
Optimal GPV sequence: 12, 19, 22, 34d, 41, 104, 157ce, 198ce, 220ce, 261ce
Projection pairs: 7 225/32 11 100/9
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 225/224, 275/273
Mapping: [⟨1 0 0 -5 2 7], ⟨0 1 0 2 -2 -5], ⟨0 0 1 2 2 2]]
Optimal tuning (POTE): ~3/2 = 703.9984, ~5/4 = 381.5352
Minimax tuning: 13-odd-limit eigenmonzo subgroup: 2.11/9.13/9
Optimal GPV sequence: 12f, 19f, 22, 29, 34d, 41, 63, 104, 179cef, 242cde, 283def, 346bcdef
Projection pairs: 7 225/32 11 100/9 13 3200/243
Potassium
Subgroup: 2.3.5.7.11
Comma list: 45/44, 56/55
Mapping: [⟨1 0 0 -5 -2], ⟨0 1 0 2 2], ⟨0 0 1 2 1]]
Optimal tuning (POTE): ~3/2 = 696.1714, ~5/4 = 385.0500
Minimax tuning: 11-odd-limit eigenmonzo subgroup: 2.9/7.11
Optimal GPV sequence: 7d, 9, 10, 12, 19, 31e, 50e
Badness: 0.464 × 10-3
Projection pairs: 7 225/32 11 45/4
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 56/55, 78/77
Mapping: [⟨1 0 0 -5 -2 -8], ⟨0 1 0 2 2 3], ⟨0 0 1 2 1 3]]
Optimal tuning (POTE): ~3/2 = 696.0103, ~5/4 = 384.6785
Minimax tuning:
- 13-odd-limit eigenmonzo subgroup: 2.9/7.13/9
- 15-odd-limit eigenmonzo subgroup: 2.9/7.13/9
Optimal GPV sequence: 9, 10, 12f, 19, 31e, 50e
Badness: 0.733 × 10-3
Projection pairs: 7 225/32 11 45/4 13 3375/256
Malcolm
Subgroup: 2.3.5.7.11
Comma list: 225/224, 2200/2187
Mapping: [⟨1 0 0 -5 -3], ⟨0 1 0 2 7], ⟨0 0 1 2 -2]]
Optimal tuning (POTE): ~3/2 = 701.8913, ~5/4 = 382.4083
Optimal GPV sequence: 12e, 19e, 34d, 41, 53, 60e, 94, 229c, 248ce, 289cce, 342ccee, 383cce
Badness: 1.250 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 275/273, 325/324
Mapping: [⟨1 0 0 -5 -3 2], ⟨0 1 0 2 7 4], ⟨0 0 1 2 -2 -2]]
Optimal tuning (POTE): ~3/2 = 701.8913, ~5/4 = 382.4083
Optimal GPV sequence: 12e, 19e, 34d, 41, 53, 94, 429ccdeef, 523ccdeef
Badness: 1.075 × 10-3
Prodigy
Prodigy shrinks 1024/1029, 243/242, 384/385 and 2400/2401 down to the same tiny interval. Hence in practice it probably makes the most sense to temper this out as well, leading to miracle temperament. This, however, does not render it pointless to consider prodigy; for one thing, scales in prodigy such as hobbit scales translate into interesting scales for miracle.
Subgroup: 2.3.5.7.11
Comma list: 225/224, 441/440
Mapping: [⟨1 0 0 -5 -13], ⟨0 1 0 2 6], ⟨0 0 1 2 3]]
Map to lattice: [⟨0 0 -1 -2 -3], ⟨0 1 -1 0 3]]
Lattice basis:
- secor length = 0.9111, 3/2 length = 0.9477
- Angle (secor, 3/2) = 65.933
Optimal tuning (POTE): ~3/2 = 699.7981, ~5/4 = 383.5114
- [[1 0 0 0 0⟩, [13/12 1/2 -1/4 0 1/12⟩, [13/6 -1 1/2 0 1/6⟩, [3/2 -1 1/2 0 1/2⟩, [0 0 0 0 1⟩]
- Eigenmonzo subgroup: 2.9/5.11
Optimal GPV sequence: 10, 12, 19e, 29, 31, 41, 60e, 72, 247c, 319bcde, 391bcde, 463bccde
Badness: 0.344 × 10-3
Projection pairs: 7 225/32 11 91125/8192
Scales: prodigy11, prodigy12, prodigy29
Associated temperament: miracle
{2, 3, 5} subgroup
- 31: 81/80, 34171875/33554432
- 41: 34171875/33554432, 32805/32768
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 196/195, 352/351
Mapping: [⟨1 0 0 -5 -13 -8], ⟨0 1 0 2 6 3], ⟨0 0 1 2 3 3]]
Optimal tuning (POTE): ~3/2 = 700.4006, ~5/4 = 381.4025
Optimal GPV sequence: 10, 12f, 19e, 29, 31, 41, 60e, 72f, 91e, 101cd, 132def, 233ccddeef, 274ccddeff, 305ccddeeff
Badness: 0.736 × 10-3
Prodigious
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 364/363, 441/440
Mapping: [⟨1 0 0 -5 -13 -23], ⟨0 1 0 2 6 11], ⟨0 0 1 2 3 4]]
Optimal tuning (POTE): ~3/2 = 700.3407, ~5/4 = 383.2592
Optimal GPV sequence: 12f, 29, 31f, 41, 72, 185cf, 341cf, 413bcff, 526bccdff
Badness: 0.900 × 10-3
Prodigal
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 351/350, 441/440
Mapping: [⟨1 0 0 -5 -13 -4], ⟨0 1 0 2 6 -1], ⟨0 0 1 2 3 4]]
Optimal tuning (POTE): ~3/2 = 699.4864, ~5/4 = 384.0998
Optimal GPV sequence: 12f, 19e, 31, 53e, 60eff, 72, 103, 175f
Badness: 0.889 × 10-3
Protannic
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 441/440, 1001/1000
Mapping: [⟨1 0 0 -5 -13 21], ⟨0 1 0 2 6 -8], ⟨0 0 1 2 3 -2]]
Optimal tuning (POTE): ~3/2 = 699.5536, ~5/4 = 383.5696
Optimal GPV sequence: 29, 31, 43, 60e, 72, 103, 175f, 482bccddeefff, 554bbccddeeeffff
Badness: 0.953 × 10-3
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 225/224, 273/272, 375/374, 441/440
Mapping: [⟨1 0 0 -5 -13 21 12], ⟨0 1 0 2 6 -8 -5], ⟨0 0 1 2 3 -2 0]]
Optimal tuning (POTE): ~3/2 = 699.6262, ~5/4 = 383.4458
Optimal GPV sequence: 29g, 31, 43, 60e, 72, 103, 175f, 307bcdeeffg, 379bccdeeffgg, 482bccddeefffgg, 554bbccddeeeffffgg
Badness: 0.772 × 10-3
Fantastic
Subgroup: 2.3.5.7.11
Comma list: 225/224, 4375/4356
Mapping: [⟨2 0 0 -10 -7], ⟨0 1 0 2 0], ⟨0 0 1 2 3]]
Mapping generators: ~99/70, ~3, ~5
Optimal tuning (POTE): ~3/2 = 700.6242, ~5/4 = 383.2978
Optimal GPV sequence: 12, 22, 34d, 50, 60e, 72, 166, 238c, 310c
Badness: 0.743 × 10-3
Spectacle
Subgroup: 2.3.5.7.11
Comma list: 225/224, 243/242
Mapping: [⟨1 1 0 -3 2], ⟨0 2 0 4 5], ⟨0 0 1 2 0]]
Mapping generators: ~2, ~11/9, ~5
Optimal tuning (POTE): ~11/9 = 350.0570, ~5/4 = 383.9323
- [[1 0 0 0 0⟩, [1/5 0 0 0 2/5⟩, [2/5 -2 1 0 4/5⟩, [-19/5 -4 2 0 12/5⟩, [0 0 0 0 1⟩]
- Eigenmonzo subgroup: 2.9/5.11
Optimal GPV sequence: 31, 41, 72, 247c, 281, 353c, 425bc, 497bc
Badness: 0.499 × 10-3
Projection pairs: 3 242/81 7 366025/52488 11 644204/59049 to 2.5.11/9
Scales (Scala files): spectacle31
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 243/242, 351/350
Mapping: [⟨1 1 0 -3 2 -5], ⟨0 2 0 4 5 -2], ⟨0 0 1 2 0 4]]
Mapping generators: ~2, ~11/9, ~5
Optimal tuning (POTE): ~11/9 = 349.9247, ~5/4 = 384.3505
Optimal GPV sequence: 31, 72, 103, 175f *
* optimal patent val: 240
Badness: 1.009 × 10-3
Hestia
Subgroup: 2.3.5.7.11
Comma list: 225/224, 125000/124509
Mapping: [⟨1 0 0 -5 9], ⟨0 2 0 4 -7], ⟨0 0 1 2 0]]
Mapping generators: ~2, ~400/231, ~5
Optimal tuning (POTE): ~400/231 = 950.1474, ~5/4 = 383.6467
Optimal GPV sequence: 19, 29, 43, 53, 72, 197e, 269ce, 341ce, 610bce
Badness: 1.54 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 225/224, 1001/1000
Mapping: [⟨1 0 0 -5 9 -1], ⟨0 2 0 4 -7 3], ⟨0 0 1 2 0 1]]
Optimal tuning (POTE): ~26/15 = 950.2349, ~5/4 = 383.5558
Optimal GPV sequence: 19, 29, 43, 53, 72, 125f, 197ef, 269cef
Badness: 1.062 × 10-3
Artemis
Subgroup: 2.3.5.7.11
Comma list: 121/120, 225/224
Mapping: [⟨1 0 1 -3 2], ⟨0 1 1 4 1], ⟨0 0 -2 -4 -1]]
Mapping generators: ~2, ~3, ~11/10
Optimal tuning (POTE): ~3/2 = 699.8719, ~11/10 = 158.3232
Optimal GPV sequence: 9, 15d, 16d, 20, 22, 31, 53, 82e, 84e, 113e, 144ee
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 121/120, 196/195
Mapping: [⟨1 0 1 -3 2 -5], ⟨0 1 1 4 1 6], ⟨0 0 -2 -4 -1 -6]]
Mapping generators: ~2, ~3, ~11/10
Optimal tuning (POTE): ~3/2 = 698.7090, ~11/10 = 158.7117
Optimal GPV sequence: 9, 20, 22f, 29, 31
Diana
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 225/224, 275/273
Mapping: [⟨1 0 1 -3 2 7], ⟨0 1 1 4 1 -2], ⟨0 0 -2 -4 -1 -1]]
Mapping generators: ~2, ~3, ~11/10
Optimal tuning (POTE): ~3/2 = 700.9789, ~11/10 = 159.0048
Optimal GPV sequence: 22, 29, 31, 53, 82e, 84e, 113e, 166ee
Morfil
Subgroup: 2.3.5.7.11
Comma list: 225/224, 1331/1323
Mapping: [⟨1 0 1 -3 -2], ⟨0 1 2 6 5], ⟨0 0 -3 -6 -4]]
Mapping generators: ~2, ~3, ~84/55
Optimal tuning (POTE): ~3/2 = 700.8983, ~84/55 = 739.3812
Optimal GPV sequence: 29, 31, 60e, 91e, 94, 125
Badness: 1.152 × 10-3
Catakleismoid
Subgroup: 2.3.5.7.11
Comma list: 225/224, 4375/4374
Mapping: [⟨1 0 1 -3 0], ⟨0 6 5 22 0], ⟨0 0 0 0 1]]
Mapping generators: ~2, ~6/5, ~11
Optimal tuning (POTE): ~6/5 = 316.7318, ~11/8 = 549.2528
Optimal GPV sequence: 19, 34d, 53, 72, 197e, 269ce
Badness: 1.275 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 225/224, 325/324
Mapping: [⟨1 0 1 -3 0 0], ⟨0 6 5 22 0 14], ⟨0 0 0 0 1 0]]
Mapping generators: ~2, ~6/5, ~11
Optimal tuning (POTE): ~6/5 = 316.7410, ~11/8 = 548.6028
Optimal GPV sequence: 19, 34d, 53, 72, 125f, 197ef, 269cef
Badness: 0.916 × 10-3
Mirage
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 243/242, 385/384
Mapping: [⟨1 1 3 3 2 0], ⟨0 6 -7 -2 15 0], ⟨0 0 0 0 0 1]]
Mapping generators: ~2, ~15/14, ~13
Optimal tuning (POTE): ~15/14 = 116.6327, ~13/8 = 837.7040
Optimal GPV sequence: 10, 31, 41, 62, 72, 103, 175f, 216c, 288cdf, 391bcdef
Badness: 0.738 × 10-3