User:Ganaram inukshuk/Sandbox: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Ganaram inukshuk (talk | contribs)
Ganaram inukshuk (talk | contribs)
Scale tree formatting: sideways text test
Line 181: Line 181:
|7:6
|7:6
| rowspan="7" | <div style="writing-mode: vertical-rl; text-orientation: mixed;">Ultrasoft range</div>
| rowspan="7" | <div style="writing-mode: vertical-rl; text-orientation: mixed;">Ultrasoft range</div>
|
|-
|-
|[[40edo|23\40]]
|[[40edo|23\40]]
Line 186: Line 187:
|510
|510
|6:5
|6:5
|
|-
|-
|[[73edo|42\73]]
|[[73edo|42\73]]
Line 191: Line 193:
|509.589
|509.589
|11:9
|11:9
|
|-
|-
|[[33edo|19\33]]
|[[33edo|19\33]]
Line 196: Line 199:
|509.091
|509.091
|5:4
|5:4
|
|-
|-
|[[92edo|53\92]]
|[[92edo|53\92]]
Line 201: Line 205:
|508.696
|508.696
|14:11
|14:11
|
|-
|-
|[[59edo|34\59]]
|[[59edo|34\59]]
Line 206: Line 211:
|508.475
|508.475
|9:7
|9:7
|
|-
|-
|[[85edo|49\85]]
|[[85edo|49\85]]
Line 211: Line 217:
|508.235
|508.235
|13:10
|13:10
|
|-
|-
|[[26edo|15\26]]
|[[26edo|15\26]]
Line 223: Line 230:
|507.216
|507.216
|15:11
|15:11
| rowspan="7" | <div style="writing-mode: vertical-rl; text-orientation: mixed;">Parasoftrange</div>
| rowspan="7" | <div style="writing-mode: vertical-rl; text-orientation: mixed;">Parasoft range</div>
|
|
|-
|-
Line 273: Line 280:
|504.545
|504.545
|14:9
|14:9
| rowspan="7" |Quasisoft range
| rowspan="7" |
|
|
|-
|-

Revision as of 22:12, 10 February 2024

This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)

Sandbox for proposed templates

JI ratio intro

For general ratios: m/n, also called interval-name, is a p-limit just intonation ratio of exactly/about r¢.

For harmonics: m/1, also called interval-name, is a just intonation ration that represents the mth harmonic of exactly/about r¢.

MOS step sizes

3L 4s step sizes
Interval Basic 3L 4s

(10edo, L:s = 2:1)

Hard 3L 4s

(13edo, L:s = 3:1)

Soft 3L 4s

(17edo, L:s = 3:2)

Approx. JI ratios
Steps Cents Steps Cents Steps Cents
Large step 2 240¢ 3 276.9¢ 3 211.8¢ Hide column if no ratios given
Small step 1 120¢ 1 92.3¢ 2 141.2¢
Bright generator 3 360¢ 4 369.2¢ 5 355.6¢

Notes:

  • Allow option to show the bright generator, dark generator, or no generator.
  • JI ratios column only shows if there are any ratios to show

Expanded MOS intro

Base wording

scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.

scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.

Rothenprop info

Single-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step.

Multi-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step per period.

Descendant info (descendants of tamnams-named mosses only)

scalesig is a chromatic/enharmonic scale of parent-scalesig, an extension of parent-scalesig scales with a step-ratio-range step ratio.

scalesig is a descendant scale of parent-scalesig.

Full wording

scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.

scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.

Examples

5L 7s, also called p-chromatic, is an octave-equivalent moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a chromatic scale of 5L 2s, an extension of 5L 2s scales with a hard-of-basic step ratio. Generators that produce this scale range from 700¢ to 720¢, or from 480¢ to 500¢.

Mos ancestors and descendants

2nd ancestor 1st ancestor Mos 1st descendants 2nd descendants
uL vs zL ws xL ys xL (x+y)s xL (2x+y)s
(2x+y)L xs
(x+y)L xs (2x+y)L (x+y)s
(x+y)L (2x+y)s

Navbox MOS

Scale tree formatting

Proposed changes:

  • Merge step ratio and hardness columns

Advanced table may need custom html?

Steps of ED Generator in cents Step ratio Comments
Bright Dark L:s Ranges
4\7 685.714 514.286 1:1 Equalized
27\47 689.362 510.638 7:6
Ultrasoft range
23\40 690 510 6:5
42\73 690.411 509.589 11:9
19\33 690.909 509.091 5:4
53\92 691.304 508.696 14:11
34\59 691.525 508.475 9:7
49\85 691.765 508.235 13:10
15\26 692.308 507.692 4:3 Supersoft
56\97 692.784 507.216 15:11
Parasoft range
41\71 692.958 507.042 11:8
67\116 693.103 506.897 18:13
26\45 693.333 506.667 7:5
63\109 693.578 506.422 17:12
37\64 693.75 506.25 10:7
48\83 693.976 506.024 13:9
11\19 694.737 505.263 3:2 Soft
51\88 695.455 504.545 14:9
40\69 695.652 504.348 11:7
69\119 695.798 504.202 19:12
29\50 696 504 8:5
76\131 696.183 503.817 21:13
47\81 696.296 503.704 13:8
65\112 696.429 503.571 18:11
18\31 696.774 503.226 5:3 Semisoft
61\105 697.143 502.857 17:10 Minisoft range
43\74 697.297 502.703 12:7
68\117 697.436 502.564 19:11
25\43 697.674 502.326 7:4
57\98 697.959 502.041 16:9
32\55 698.182 501.818 9:5
39\67 698.507 501.493 11:6
7\12 700 500 2:1 Basic
38\65 701.538 498.462 11:5 Minihard range
31\53 701.887 498.113 9:4
55\94 702.128 497.872 16:7
24\41 702.439 497.561 7:3
65\111 702.703 497.297 19:8
41\70 702.857 497.143 12:5
58\99 703.03 496.97 17:7
17\29 703.448 496.552 5:2 Semihard
61\104 703.846 496.154 18:7 Quasihard range
44\75 704 496 13:5
71\121 704.132 495.868 21:8
27\46 704.348 495.652 8:3
64\109 704.587 495.413 19:7
37\63 704.762 495.238 11:4
47\80 705 495 14:5
10\17 705.882 494.118 3:1 Hard
43\73 706.849 493.151 13:4 Superhard range
33\56 707.143 492.857 10:3
56\95 707.368 492.632 17:5
23\39 707.692 492.308 7:2
59\100 708 492 18:5
36\61 708.197 491.803 11:3
49\83 708.434 491.566 15:4
13\22 709.091 490.909 4:1 Superhard
42\71 709.859 490.141 13:3 Ultrahard range
29\49 710.204 489.796 9:2
45\76 710.526 489.474 14:3
16\27 711.111 488.889 5:1
35\59 711.864 488.136 11:2
19\32 712.5 487.5 6:1
22\37 713.514 486.486 7:1
3\5 720 480 1:0 Collapsed