Associated temperament: Difference between revisions
Jump to navigation
Jump to search
cleanup 7-limit table |
mNo edit summary |
||
(18 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
In [[regular temperament theory]], an '''associated temperament''' to a [[harmonic limit|''p''-limit]] [[comma]] is a ''p''-limit [[regular temperament]] [[tempering out]] that comma which shares the same [[optimal patent val]] as the [[codimension]]-1 temperament tempering out that comma. By definition, the optimal patent val defines the unique [[ET|rank-1]] associated temperament. For [[rank-2 temperament]]s, it is possible for more than one temperament to be associated, and some of these are listed below. The column headings are the comma being associated, the optimal patent val (OPV), the rank-2 temperament, and a [[comma basis]] for the rank-2 temperament. | |||
== 7-limit == | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 32: | Line 31: | ||
| [[36/35]] | | [[36/35]] | ||
| [[12edo]] | | [[12edo]] | ||
| [[Dominant]] | | [[Dominant (temperament)|Dominant]] | ||
| 36/35, [[64/63]] | | 36/35, [[64/63]] | ||
|- | |- | ||
Line 58: | Line 57: | ||
| [[49edo]] | | [[49edo]] | ||
| [[Superpyth]] | | [[Superpyth]] | ||
| 64/63, 245/243 | | 64/63, [[245/243]] | ||
|- | |- | ||
| 875/864 | | 875/864 | ||
| [[41edo]] | | [[41edo]] | ||
| [[Magic | | [[Magic]] | ||
| [[225/224]], | | [[225/224]], 245/243 | ||
|- | |- | ||
| 875/864 | | 875/864 | ||
Line 80: | Line 79: | ||
| [[225/224]], 1728/1715 | | [[225/224]], 1728/1715 | ||
|- | |- | ||
| 245/243 | |||
| [[283edo]] | |||
| [[Escaped]] | |||
| 245/243, 65625/65536 | |||
|- | |||
| 126/125 | |||
| [[185edo]] | |||
| [[Valentine]] | |||
| 126/125, 1029/1024 | |||
|- | |||
| 1728/1715 | |||
| [[111edo]] | |||
| [[Buzzard]] | |||
| 1728/1715, 5120/5103 | |||
|- | |- | ||
| | | 1728/1715 | ||
| [[111edo]] | |||
| [[Semisept]] | |||
| | | 1728/1715, 3136/3125 | ||
|- | |- | ||
| | | 1029/1024 | ||
| [[190edo]] | |||
| [[Unidec]] | |||
| | | 1029/1024, 4375/4374 | ||
|- | |- | ||
| | | 225/224 | ||
| [[197edo]] | |||
| [[Catakleismic]] | |||
| | | 225/224, 4375/4374 | ||
|- | |- | ||
| | | 16875/16807 | ||
| [[224edo]] | |||
| [[Octoid]] | |||
| | | 4375/4374, 16875/16807 | ||
|- | |- | ||
| | | 4802000/4782969 | ||
| [[1131edo]] | |||
| [[Amicable]] | |||
| | | 2401/2400, 1600000/1594323 | ||
|- | |- | ||
| 3136/3125 | |||
| [[446edo]] | |||
| [[Sengagen]] | |||
| 3136/3125, 420175/419904 | |||
|- | |- | ||
| 5120/5103 | |||
| [[391edo]] | |||
| [[Alphaquarter]] | |||
| 5120/5103, 29360128/29296875 | |||
|- | |- | ||
| 5120/5103 | |||
| [[391edo]] | |||
| [[Septiquarter]] | |||
| 5120/5103, 420175/419904 | |||
|- | |- | ||
| 6144/6125 | |||
| [[381edo]] | |||
| [[Nessafof]] | |||
| 6144/6125, 250047/250000 | |||
|- | |- | ||
| 65625/65536 | |||
| [[171edo]] | |||
| [[Tertiaseptal]] | |||
| 2401/2400, 65625/65536 | |||
|- | |- | ||
| 703125/702464 | | 703125/702464 | ||
| [[2185edo]] | | [[2185edo]] | ||
| [[ | | [[Enneadecal]] | ||
| 4375/4374, 703125/702464 | | 4375/4374, 703125/702464 | ||
|- | |- | ||
Line 151: | Line 160: | ||
|} | |} | ||
=11 limit= | == 11-limit == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! Comma | |||
| | | ! OPV | ||
| | | ! Temperament | ||
| | ! Basis | ||
|- | |||
| 33/32 | |||
| [[16edo]] | |||
| [[Armodue]] | |||
| 33/32, 36/35, 45/44 | |||
|- | |- | ||
| | | 77/75 | ||
| [[39edo]] | |||
| [[Triforce]] | |||
| | | 49/48, 56/55, 77/75 | ||
|- | |- | ||
| | | 352/343 | ||
| [[22edo]] | |||
| [[Hedgehog]] | |||
| | | 50/49, 55/54, 99/98 | ||
|- | |- | ||
| | | 45/44 | ||
| [[45edo]] | |||
| [[Flattone]] | |||
| | | 45/44, 81/80, 385/384 | ||
|- | |- | ||
| | | 55/54 | ||
| [[51edo]] | |||
| [[Porky]] | |||
| | | 55/54, 100/99, 225/224 | ||
|- | |- | ||
| | | 56/55 | ||
| [[36edo]] | |||
| [[Catnip]] | |||
| | | 56/55, 81/80, 128/125 | ||
|- | |- | ||
| | | 245/242 | ||
| [[91edo]] | |||
| [[Septimin]] | |||
| | | 225/224, 245/242, 385/384 | ||
|- | |- | ||
| | | 99/98 | ||
| [[127edo]] | |||
| [[Würschmidt]] | |||
| | | 99/98, 176/175, 243/242 | ||
|- | |- | ||
| | | 100/99 | ||
| [[104edo]] | |||
| [[Magic]] | |||
| | | 100/99, 225/224, 245/243 | ||
|- | |- | ||
| | | 121/120 | ||
| [[99edo]] | |||
| [[Hitchcock]] | |||
| | | 121/120, 176/175, 2200/2187 | ||
|- | |- | ||
| 121/120 | |||
| [[99edo]] | |||
| [[Hemiwur]] | |||
| 121/120, 176/175, 1375/1372 | |||
|- | |- | ||
| | | 176/175 | ||
| [[111edo]] | |||
| [[Semisept]] | |||
| | | 176/175, 540/539, 1331/1323 | ||
|- | |- | ||
| | | 896/891 | ||
| [[208edo]] | |||
| [[Metakleismic]] | |||
| | | 896/891, 2200/2187, 14700/14641 | ||
|- | |- | ||
| | | 65536/65219 | ||
| [[282edo]] | |||
| [[Septisuperfourth]] | |||
| | | 540/539, 4000/3993, 5632/5625 | ||
|- | |- | ||
| | | 14641/14580 | ||
| [[410edo]] | |||
| [[Floral]] | |||
| | | 2401/2400, 9801/9800, 14641/14580 | ||
|- | |- | ||
| 243/242 | |||
| [[202edo]] | |||
| [[Harry]] | |||
| 243/242, 441/440, 4000/3993 | |||
|- | |- | ||
| 243/242 | |||
| [[202edo]] | |||
| [[Tertiaseptal]] | |||
| 243/242, 441/440, 65625/65536 | |||
|- | |- | ||
| 3388/3375 | |||
| [[316edo]] | |||
| [[Semiparakleismic]] | |||
| 3025/3024, 3136/3125, 4375/4374 | |||
|- | |- | ||
| 385/384 | |||
| [[284edo]] | |||
| [[Quadritikleismic]] | |||
| 385/384, 1375/1372, 6250/6237 | |||
|- | |- | ||
| 441/440 | |||
| [[320edo]] | |||
| [[Octowerck]] | |||
| 441/440, 8019/8000, 41503/41472 | |||
|- | |- | ||
| 540/539 | |||
| [[578edo]] | |||
| [[Pogo]] | |||
| 540/539, 4000/3993, 32805/32768 | |||
|- | |- | ||
| 4000/3993 | |||
| [[665edo]] | |||
| [[Brahmagupta]] | |||
| 4000/3993, 4375/4374, 131072/130977 | |||
|- | |- | ||
| 5632/5625 | |||
| [[1092edo]] | |||
| [[Sextile]] | |||
| 5632/5625, 9801/9800, 151263/151250 | |||
|- | |- | ||
| 3025/3024 | |||
| [[2554edo]] | |||
| [[Semisupermajor]] | |||
| 3025/3024, 4375/4374, 35156250/35153041 | |||
|} | |} | ||
=13 limit= | == 13-limit == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! Comma | |||
! OPV | |||
! Temperament | |||
! Basis | |||
|- | |- | ||
| 26/25 | |||
| [[12edo]] | |||
| [[Augustus]] | |||
| 26/25, 36/35, 45/44, 56/55 | |||
|- | |- | ||
| 27/26 | |||
| [[35edo]] | |||
| [[Secund]] | |||
| 27/26, 45/44, 99/98, 385/384 | |||
|- | |- | ||
| 27/26 | |||
| [[35edo]] | |||
| [[Greenwood]] | |||
| 27/26, 45/44, 99/98, 640/637 | |||
|- | |- | ||
| 40/39 | |||
| [[15edo]] | |||
| [[Blacksmith]] | |||
| 28/27, 40/39, 49/48, 55/54 | |||
|- | |- | ||
| 65/64 | |||
| [[29edo]] | |||
| [[Negril]] | |||
| 49/48, 65/64, 91/90, 875/858 | |||
|- | |- | ||
| 65/64 | |||
| [[29edo]] | |||
| [[Coendou]] | |||
| 55/54, 65/64, 100/99, 105/104 | |||
|- | |- | ||
| 66/65 | |||
| [[31edo]] | |||
| [[Winston]] | |||
| 66/65, 99/98, 105/104, 121/120 | |||
|- | |- | ||
| 66/65 | |||
| [[31edo]] | |||
| [[Mohajira]] | |||
| 66/65, 81/80, 105/104, 121/120 | |||
|- | |- | ||
| 66/65 | |||
| [[31edo]] | |||
| [[Squares]] | |||
| 66/65, 81/80, 99/98, 121/120 | |||
|- | |- | ||
| 78/77 | |||
| [[43edo]] | |||
| [[Amavil]] | |||
| 78/77, 99/98, 144/143, 176/175 | |||
|- | |- | ||
| 78/77 | |||
| [[43edo]] | |||
| [[Jerome]] | |||
| 78/77, 81/80, 99/98, 144/143 | |||
|- | |- | ||
| 91/90 | |||
| [[102edo]] | |||
| [[Echidnic]] | |||
| 91/90, 169/168, 385/384, 441/440 | |||
|- | |- | ||
| 105/104 | |||
| [[91edo]] | |||
| [[Septimin]] | |||
| 105/104, 144/143, 196/195, 245/242 | |||
|- | |- | ||
| 275/273 | |||
| [[94edo]] | |||
| [[Garibaldi]] | |||
| 225/224, 275/273, 325/324, 385/384 | |||
|- | |- | ||
| 144/143 | |||
| [[84edo]] | |||
| [[Merman]] | |||
| 144/143, 225/224, 364/363, 441/440 | |||
|- | |- | ||
| 144/143 | |||
| [[84edo]] | |||
| [[Secant]] | |||
| 144/143, 351/350, 364/363, 441/440 | |||
|- | |- | ||
| 169/168 | |||
| [[152edo]] | |||
| [[Octopus]] | |||
| 169/168, 325/324, 364/363, 540/539 | |||
|- | |- | ||
| 196/195 | |||
| [[232edo]] | |||
| [[Mystery]] | |||
| 196/195, 352/351, 364/363, 676/675 | |||
|- | |- | ||
| 640/637 | |||
| [[205edo]] | |||
| [[Quanic]] | |||
| 352/351, 540/539, 729/728, 1331/1323 | |||
|- | |- | ||
| 1188/1183 | |||
| [[255edo]] | |||
| [[Subsemifourth]] | |||
| 540/539, 847/845, 1375/1372, 1575/1573 | |||
|- | |- | ||
| | | 1573/1568 | ||
| [[323edo]] | |||
| [[Stockhausenic]] | |||
| | | 676/675, 1001/1000, 1375/1372, 4096/4095 | ||
|- | |- | ||
| | | 325/324 | ||
| [[333edo]] | |||
| [[Novemkleismic]] | |||
| | | 325/324, 625/624, 1375/1372, 4000/3993 | ||
|- | |- | ||
| | | 351/350 | ||
| [[546edo]] | |||
| [[Fermionic]] | |||
| | | 351/350, 540/539, 40656/40625, 142884/142805 | ||
|- | |- | ||
| 352/351 | |||
| [[198edo]] | |||
| [[Semihemi]] | |||
| 352/351, 676/675, 847/845, 1716/1715 | |||
|- | |- | ||
| | | 352/351 | ||
| [[198edo]] | |||
| [[Hemimist]] | |||
| | | 352/351, 676/675, 847/845, 3025/3024 | ||
|- | |- | ||
| | | 847/845 | ||
| [[388edo]] | |||
| [[Neusec]] | |||
| | | 847/845, 1001/1000, 3025/3024, 4375/4374 | ||
|- | |- | ||
| | 2200/2197 | | 676/675 | ||
| [[940edo]] | |||
| [[Decoid]] | |||
| 676/675, 1001/1000, 1716/1715, 4225/4224 | |||
|- | |||
| 2200/2197 | |||
| [[836edo]] | |||
| [[Quasithird]] | |||
| 2200/2197, 3025/3024, 4375/4374, 468512/468195 | |||
|} | |} | ||
[[Category:Regular temperament theory]] | |||
[[Category:Rank 2]] |
Latest revision as of 15:26, 23 August 2024
In regular temperament theory, an associated temperament to a p-limit comma is a p-limit regular temperament tempering out that comma which shares the same optimal patent val as the codimension-1 temperament tempering out that comma. By definition, the optimal patent val defines the unique rank-1 associated temperament. For rank-2 temperaments, it is possible for more than one temperament to be associated, and some of these are listed below. The column headings are the comma being associated, the optimal patent val (OPV), the rank-2 temperament, and a comma basis for the rank-2 temperament.
7-limit
Comma | OPV | Temperament | Basis |
---|---|---|---|
28/27 | 15edo | Blacksmith | 28/27, 49/48 |
1029/1000 | 55edo | Liese | 81/80, 686/675 |
36/35 | 12edo | Diminished | 36/35, 50/49 |
36/35 | 12edo | August | 36/35, 128/125 |
36/35 | 12edo | Dominant | 36/35, 64/63 |
525/512 | 45edo | Flattone | 81/80, 525/512 |
49/48 | 19edo | Keemun | 49/48, 126/125 |
49/48 | 19edo | Godzilla | 49/48, 81/80 |
50/49 | 48edo | Doublewide | 50/49, 875/864 |
64/63 | 49edo | Superpyth | 64/63, 245/243 |
875/864 | 41edo | Magic | 225/224, 245/243 |
875/864 | 41edo | Superkleismic | 875/864, 1029/1024 |
3125/3087 | 94edo | Garibaldi | 225/224, 3125/3087 |
2430/2401 | 137edo | Orwell | 225/224, 1728/1715 |
245/243 | 283edo | Escaped | 245/243, 65625/65536 |
126/125 | 185edo | Valentine | 126/125, 1029/1024 |
1728/1715 | 111edo | Buzzard | 1728/1715, 5120/5103 |
1728/1715 | 111edo | Semisept | 1728/1715, 3136/3125 |
1029/1024 | 190edo | Unidec | 1029/1024, 4375/4374 |
225/224 | 197edo | Catakleismic | 225/224, 4375/4374 |
16875/16807 | 224edo | Octoid | 4375/4374, 16875/16807 |
4802000/4782969 | 1131edo | Amicable | 2401/2400, 1600000/1594323 |
3136/3125 | 446edo | Sengagen | 3136/3125, 420175/419904 |
5120/5103 | 391edo | Alphaquarter | 5120/5103, 29360128/29296875 |
5120/5103 | 391edo | Septiquarter | 5120/5103, 420175/419904 |
6144/6125 | 381edo | Nessafof | 6144/6125, 250047/250000 |
65625/65536 | 171edo | Tertiaseptal | 2401/2400, 65625/65536 |
703125/702464 | 2185edo | Enneadecal | 4375/4374, 703125/702464 |
4375/4374 | 8419edo | Semidimi | 4375/4374, 3955078125/3954653486 |
250047/250000 | 12555edo | 250047/250000, 281484423828125/281474976710656 |
11-limit
Comma | OPV | Temperament | Basis |
---|---|---|---|
33/32 | 16edo | Armodue | 33/32, 36/35, 45/44 |
77/75 | 39edo | Triforce | 49/48, 56/55, 77/75 |
352/343 | 22edo | Hedgehog | 50/49, 55/54, 99/98 |
45/44 | 45edo | Flattone | 45/44, 81/80, 385/384 |
55/54 | 51edo | Porky | 55/54, 100/99, 225/224 |
56/55 | 36edo | Catnip | 56/55, 81/80, 128/125 |
245/242 | 91edo | Septimin | 225/224, 245/242, 385/384 |
99/98 | 127edo | Würschmidt | 99/98, 176/175, 243/242 |
100/99 | 104edo | Magic | 100/99, 225/224, 245/243 |
121/120 | 99edo | Hitchcock | 121/120, 176/175, 2200/2187 |
121/120 | 99edo | Hemiwur | 121/120, 176/175, 1375/1372 |
176/175 | 111edo | Semisept | 176/175, 540/539, 1331/1323 |
896/891 | 208edo | Metakleismic | 896/891, 2200/2187, 14700/14641 |
65536/65219 | 282edo | Septisuperfourth | 540/539, 4000/3993, 5632/5625 |
14641/14580 | 410edo | Floral | 2401/2400, 9801/9800, 14641/14580 |
243/242 | 202edo | Harry | 243/242, 441/440, 4000/3993 |
243/242 | 202edo | Tertiaseptal | 243/242, 441/440, 65625/65536 |
3388/3375 | 316edo | Semiparakleismic | 3025/3024, 3136/3125, 4375/4374 |
385/384 | 284edo | Quadritikleismic | 385/384, 1375/1372, 6250/6237 |
441/440 | 320edo | Octowerck | 441/440, 8019/8000, 41503/41472 |
540/539 | 578edo | Pogo | 540/539, 4000/3993, 32805/32768 |
4000/3993 | 665edo | Brahmagupta | 4000/3993, 4375/4374, 131072/130977 |
5632/5625 | 1092edo | Sextile | 5632/5625, 9801/9800, 151263/151250 |
3025/3024 | 2554edo | Semisupermajor | 3025/3024, 4375/4374, 35156250/35153041 |
13-limit
Comma | OPV | Temperament | Basis |
---|---|---|---|
26/25 | 12edo | Augustus | 26/25, 36/35, 45/44, 56/55 |
27/26 | 35edo | Secund | 27/26, 45/44, 99/98, 385/384 |
27/26 | 35edo | Greenwood | 27/26, 45/44, 99/98, 640/637 |
40/39 | 15edo | Blacksmith | 28/27, 40/39, 49/48, 55/54 |
65/64 | 29edo | Negril | 49/48, 65/64, 91/90, 875/858 |
65/64 | 29edo | Coendou | 55/54, 65/64, 100/99, 105/104 |
66/65 | 31edo | Winston | 66/65, 99/98, 105/104, 121/120 |
66/65 | 31edo | Mohajira | 66/65, 81/80, 105/104, 121/120 |
66/65 | 31edo | Squares | 66/65, 81/80, 99/98, 121/120 |
78/77 | 43edo | Amavil | 78/77, 99/98, 144/143, 176/175 |
78/77 | 43edo | Jerome | 78/77, 81/80, 99/98, 144/143 |
91/90 | 102edo | Echidnic | 91/90, 169/168, 385/384, 441/440 |
105/104 | 91edo | Septimin | 105/104, 144/143, 196/195, 245/242 |
275/273 | 94edo | Garibaldi | 225/224, 275/273, 325/324, 385/384 |
144/143 | 84edo | Merman | 144/143, 225/224, 364/363, 441/440 |
144/143 | 84edo | Secant | 144/143, 351/350, 364/363, 441/440 |
169/168 | 152edo | Octopus | 169/168, 325/324, 364/363, 540/539 |
196/195 | 232edo | Mystery | 196/195, 352/351, 364/363, 676/675 |
640/637 | 205edo | Quanic | 352/351, 540/539, 729/728, 1331/1323 |
1188/1183 | 255edo | Subsemifourth | 540/539, 847/845, 1375/1372, 1575/1573 |
1573/1568 | 323edo | Stockhausenic | 676/675, 1001/1000, 1375/1372, 4096/4095 |
325/324 | 333edo | Novemkleismic | 325/324, 625/624, 1375/1372, 4000/3993 |
351/350 | 546edo | Fermionic | 351/350, 540/539, 40656/40625, 142884/142805 |
352/351 | 198edo | Semihemi | 352/351, 676/675, 847/845, 1716/1715 |
352/351 | 198edo | Hemimist | 352/351, 676/675, 847/845, 3025/3024 |
847/845 | 388edo | Neusec | 847/845, 1001/1000, 3025/3024, 4375/4374 |
676/675 | 940edo | Decoid | 676/675, 1001/1000, 1716/1715, 4225/4224 |
2200/2197 | 836edo | Quasithird | 2200/2197, 3025/3024, 4375/4374, 468512/468195 |