User:Ganaram inukshuk/Sandbox: Difference between revisions
No edit summary |
|||
Line 150: | Line 150: | ||
</div> | </div> | ||
== Scale tree formatting == | |||
Proposed changes: | |||
* Merge step ratio and hardness columns | |||
{| class="wikitable" | |||
! rowspan="2" |Steps of ED | |||
! colspan="2" |Generator in cents | |||
! colspan="2" |Step ratio | |||
! rowspan="2" |Comments | |||
|- | |||
!Bright | |||
!Dark | |||
!L:s | |||
!Ranges | |||
|- | |||
|[[7edo|4\7]] | |||
|685.714 | |||
|514.286 | |||
|1:1 | |||
|Equalized | |||
| | |||
|- | |||
|[[47edo|27\47]] | |||
|689.362 | |||
|510.638 | |||
|7:6 | |||
| rowspan="7" |Ultrasoft range | |||
| | |||
|- | |||
|[[40edo|23\40]] | |||
|690 | |||
|510 | |||
|6:5 | |||
| | |||
|- | |||
|[[73edo|42\73]] | |||
|690.411 | |||
|509.589 | |||
|11:9 | |||
| | |||
|- | |||
|[[33edo|19\33]] | |||
|690.909 | |||
|509.091 | |||
|5:4 | |||
| | |||
|- | |||
|[[92edo|53\92]] | |||
|691.304 | |||
|508.696 | |||
|14:11 | |||
| | |||
|- | |||
|[[59edo|34\59]] | |||
|691.525 | |||
|508.475 | |||
|9:7 | |||
| | |||
|- | |||
|[[85edo|49\85]] | |||
|691.765 | |||
|508.235 | |||
|13:10 | |||
| | |||
|- | |||
|[[26edo|15\26]] | |||
|692.308 | |||
|507.692 | |||
|4:3 | |||
|Supersoft | |||
| | |||
|- | |||
|[[97edo|56\97]] | |||
|692.784 | |||
|507.216 | |||
|15:11 | |||
| rowspan="7" |Parasoft range | |||
| | |||
|- | |||
|[[71edo|41\71]] | |||
|692.958 | |||
|507.042 | |||
|11:8 | |||
| | |||
|- | |||
|[[116edo|67\116]] | |||
|693.103 | |||
|506.897 | |||
|18:13 | |||
| | |||
|- | |||
|[[45edo|26\45]] | |||
|693.333 | |||
|506.667 | |||
|7:5 | |||
| | |||
|- | |||
|[[109edo|63\109]] | |||
|693.578 | |||
|506.422 | |||
|17:12 | |||
| | |||
|- | |||
|[[64edo|37\64]] | |||
|693.75 | |||
|506.25 | |||
|10:7 | |||
| | |||
|- | |||
|[[83edo|48\83]] | |||
|693.976 | |||
|506.024 | |||
|13:9 | |||
| | |||
|- | |||
|[[19edo|11\19]] | |||
|694.737 | |||
|505.263 | |||
|3:2 | |||
|Soft | |||
| | |||
|- | |||
|[[88edo|51\88]] | |||
|695.455 | |||
|504.545 | |||
|14:9 | |||
| rowspan="7" |Quasisoft range | |||
| | |||
|- | |||
|[[69edo|40\69]] | |||
|695.652 | |||
|504.348 | |||
|11:7 | |||
| | |||
|- | |||
|[[119edo|69\119]] | |||
|695.798 | |||
|504.202 | |||
|19:12 | |||
| | |||
|- | |||
|[[50edo|29\50]] | |||
|696 | |||
|504 | |||
|8:5 | |||
| | |||
|- | |||
|[[131edo|76\131]] | |||
|696.183 | |||
|503.817 | |||
|21:13 | |||
| | |||
|- | |||
|[[81edo|47\81]] | |||
|696.296 | |||
|503.704 | |||
|13:8 | |||
| | |||
|- | |||
|[[112edo|65\112]] | |||
|696.429 | |||
|503.571 | |||
|18:11 | |||
| | |||
|- | |||
|[[31edo|18\31]] | |||
|696.774 | |||
|503.226 | |||
|5:3 | |||
|Semisoft | |||
| | |||
|- | |||
|[[105edo|61\105]] | |||
|697.143 | |||
|502.857 | |||
|17:10 | |||
| rowspan="7" |Minisoft range | |||
| | |||
|- | |||
|[[74edo|43\74]] | |||
|697.297 | |||
|502.703 | |||
|12:7 | |||
| | |||
|- | |||
|[[117edo|68\117]] | |||
|697.436 | |||
|502.564 | |||
|19:11 | |||
| | |||
|- | |||
|[[43edo|25\43]] | |||
|697.674 | |||
|502.326 | |||
|7:4 | |||
| | |||
|- | |||
|[[98edo|57\98]] | |||
|697.959 | |||
|502.041 | |||
|16:9 | |||
| | |||
|- | |||
|[[55edo|32\55]] | |||
|698.182 | |||
|501.818 | |||
|9:5 | |||
| | |||
|- | |||
|[[67edo|39\67]] | |||
|698.507 | |||
|501.493 | |||
|11:6 | |||
| | |||
|- | |||
|[[12edo|7\12]] | |||
|700 | |||
|500 | |||
|2:1 | |||
|Basic | |||
| | |||
|- | |||
|[[65edo|38\65]] | |||
|701.538 | |||
|498.462 | |||
|11:5 | |||
| rowspan="7" |Minihard range | |||
| | |||
|- | |||
|[[53edo|31\53]] | |||
|701.887 | |||
|498.113 | |||
|9:4 | |||
| | |||
|- | |||
|[[94edo|55\94]] | |||
|702.128 | |||
|497.872 | |||
|16:7 | |||
| | |||
|- | |||
|[[41edo|24\41]] | |||
|702.439 | |||
|497.561 | |||
|7:3 | |||
| | |||
|- | |||
|[[111edo|65\111]] | |||
|702.703 | |||
|497.297 | |||
|19:8 | |||
| | |||
|- | |||
|[[70edo|41\70]] | |||
|702.857 | |||
|497.143 | |||
|12:5 | |||
| | |||
|- | |||
|[[99edo|58\99]] | |||
|703.03 | |||
|496.97 | |||
|17:7 | |||
| | |||
|- | |||
|[[29edo|17\29]] | |||
|703.448 | |||
|496.552 | |||
|5:2 | |||
|Semihard | |||
| | |||
|- | |||
|[[104edo|61\104]] | |||
|703.846 | |||
|496.154 | |||
|18:7 | |||
| rowspan="7" |Quasihard range | |||
| | |||
|- | |||
|[[75edo|44\75]] | |||
|704 | |||
|496 | |||
|13:5 | |||
| | |||
|- | |||
|[[121edo|71\121]] | |||
|704.132 | |||
|495.868 | |||
|21:8 | |||
| | |||
|- | |||
|[[46edo|27\46]] | |||
|704.348 | |||
|495.652 | |||
|8:3 | |||
| | |||
|- | |||
|[[109edo|64\109]] | |||
|704.587 | |||
|495.413 | |||
|19:7 | |||
| | |||
|- | |||
|[[63edo|37\63]] | |||
|704.762 | |||
|495.238 | |||
|11:4 | |||
| | |||
|- | |||
|[[80edo|47\80]] | |||
|705 | |||
|495 | |||
|14:5 | |||
| | |||
|- | |||
|[[17edo|10\17]] | |||
|705.882 | |||
|494.118 | |||
|3:1 | |||
|Hard | |||
| | |||
|- | |||
|[[73edo|43\73]] | |||
|706.849 | |||
|493.151 | |||
|13:4 | |||
| rowspan="7" |Superhard range | |||
| | |||
|- | |||
|[[56edo|33\56]] | |||
|707.143 | |||
|492.857 | |||
|10:3 | |||
| | |||
|- | |||
|[[95edo|56\95]] | |||
|707.368 | |||
|492.632 | |||
|17:5 | |||
| | |||
|- | |||
|[[39edo|23\39]] | |||
|707.692 | |||
|492.308 | |||
|7:2 | |||
| | |||
|- | |||
|[[100edo|59\100]] | |||
|708 | |||
|492 | |||
|18:5 | |||
| | |||
|- | |||
|[[61edo|36\61]] | |||
|708.197 | |||
|491.803 | |||
|11:3 | |||
| | |||
|- | |||
|[[83edo|49\83]] | |||
|708.434 | |||
|491.566 | |||
|15:4 | |||
| | |||
|- | |||
|[[22edo|13\22]] | |||
|709.091 | |||
|490.909 | |||
|4:1 | |||
|Superhard | |||
| | |||
|- | |||
|[[71edo|42\71]] | |||
|709.859 | |||
|490.141 | |||
|13:3 | |||
| rowspan="7" |Ultrahard range | |||
| | |||
|- | |||
|[[49edo|29\49]] | |||
|710.204 | |||
|489.796 | |||
|9:2 | |||
| | |||
|- | |||
|[[76edo|45\76]] | |||
|710.526 | |||
|489.474 | |||
|14:3 | |||
| | |||
|- | |||
|[[27edo|16\27]] | |||
|711.111 | |||
|488.889 | |||
|5:1 | |||
| | |||
|- | |||
|[[59edo|35\59]] | |||
|711.864 | |||
|488.136 | |||
|11:2 | |||
| | |||
|- | |||
|[[32edo|19\32]] | |||
|712.5 | |||
|487.5 | |||
|6:1 | |||
| | |||
|- | |||
|[[37edo|22\37]] | |||
|713.514 | |||
|486.486 | |||
|7:1 | |||
| | |||
|- | |||
|[[5edo|3\5]] | |||
|720 | |||
|480 | |||
|1:0 | |||
|Collapsed | |||
| | |||
|} |
Revision as of 09:58, 5 February 2024
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
Sandbox for proposed templates
JI ratio intro
For general ratios: m/n, also called interval-name, is a p-limit just intonation ratio of exactly/about r¢.
For harmonics: m/1, also called interval-name, is a just intonation ration that represents the mth harmonic of exactly/about r¢.
MOS step sizes
Interval | Basic 3L 4s
(10edo, L:s = 2:1) |
Hard 3L 4s
(13edo, L:s = 3:1) |
Soft 3L 4s
(17edo, L:s = 3:2) |
Approx. JI ratios | |||
---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | ||
Large step | 2 | 240¢ | 3 | 276.9¢ | 3 | 211.8¢ | Hide column if no ratios given |
Small step | 1 | 120¢ | 1 | 92.3¢ | 2 | 141.2¢ | |
Bright generator | 3 | 360¢ | 4 | 369.2¢ | 5 | 355.6¢ |
Notes:
- Allow option to show the bright generator, dark generator, or no generator.
- JI ratios column only shows if there are any ratios to show
Expanded MOS intro
Base wording
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
Rothenprop info
Single-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step.
Multi-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step per period.
Descendant info (descendants of tamnams-named mosses only)
scalesig is a chromatic/enharmonic scale of parent-scalesig, an extension of parent-scalesig scales with a step-ratio-range step ratio.
scalesig is a descendant scale of parent-scalesig.
Full wording
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.
Examples
5L 7s, also called p-chromatic, is an octave-equivalent moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a chromatic scale of 5L 2s, an extension of 5L 2s scales with a hard-of-basic step ratio. Generators that produce this scale range from 700¢ to 720¢, or from 480¢ to 500¢.
Mos ancestors and descendants
2nd ancestor | 1st ancestor | Mos | 1st descendants | 2nd descendants |
---|---|---|---|---|
uL vs | zL ws | xL ys | xL (x+y)s | xL (2x+y)s |
(2x+y)L xs | ||||
(x+y)L xs | (2x+y)L (x+y)s | |||
(x+y)L (2x+y)s |
6- to 10-note mosses | 1L 5s (selenite) | 2L 4s ( | 3L 3s | 4L 2 | 5L 1s | ||||||||
Monolarge family | 1L 5s (selenite) | 1L 6s (onyx) | 1L 7s (spinel) | 1L 8s (agate) | 1L 9s (olivine) | ||||||||
Diatonic mos family |
|
Scale tree formatting
Proposed changes:
- Merge step ratio and hardness columns
Steps of ED | Generator in cents | Step ratio | Comments | ||
---|---|---|---|---|---|
Bright | Dark | L:s | Ranges | ||
4\7 | 685.714 | 514.286 | 1:1 | Equalized | |
27\47 | 689.362 | 510.638 | 7:6 | Ultrasoft range | |
23\40 | 690 | 510 | 6:5 | ||
42\73 | 690.411 | 509.589 | 11:9 | ||
19\33 | 690.909 | 509.091 | 5:4 | ||
53\92 | 691.304 | 508.696 | 14:11 | ||
34\59 | 691.525 | 508.475 | 9:7 | ||
49\85 | 691.765 | 508.235 | 13:10 | ||
15\26 | 692.308 | 507.692 | 4:3 | Supersoft | |
56\97 | 692.784 | 507.216 | 15:11 | Parasoft range | |
41\71 | 692.958 | 507.042 | 11:8 | ||
67\116 | 693.103 | 506.897 | 18:13 | ||
26\45 | 693.333 | 506.667 | 7:5 | ||
63\109 | 693.578 | 506.422 | 17:12 | ||
37\64 | 693.75 | 506.25 | 10:7 | ||
48\83 | 693.976 | 506.024 | 13:9 | ||
11\19 | 694.737 | 505.263 | 3:2 | Soft | |
51\88 | 695.455 | 504.545 | 14:9 | Quasisoft range | |
40\69 | 695.652 | 504.348 | 11:7 | ||
69\119 | 695.798 | 504.202 | 19:12 | ||
29\50 | 696 | 504 | 8:5 | ||
76\131 | 696.183 | 503.817 | 21:13 | ||
47\81 | 696.296 | 503.704 | 13:8 | ||
65\112 | 696.429 | 503.571 | 18:11 | ||
18\31 | 696.774 | 503.226 | 5:3 | Semisoft | |
61\105 | 697.143 | 502.857 | 17:10 | Minisoft range | |
43\74 | 697.297 | 502.703 | 12:7 | ||
68\117 | 697.436 | 502.564 | 19:11 | ||
25\43 | 697.674 | 502.326 | 7:4 | ||
57\98 | 697.959 | 502.041 | 16:9 | ||
32\55 | 698.182 | 501.818 | 9:5 | ||
39\67 | 698.507 | 501.493 | 11:6 | ||
7\12 | 700 | 500 | 2:1 | Basic | |
38\65 | 701.538 | 498.462 | 11:5 | Minihard range | |
31\53 | 701.887 | 498.113 | 9:4 | ||
55\94 | 702.128 | 497.872 | 16:7 | ||
24\41 | 702.439 | 497.561 | 7:3 | ||
65\111 | 702.703 | 497.297 | 19:8 | ||
41\70 | 702.857 | 497.143 | 12:5 | ||
58\99 | 703.03 | 496.97 | 17:7 | ||
17\29 | 703.448 | 496.552 | 5:2 | Semihard | |
61\104 | 703.846 | 496.154 | 18:7 | Quasihard range | |
44\75 | 704 | 496 | 13:5 | ||
71\121 | 704.132 | 495.868 | 21:8 | ||
27\46 | 704.348 | 495.652 | 8:3 | ||
64\109 | 704.587 | 495.413 | 19:7 | ||
37\63 | 704.762 | 495.238 | 11:4 | ||
47\80 | 705 | 495 | 14:5 | ||
10\17 | 705.882 | 494.118 | 3:1 | Hard | |
43\73 | 706.849 | 493.151 | 13:4 | Superhard range | |
33\56 | 707.143 | 492.857 | 10:3 | ||
56\95 | 707.368 | 492.632 | 17:5 | ||
23\39 | 707.692 | 492.308 | 7:2 | ||
59\100 | 708 | 492 | 18:5 | ||
36\61 | 708.197 | 491.803 | 11:3 | ||
49\83 | 708.434 | 491.566 | 15:4 | ||
13\22 | 709.091 | 490.909 | 4:1 | Superhard | |
42\71 | 709.859 | 490.141 | 13:3 | Ultrahard range | |
29\49 | 710.204 | 489.796 | 9:2 | ||
45\76 | 710.526 | 489.474 | 14:3 | ||
16\27 | 711.111 | 488.889 | 5:1 | ||
35\59 | 711.864 | 488.136 | 11:2 | ||
19\32 | 712.5 | 487.5 | 6:1 | ||
22\37 | 713.514 | 486.486 | 7:1 | ||
3\5 | 720 | 480 | 1:0 | Collapsed |