User:Ganaram inukshuk/Sandbox
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
Sandbox for proposed templates
JI ratio intro
For general ratios: m/n, also called interval-name, is a p-limit just intonation ratio of exactly/about r¢.
For harmonics: m/1, also called interval-name, is a just intonation ration that represents the mth harmonic of exactly/about r¢.
MOS step sizes
Interval | Basic 3L 4s
(10edo, L:s = 2:1) |
Hard 3L 4s
(13edo, L:s = 3:1) |
Soft 3L 4s
(17edo, L:s = 3:2) |
Approx. JI ratios | |||
---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | ||
Large step | 2 | 240¢ | 3 | 276.9¢ | 3 | 211.8¢ | Hide column if no ratios given |
Small step | 1 | 120¢ | 1 | 92.3¢ | 2 | 141.2¢ | |
Bright generator | 3 | 360¢ | 4 | 369.2¢ | 5 | 355.6¢ |
Notes:
- Allow option to show the bright generator, dark generator, or no generator.
- JI ratios column only shows if there are any ratios to show
Expanded MOS intro
Base wording
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
Rothenprop info
Single-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step.
Multi-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step per period.
Descendant info (descendants of tamnams-named mosses only)
scalesig is a chromatic/enharmonic scale of parent-scalesig, an extension of parent-scalesig scales with a step-ratio-range step ratio.
scalesig is a descendant scale of parent-scalesig.
Full wording
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.
Examples
5L 7s, also called p-chromatic, is an octave-equivalent moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a chromatic scale of 5L 2s, an extension of 5L 2s scales with a hard-of-basic step ratio. Generators that produce this scale range from 700¢ to 720¢, or from 480¢ to 500¢.
Mos ancestors and descendants
2nd ancestor | 1st ancestor | Mos | 1st descendants | 2nd descendants |
---|---|---|---|---|
uL vs | zL ws | xL ys | xL (x+y)s | xL (2x+y)s |
(2x+y)L xs | ||||
(x+y)L xs | (2x+y)L (x+y)s | |||
(x+y)L (2x+y)s |
6- to 10-note mosses | 1L 5s (selenite) | 2L 4s ( | 3L 3s | 4L 2 | 5L 1s | ||||||||
Monolarge family | 1L 5s (selenite) | 1L 6s (onyx) | 1L 7s (spinel) | 1L 8s (agate) | 1L 9s (olivine) | ||||||||
Diatonic mos family |
|
Scale tree formatting
Proposed changes:
- Merge step ratio and hardness columns
Steps of ED | Generator in cents | Step ratio | Comments | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Ranges | |||||||||
4\7 | 685.714 | 514.286 | 1:1 | Equalized | ||||||||
27\47 | 689.362 | 510.638 | 7:6 | Ultrasoft range |
| |||||||
23\40 | 690 | 510 | 6:5 | |||||||||
42\73 | 690.411 | 509.589 | 11:9 | |||||||||
19\33 | 690.909 | 509.091 | 5:4 | |||||||||
53\92 | 691.304 | 508.696 | 14:11 | |||||||||
34\59 | 691.525 | 508.475 | 9:7 | |||||||||
49\85 | 691.765 | 508.235 | 13:10 | |||||||||
15\26 | 692.308 | 507.692 | 4:3 | Supersoft | ||||||||
56\97 | 692.784 | 507.216 | 15:11 | Parasoft range | ||||||||
41\71 | 692.958 | 507.042 | 11:8 | |||||||||
67\116 | 693.103 | 506.897 | 18:13 | |||||||||
26\45 | 693.333 | 506.667 | 7:5 | |||||||||
63\109 | 693.578 | 506.422 | 17:12 | |||||||||
37\64 | 693.75 | 506.25 | 10:7 | |||||||||
48\83 | 693.976 | 506.024 | 13:9 | |||||||||
11\19 | 694.737 | 505.263 | 3:2 | Soft | ||||||||
51\88 | 695.455 | 504.545 | 14:9 | Quasisoft range | ||||||||
40\69 | 695.652 | 504.348 | 11:7 | |||||||||
69\119 | 695.798 | 504.202 | 19:12 | |||||||||
29\50 | 696 | 504 | 8:5 | |||||||||
76\131 | 696.183 | 503.817 | 21:13 | |||||||||
47\81 | 696.296 | 503.704 | 13:8 | |||||||||
65\112 | 696.429 | 503.571 | 18:11 | |||||||||
18\31 | 696.774 | 503.226 | 5:3 | Semisoft | ||||||||
61\105 | 697.143 | 502.857 | 17:10 | Minisoft range | ||||||||
43\74 | 697.297 | 502.703 | 12:7 | |||||||||
68\117 | 697.436 | 502.564 | 19:11 | |||||||||
25\43 | 697.674 | 502.326 | 7:4 | |||||||||
57\98 | 697.959 | 502.041 | 16:9 | |||||||||
32\55 | 698.182 | 501.818 | 9:5 | |||||||||
39\67 | 698.507 | 501.493 | 11:6 | |||||||||
7\12 | 700 | 500 | 2:1 | Basic | ||||||||
38\65 | 701.538 | 498.462 | 11:5 | Minihard range | ||||||||
31\53 | 701.887 | 498.113 | 9:4 | |||||||||
55\94 | 702.128 | 497.872 | 16:7 | |||||||||
24\41 | 702.439 | 497.561 | 7:3 | |||||||||
65\111 | 702.703 | 497.297 | 19:8 | |||||||||
41\70 | 702.857 | 497.143 | 12:5 | |||||||||
58\99 | 703.03 | 496.97 | 17:7 | |||||||||
17\29 | 703.448 | 496.552 | 5:2 | Semihard | ||||||||
61\104 | 703.846 | 496.154 | 18:7 | Quasihard range | ||||||||
44\75 | 704 | 496 | 13:5 | |||||||||
71\121 | 704.132 | 495.868 | 21:8 | |||||||||
27\46 | 704.348 | 495.652 | 8:3 | |||||||||
64\109 | 704.587 | 495.413 | 19:7 | |||||||||
37\63 | 704.762 | 495.238 | 11:4 | |||||||||
47\80 | 705 | 495 | 14:5 | |||||||||
10\17 | 705.882 | 494.118 | 3:1 | Hard | ||||||||
43\73 | 706.849 | 493.151 | 13:4 | Superhard range | ||||||||
33\56 | 707.143 | 492.857 | 10:3 | |||||||||
56\95 | 707.368 | 492.632 | 17:5 | |||||||||
23\39 | 707.692 | 492.308 | 7:2 | |||||||||
59\100 | 708 | 492 | 18:5 | |||||||||
36\61 | 708.197 | 491.803 | 11:3 | |||||||||
49\83 | 708.434 | 491.566 | 15:4 | |||||||||
13\22 | 709.091 | 490.909 | 4:1 | Superhard | ||||||||
42\71 | 709.859 | 490.141 | 13:3 | Ultrahard range | ||||||||
29\49 | 710.204 | 489.796 | 9:2 | |||||||||
45\76 | 710.526 | 489.474 | 14:3 | |||||||||
16\27 | 711.111 | 488.889 | 5:1 | |||||||||
35\59 | 711.864 | 488.136 | 11:2 | |||||||||
19\32 | 712.5 | 487.5 | 6:1 | |||||||||
22\37 | 713.514 | 486.486 | 7:1 | |||||||||
3\5 | 720 | 480 | 1:0 | Collapsed |