Mystery

From Xenharmonic Wiki
Jump to navigation Jump to search

Mystery is a regular temperament which takes 1\29 period and adds a single generator to correct the harmonics 5, 7, 11, and 13 to almost just qualities. It tempers out the 29-comma in the 5-limit, 5120/5103 in the 7-limit, 441/440, 896/891, 3388/3375, and 4000/3993 in the 11-limit, 196/195, 352/351, 364/363, 676/675, and 847/845 in the 13-limit.

See Hemifamity temperaments #Mystery for technical details.

Interval chain

In the following table, odd harmonics 1–21 are in bold.

Period Generator 0 Generator 1
Cents Approx. ratios Cents Approx. ratios
0 0.00 1/1 15.49 91/90, 100/99, 105/104, 121/120
1 41.38 40/39, 45/44, 50/49 56.87 28/27, 33/32
2 82.76 21/20, 22/21 98.25 35/33
3 124.14 14/13, 15/14 139.63 13/12
4 165.52 11/10 181.01 10/9
5 206.90 9/8 222.38 25/22
6 248.28 15/13 263.76 7/6
7 289.66 13/11, 32/27, 33/28 305.14 25/21
8 331.03 40/33 346.52 11/9, 39/32
9 372.41 26/21 387.90 5/4
10 413.79 14/11, 33/26, 80/63 429.28 77/60
11 455.17 13/10 470.66 21/16
12 496.55 4/3 512.04 35/26, 75/56
13 537.93 15/11 553.42 11/8
14 579.31 7/5 594.80 45/32
15 620.69 10/7 636.18 13/9
16 662.07 22/15 677.56 40/27
17 703.45 3/2 718.94 50/33
18 744.83 20/13 760.32 14/9
19 786.21 11/7, 52/33, 63/40 801.69 35/22
20 827.59 21/13 843.07 13/8, 44/27
21 868.97 33/20 884.45 5/3
22 910.34 22/13, 27/16, 56/33 925.83 77/45
23 951.72 26/15 967.21 7/4
24 993.10 16/9 1008.59 25/14, 70/39
25 1034.48 20/11 1049.97 11/6
26 1075.86 13/7, 28/15 1091.35 15/8
27 1117.24 21/11, 40/21 1133.73 25/13, 52/27
28 1158.62 39/20, 49/25, 88/45 1174.11 63/32, 65/33, 77/39, 160/81
29 1200.00 2/1

* in 13-limit CWE tuning

Tunings

Tuning spectrum

Edo
generator
Eigenmonzo
(unchanged-interval)
*
Generator (¢) Comments
9\29 372.414 Lower bound of 7- to 15-odd-limit,
and 13-limit 21-odd-limit diamond monotone
15/8 384.820
13/8 385.355
11/8 385.801
28\87 386.207
5/4 386.314
13/12 386.849
11/6 387.294
5/3 387.807
13/9 388.342
21/16 388.022
11/9 388.787
47\145 388.966
9/5 389.300
7/4 389.516
7/6 391.009
9/7 392.502
19\58 393.103 Upper bound of 13- and 15-odd-limit,
and 13-limit 21-odd-limit diamond monotone
10\29 413.793 29cdef val, upper bound of 7- to 11-odd-limit diamond monotone

* Besides the octave