User:Ganaram inukshuk/Sandbox
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
Sandbox for proposed templates
JI ratio intro
For general ratios: m/n, also called interval-name, is a p-limit just intonation ratio of exactly/about r¢.
For harmonics: m/1, also called interval-name, is a just intonation ration that represents the mth harmonic of exactly/about r¢.
MOS step sizes
Interval | Basic 3L 4s
(10edo, L:s = 2:1) |
Hard 3L 4s
(13edo, L:s = 3:1) |
Soft 3L 4s
(17edo, L:s = 3:2) |
Approx. JI ratios | |||
---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | ||
Large step | 2 | 240¢ | 3 | 276.9¢ | 3 | 211.8¢ | Hide column if no ratios given |
Small step | 1 | 120¢ | 1 | 92.3¢ | 2 | 141.2¢ | |
Bright generator | 3 | 360¢ | 4 | 369.2¢ | 5 | 355.6¢ |
Notes:
- Allow option to show the bright generator, dark generator, or no generator.
- JI ratios column only shows if there are any ratios to show
Expanded MOS intro
Base wording
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢.
Rothenprop info
Single-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step.
Multi-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step per period.
Descendant info (descendants of tamnams-named mosses only)
scalesig is a chromatic/enharmonic scale of parent-scalesig, an extension of parent-scalesig scales with a step-ratio-range step ratio.
scalesig is a descendant scale of parent-scalesig.
Full wording
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), forming a step pattern step-pattern that repeats every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.
scalesig, called mosname in TAMNAMS, (alternatively called alt-mosname), is a(n) equave-equivalent moment-of-symmetry scale containing x large steps(s) and y small step(s), with a period of x/n large and y/n small steps(s) that forms a step pattern step-pattern-per-period that repeats every p¢, or n times every equave. Descendant-info. Generators that produce this scale range from g1¢ to g2¢, or from d1¢ or d2¢. Rothenprop-info.
Examples
5L 7s, also called p-chromatic, is an octave-equivalent moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a chromatic scale of 5L 2s, an extension of 5L 2s scales with a hard-of-basic step ratio. Generators that produce this scale range from 700¢ to 720¢, or from 480¢ to 500¢.
Mos ancestors and descendants
2nd ancestor | 1st ancestor | Mos | 1st descendants | 2nd descendants |
---|---|---|---|---|
uL vs | zL ws | xL ys | xL (x+y)s | xL (2x+y)s |
(2x+y)L xs | ||||
(x+y)L xs | (2x+y)L (x+y)s | |||
(x+y)L (2x+y)s |
6- to 10-note mosses | 1L 5s (selenite) | 2L 4s ( | 3L 3s | 4L 2 | 5L 1s | ||||||||
Monolarge family | 1L 5s (selenite) | 1L 6s (onyx) | 1L 7s (spinel) | 1L 8s (agate) | 1L 9s (olivine) | ||||||||
Diatonic mos family |
|
Scale tree formatting
Proposed changes:
- Merge step ratio and hardness columns
Advanced table may need custom html?
Generator (in steps of edo) | Cents | Step ratio | Comments | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | ||||||||
4\7 | 685.714 | 514.286 | 1:1 | 1.000 | Equalized 5L 2s | ||||||
┌ | 27\47 | 689.362 | 510.638 | 7:6 | 1.167 | ||||||
┌ | 23\40 | 690.000 | 510.000 | 6:5 | 1.200 | ||||||
│ | └ | 42\73 | 690.411 | 509.589 | 11:9 | 1.222 | |||||
┌ | 19\33 | 690.909 | 509.091 | 5:4 | 1.250 | ||||||
│ | ┌ | 53\92 | 691.304 | 508.696 | 14:11 | 1.273 | |||||
│ | 34\59 | 691.525 | 508.475 | 9:7 | 1.286 | ||||||
│ | └ | 49\85 | 691.765 | 508.235 | 13:10 | 1.300 | |||||
┌ | 15\26 | 692.308 | 507.692 | 4:3 | 1.333 | Supersoft 5L 2s | |||||
│ | │ | ┌ | 56\97 | 692.784 | 507.216 | 15:11 | 1.364 | ||||
│ | │ | ┌ | 41\71 | 692.958 | 507.042 | 11:8 | 1.375 | ||||
│ | │ | │ | └ | 67\116 | 693.103 | 506.897 | 18:13 | 1.385 | |||
│ | └ | 26\45 | 693.333 | 506.667 | 7:5 | 1.400 | Flattone is in this region | ||||
│ | │ | ┌ | 63\109 | 693.578 | 506.422 | 17:12 | 1.417 | ||||
│ | └ | 37\64 | 693.750 | 506.250 | 10:7 | 1.429 | |||||
│ | └ | 48\83 | 693.976 | 506.024 | 13:9 | 1.444 | |||||
┌ | 11\19 | 694.737 | 505.263 | 3:2 | 1.500 | Soft 5L 2s | |||||
│ | │ | ┌ | 51\88 | 695.455 | 504.545 | 14:9 | 1.556 | ||||
│ | │ | ┌ | 40\69 | 695.652 | 504.348 | 11:7 | 1.571 | ||||
│ | │ | │ | └ | 69\119 | 695.798 | 504.202 | 19:12 | 1.583 | |||
│ | │ | ┌ | 29\50 | 696.000 | 504.000 | 8:5 | 1.600 | ||||
│ | │ | │ | │ | ┌ | 76\131 | 696.183 | 503.817 | 21:13 | 1.615 | Golden meantone (696.2145¢) | |
│ | │ | │ | └ | 47\81 | 696.296 | 503.704 | 13:8 | 1.625 | |||
│ | │ | │ | └ | 65\112 | 696.429 | 503.571 | 18:11 | 1.636 | |||
│ | └ | 18\31 | 696.774 | 503.226 | 5:3 | 1.667 | Semisoft 5L 2s
Meantone is in this region | ||||
│ | │ | ┌ | 61\105 | 697.143 | 502.857 | 17:10 | 1.700 | ||||
│ | │ | ┌ | 43\74 | 697.297 | 502.703 | 12:7 | 1.714 | ||||
│ | │ | │ | └ | 68\117 | 697.436 | 502.564 | 19:11 | 1.727 | |||
│ | └ | 25\43 | 697.674 | 502.326 | 7:4 | 1.750 | |||||
│ | │ | 57\98 | 697.959 | 502.041 | 16:9 | 1.778 | |||||
│ | └ | 32\55 | 698.182 | 501.818 | 9:5 | 1.800 | |||||
│ | └ | 39\67 | 698.507 | 501.493 | 11:6 | 1.833 | |||||
7\12 | 700.000 | 500.000 | 2:1 | 2.000 | Basic 5L 2s | ||||||
│ | ┌ | 38\65 | 701.538 | 498.462 | 11:5 | 2.200 | |||||
│ | ┌ | 31\53 | 701.887 | 498.113 | 9:4 | 2.250 | The generator closest to a just 3/2 for EDOs less than 200 | ||||
│ | │ | └ | 55\94 | 702.128 | 497.872 | 16:7 | 2.286 | Garibaldi / Cassandra | |||
│ | ┌ | 24\41 | 702.439 | 497.561 | 7:3 | 2.333 | |||||
│ | │ | │ | ┌ | 65\111 | 702.703 | 497.297 | 19:8 | 2.375 | |||
│ | │ | └ | 41\70 | 702.857 | 497.143 | 12:5 | 2.400 | ||||
│ | │ | └ | 58\99 | 703.030 | 496.970 | 17:7 | 2.429 | ||||
│ | ┌ | 17\29 | 703.448 | 496.552 | 5:2 | 2.500 | Semihard 5L 2s | ||||
│ | │ | │ | ┌ | 61\104 | 703.846 | 496.154 | 18:7 | 2.571 | |||
│ | │ | │ | ┌ | 44\75 | 704.000 | 496.000 | 13:5 | 2.600 | |||
│ | │ | │ | │ | └ | 71\121 | 704.132 | 495.868 | 21:8 | 2.625 | Golden neogothic (704.0956¢) | |
│ | │ | └ | 27\46 | 704.348 | 495.652 | 8:3 | 2.667 | Neogothic is in this region | |||
│ | │ | ┌ | 64\109 | 704.587 | 495.413 | 19:7 | 2.714 | ||||
│ | │ | 37\63 | 704.762 | 495.238 | 11:4 | 2.750 | |||||
│ | │ | └ | 47\80 | 705.000 | 495.000 | 14:5 | 2.800 | ||||
└ | 10\17 | 705.882 | 494.118 | 3:1 | 3.000 | Hard 5L 2s | |||||
│ | ┌ | 43\73 | 706.849 | 493.151 | 13:4 | 3.250 | |||||
│ | ┌ | 33\56 | 707.143 | 492.857 | 10:3 | 3.333 | |||||
│ | │ | └ | 56\95 | 707.368 | 492.632 | 17:5 | 3.400 | ||||
│ | ┌ | 23\39 | 707.692 | 492.308 | 7:2 | 3.500 | |||||
│ | │ | │ | ┌ | 59\100 | 708.000 | 492.000 | 18:5 | 3.600 | |||
│ | │ | └ | 36\61 | 708.197 | 491.803 | 11:3 | 3.667 | ||||
│ | │ | └ | 49\83 | 708.434 | 491.566 | 15:4 | 3.750 | ||||
└ | 13\22 | 709.091 | 490.909 | 4:1 | 4.000 | Superhard 5L 2s
Archy is in this region | |||||
│ | ┌ | 42\71 | 709.859 | 490.141 | 13:3 | 4.333 | |||||
│ | ┌ | 29\49 | 710.204 | 489.796 | 9:2 | 4.500 | |||||
│ | │ | └ | 45\76 | 710.526 | 489.474 | 14:3 | 4.667 | ||||
└ | 16\27 | 711.111 | 488.889 | 5:1 | 5.000 | ||||||
│ | ┌ | 35\59 | 711.864 | 488.136 | 11:2 | 5.500 | |||||
└ | 19\32 | 712.500 | 487.500 | 6:1 | 6.000 | ||||||
└ | 22\37 | 713.514 | 486.486 | 7:1 | 7.000 | ||||||
3\5 | 720.000 | 480.000 | 1:0 | → ∞ | Collapsed 5L 2s |