User:Ganaram inukshuk/Sandbox: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Ganaram inukshuk (talk | contribs)
Ganaram inukshuk (talk | contribs)
No edit summary
Line 150: Line 150:


</div>
</div>
== Scale tree formatting ==
Proposed changes:
* Merge step ratio and hardness columns
{| class="wikitable"
! rowspan="2" |Steps of ED
! colspan="2" |Generator in cents
! colspan="2" |Step ratio
! rowspan="2" |Comments
|-
!Bright
!Dark
!L:s
!Ranges
|-
|[[7edo|4\7]]
|685.714
|514.286
|1:1
|Equalized
|
|-
|[[47edo|27\47]]
|689.362
|510.638
|7:6
| rowspan="7" |Ultrasoft range
|
|-
|[[40edo|23\40]]
|690
|510
|6:5
|
|-
|[[73edo|42\73]]
|690.411
|509.589
|11:9
|
|-
|[[33edo|19\33]]
|690.909
|509.091
|5:4
|
|-
|[[92edo|53\92]]
|691.304
|508.696
|14:11
|
|-
|[[59edo|34\59]]
|691.525
|508.475
|9:7
|
|-
|[[85edo|49\85]]
|691.765
|508.235
|13:10
|
|-
|[[26edo|15\26]]
|692.308
|507.692
|4:3
|Supersoft
|
|-
|[[97edo|56\97]]
|692.784
|507.216
|15:11
| rowspan="7" |Parasoft range
|
|-
|[[71edo|41\71]]
|692.958
|507.042
|11:8
|
|-
|[[116edo|67\116]]
|693.103
|506.897
|18:13
|
|-
|[[45edo|26\45]]
|693.333
|506.667
|7:5
|
|-
|[[109edo|63\109]]
|693.578
|506.422
|17:12
|
|-
|[[64edo|37\64]]
|693.75
|506.25
|10:7
|
|-
|[[83edo|48\83]]
|693.976
|506.024
|13:9
|
|-
|[[19edo|11\19]]
|694.737
|505.263
|3:2
|Soft
|
|-
|[[88edo|51\88]]
|695.455
|504.545
|14:9
| rowspan="7" |Quasisoft range
|
|-
|[[69edo|40\69]]
|695.652
|504.348
|11:7
|
|-
|[[119edo|69\119]]
|695.798
|504.202
|19:12
|
|-
|[[50edo|29\50]]
|696
|504
|8:5
|
|-
|[[131edo|76\131]]
|696.183
|503.817
|21:13
|
|-
|[[81edo|47\81]]
|696.296
|503.704
|13:8
|
|-
|[[112edo|65\112]]
|696.429
|503.571
|18:11
|
|-
|[[31edo|18\31]]
|696.774
|503.226
|5:3
|Semisoft
|
|-
|[[105edo|61\105]]
|697.143
|502.857
|17:10
| rowspan="7" |Minisoft range
|
|-
|[[74edo|43\74]]
|697.297
|502.703
|12:7
|
|-
|[[117edo|68\117]]
|697.436
|502.564
|19:11
|
|-
|[[43edo|25\43]]
|697.674
|502.326
|7:4
|
|-
|[[98edo|57\98]]
|697.959
|502.041
|16:9
|
|-
|[[55edo|32\55]]
|698.182
|501.818
|9:5
|
|-
|[[67edo|39\67]]
|698.507
|501.493
|11:6
|
|-
|[[12edo|7\12]]
|700
|500
|2:1
|Basic
|
|-
|[[65edo|38\65]]
|701.538
|498.462
|11:5
| rowspan="7" |Minihard range
|
|-
|[[53edo|31\53]]
|701.887
|498.113
|9:4
|
|-
|[[94edo|55\94]]
|702.128
|497.872
|16:7
|
|-
|[[41edo|24\41]]
|702.439
|497.561
|7:3
|
|-
|[[111edo|65\111]]
|702.703
|497.297
|19:8
|
|-
|[[70edo|41\70]]
|702.857
|497.143
|12:5
|
|-
|[[99edo|58\99]]
|703.03
|496.97
|17:7
|
|-
|[[29edo|17\29]]
|703.448
|496.552
|5:2
|Semihard
|
|-
|[[104edo|61\104]]
|703.846
|496.154
|18:7
| rowspan="7" |Quasihard range
|
|-
|[[75edo|44\75]]
|704
|496
|13:5
|
|-
|[[121edo|71\121]]
|704.132
|495.868
|21:8
|
|-
|[[46edo|27\46]]
|704.348
|495.652
|8:3
|
|-
|[[109edo|64\109]]
|704.587
|495.413
|19:7
|
|-
|[[63edo|37\63]]
|704.762
|495.238
|11:4
|
|-
|[[80edo|47\80]]
|705
|495
|14:5
|
|-
|[[17edo|10\17]]
|705.882
|494.118
|3:1
|Hard
|
|-
|[[73edo|43\73]]
|706.849
|493.151
|13:4
| rowspan="7" |Superhard range
|
|-
|[[56edo|33\56]]
|707.143
|492.857
|10:3
|
|-
|[[95edo|56\95]]
|707.368
|492.632
|17:5
|
|-
|[[39edo|23\39]]
|707.692
|492.308
|7:2
|
|-
|[[100edo|59\100]]
|708
|492
|18:5
|
|-
|[[61edo|36\61]]
|708.197
|491.803
|11:3
|
|-
|[[83edo|49\83]]
|708.434
|491.566
|15:4
|
|-
|[[22edo|13\22]]
|709.091
|490.909
|4:1
|Superhard
|
|-
|[[71edo|42\71]]
|709.859
|490.141
|13:3
| rowspan="7" |Ultrahard range
|
|-
|[[49edo|29\49]]
|710.204
|489.796
|9:2
|
|-
|[[76edo|45\76]]
|710.526
|489.474
|14:3
|
|-
|[[27edo|16\27]]
|711.111
|488.889
|5:1
|
|-
|[[59edo|35\59]]
|711.864
|488.136
|11:2
|
|-
|[[32edo|19\32]]
|712.5
|487.5
|6:1
|
|-
|[[37edo|22\37]]
|713.514
|486.486
|7:1
|
|-
|[[5edo|3\5]]
|720
|480
|1:0
|Collapsed
|
|}

Revision as of 09:58, 5 February 2024

This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)

Sandbox for proposed templates

JI ratio intro

For general ratios: m/n, also called interval-name, is a p-limit just intonation ratio of exactly/about r¢.

For harmonics: m/1, also called interval-name, is a just intonation ration that represents the mth harmonic of exactly/about r¢.

MOS step sizes

3L 4s step sizes
Interval Basic 3L 4s

(10edo, L:s = 2:1)

Hard 3L 4s

(13edo, L:s = 3:1)

Soft 3L 4s

(17edo, L:s = 3:2)

Approx. JI ratios
Steps Cents Steps Cents Steps Cents
Large step 2 240¢ 3 276.9¢ 3 211.8¢ Hide column if no ratios given
Small step 1 120¢ 1 92.3¢ 2 141.2¢
Bright generator 3 360¢ 4 369.2¢ 5 355.6¢

Notes:

  • Allow option to show the bright generator, dark generator, or no generator.
  • JI ratios column only shows if there are any ratios to show

Expanded MOS intro

Base wording

scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.

scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.

Rothenprop info

Single-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step.

Multi-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step per period.

Descendant info (descendants of tamnams-named mosses only)

scalesig is a chromatic/enharmonic scale of parent-scalesig, an extension of parent-scalesig scales with a step-ratio-range step ratio.

scalesig is a descendant scale of parent-scalesig.

Full wording

scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.

scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.

Examples

5L 7s, also called p-chromatic, is an octave-equivalent moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a chromatic scale of 5L 2s, an extension of 5L 2s scales with a hard-of-basic step ratio. Generators that produce this scale range from 700¢ to 720¢, or from 480¢ to 500¢.

Mos ancestors and descendants

2nd ancestor 1st ancestor Mos 1st descendants 2nd descendants
uL vs zL ws xL ys xL (x+y)s xL (2x+y)s
(2x+y)L xs
(x+y)L xs (2x+y)L (x+y)s
(x+y)L (2x+y)s

Navbox MOS

Scale tree formatting

Proposed changes:

  • Merge step ratio and hardness columns
Steps of ED Generator in cents Step ratio Comments
Bright Dark L:s Ranges
4\7 685.714 514.286 1:1 Equalized
27\47 689.362 510.638 7:6 Ultrasoft range
23\40 690 510 6:5
42\73 690.411 509.589 11:9
19\33 690.909 509.091 5:4
53\92 691.304 508.696 14:11
34\59 691.525 508.475 9:7
49\85 691.765 508.235 13:10
15\26 692.308 507.692 4:3 Supersoft
56\97 692.784 507.216 15:11 Parasoft range
41\71 692.958 507.042 11:8
67\116 693.103 506.897 18:13
26\45 693.333 506.667 7:5
63\109 693.578 506.422 17:12
37\64 693.75 506.25 10:7
48\83 693.976 506.024 13:9
11\19 694.737 505.263 3:2 Soft
51\88 695.455 504.545 14:9 Quasisoft range
40\69 695.652 504.348 11:7
69\119 695.798 504.202 19:12
29\50 696 504 8:5
76\131 696.183 503.817 21:13
47\81 696.296 503.704 13:8
65\112 696.429 503.571 18:11
18\31 696.774 503.226 5:3 Semisoft
61\105 697.143 502.857 17:10 Minisoft range
43\74 697.297 502.703 12:7
68\117 697.436 502.564 19:11
25\43 697.674 502.326 7:4
57\98 697.959 502.041 16:9
32\55 698.182 501.818 9:5
39\67 698.507 501.493 11:6
7\12 700 500 2:1 Basic
38\65 701.538 498.462 11:5 Minihard range
31\53 701.887 498.113 9:4
55\94 702.128 497.872 16:7
24\41 702.439 497.561 7:3
65\111 702.703 497.297 19:8
41\70 702.857 497.143 12:5
58\99 703.03 496.97 17:7
17\29 703.448 496.552 5:2 Semihard
61\104 703.846 496.154 18:7 Quasihard range
44\75 704 496 13:5
71\121 704.132 495.868 21:8
27\46 704.348 495.652 8:3
64\109 704.587 495.413 19:7
37\63 704.762 495.238 11:4
47\80 705 495 14:5
10\17 705.882 494.118 3:1 Hard
43\73 706.849 493.151 13:4 Superhard range
33\56 707.143 492.857 10:3
56\95 707.368 492.632 17:5
23\39 707.692 492.308 7:2
59\100 708 492 18:5
36\61 708.197 491.803 11:3
49\83 708.434 491.566 15:4
13\22 709.091 490.909 4:1 Superhard
42\71 709.859 490.141 13:3 Ultrahard range
29\49 710.204 489.796 9:2
45\76 710.526 489.474 14:3
16\27 711.111 488.889 5:1
35\59 711.864 488.136 11:2
19\32 712.5 487.5 6:1
22\37 713.514 486.486 7:1
3\5 720 480 1:0 Collapsed