Associated temperament: Difference between revisions
Jump to navigation
Jump to search
m Removing from Category:Temperament using Cat-a-lot |
mNo edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
In [[regular temperament theory]], an '''associated temperament''' to a [[harmonic limit|''p''-limit]] [[comma]] is a ''p''-limit [[regular temperament]] [[tempering out]] that comma which shares the same [[optimal patent val]] as the [[codimension]]-1 temperament tempering out that comma. By definition, the optimal patent val defines the unique [[ET|rank-1]] associated temperament. For [[rank-2 temperament]]s, it is possible for more than one temperament to be associated, and some of these are listed below. The column headings are the comma being associated, the optimal patent val (OPV), the rank-2 temperament, and a [[comma basis]] for the rank-2 temperament. | |||
== 7-limit == | == 7-limit == | ||
Line 31: | Line 31: | ||
| [[36/35]] | | [[36/35]] | ||
| [[12edo]] | | [[12edo]] | ||
| [[Dominant]] | | [[Dominant (temperament)|Dominant]] | ||
| 36/35, [[64/63]] | | 36/35, [[64/63]] | ||
|- | |- | ||
Line 195: | Line 195: | ||
| 56/55 | | 56/55 | ||
| [[36edo]] | | [[36edo]] | ||
| [[ | | [[Catnip]] | ||
| 56/55, 81/80, 128/125 | | 56/55, 81/80, 128/125 | ||
|- | |- |
Latest revision as of 15:26, 23 August 2024
In regular temperament theory, an associated temperament to a p-limit comma is a p-limit regular temperament tempering out that comma which shares the same optimal patent val as the codimension-1 temperament tempering out that comma. By definition, the optimal patent val defines the unique rank-1 associated temperament. For rank-2 temperaments, it is possible for more than one temperament to be associated, and some of these are listed below. The column headings are the comma being associated, the optimal patent val (OPV), the rank-2 temperament, and a comma basis for the rank-2 temperament.
7-limit
Comma | OPV | Temperament | Basis |
---|---|---|---|
28/27 | 15edo | Blacksmith | 28/27, 49/48 |
1029/1000 | 55edo | Liese | 81/80, 686/675 |
36/35 | 12edo | Diminished | 36/35, 50/49 |
36/35 | 12edo | August | 36/35, 128/125 |
36/35 | 12edo | Dominant | 36/35, 64/63 |
525/512 | 45edo | Flattone | 81/80, 525/512 |
49/48 | 19edo | Keemun | 49/48, 126/125 |
49/48 | 19edo | Godzilla | 49/48, 81/80 |
50/49 | 48edo | Doublewide | 50/49, 875/864 |
64/63 | 49edo | Superpyth | 64/63, 245/243 |
875/864 | 41edo | Magic | 225/224, 245/243 |
875/864 | 41edo | Superkleismic | 875/864, 1029/1024 |
3125/3087 | 94edo | Garibaldi | 225/224, 3125/3087 |
2430/2401 | 137edo | Orwell | 225/224, 1728/1715 |
245/243 | 283edo | Escaped | 245/243, 65625/65536 |
126/125 | 185edo | Valentine | 126/125, 1029/1024 |
1728/1715 | 111edo | Buzzard | 1728/1715, 5120/5103 |
1728/1715 | 111edo | Semisept | 1728/1715, 3136/3125 |
1029/1024 | 190edo | Unidec | 1029/1024, 4375/4374 |
225/224 | 197edo | Catakleismic | 225/224, 4375/4374 |
16875/16807 | 224edo | Octoid | 4375/4374, 16875/16807 |
4802000/4782969 | 1131edo | Amicable | 2401/2400, 1600000/1594323 |
3136/3125 | 446edo | Sengagen | 3136/3125, 420175/419904 |
5120/5103 | 391edo | Alphaquarter | 5120/5103, 29360128/29296875 |
5120/5103 | 391edo | Septiquarter | 5120/5103, 420175/419904 |
6144/6125 | 381edo | Nessafof | 6144/6125, 250047/250000 |
65625/65536 | 171edo | Tertiaseptal | 2401/2400, 65625/65536 |
703125/702464 | 2185edo | Enneadecal | 4375/4374, 703125/702464 |
4375/4374 | 8419edo | Semidimi | 4375/4374, 3955078125/3954653486 |
250047/250000 | 12555edo | 250047/250000, 281484423828125/281474976710656 |
11-limit
Comma | OPV | Temperament | Basis |
---|---|---|---|
33/32 | 16edo | Armodue | 33/32, 36/35, 45/44 |
77/75 | 39edo | Triforce | 49/48, 56/55, 77/75 |
352/343 | 22edo | Hedgehog | 50/49, 55/54, 99/98 |
45/44 | 45edo | Flattone | 45/44, 81/80, 385/384 |
55/54 | 51edo | Porky | 55/54, 100/99, 225/224 |
56/55 | 36edo | Catnip | 56/55, 81/80, 128/125 |
245/242 | 91edo | Septimin | 225/224, 245/242, 385/384 |
99/98 | 127edo | Würschmidt | 99/98, 176/175, 243/242 |
100/99 | 104edo | Magic | 100/99, 225/224, 245/243 |
121/120 | 99edo | Hitchcock | 121/120, 176/175, 2200/2187 |
121/120 | 99edo | Hemiwur | 121/120, 176/175, 1375/1372 |
176/175 | 111edo | Semisept | 176/175, 540/539, 1331/1323 |
896/891 | 208edo | Metakleismic | 896/891, 2200/2187, 14700/14641 |
65536/65219 | 282edo | Septisuperfourth | 540/539, 4000/3993, 5632/5625 |
14641/14580 | 410edo | Floral | 2401/2400, 9801/9800, 14641/14580 |
243/242 | 202edo | Harry | 243/242, 441/440, 4000/3993 |
243/242 | 202edo | Tertiaseptal | 243/242, 441/440, 65625/65536 |
3388/3375 | 316edo | Semiparakleismic | 3025/3024, 3136/3125, 4375/4374 |
385/384 | 284edo | Quadritikleismic | 385/384, 1375/1372, 6250/6237 |
441/440 | 320edo | Octowerck | 441/440, 8019/8000, 41503/41472 |
540/539 | 578edo | Pogo | 540/539, 4000/3993, 32805/32768 |
4000/3993 | 665edo | Brahmagupta | 4000/3993, 4375/4374, 131072/130977 |
5632/5625 | 1092edo | Sextile | 5632/5625, 9801/9800, 151263/151250 |
3025/3024 | 2554edo | Semisupermajor | 3025/3024, 4375/4374, 35156250/35153041 |
13-limit
Comma | OPV | Temperament | Basis |
---|---|---|---|
26/25 | 12edo | Augustus | 26/25, 36/35, 45/44, 56/55 |
27/26 | 35edo | Secund | 27/26, 45/44, 99/98, 385/384 |
27/26 | 35edo | Greenwood | 27/26, 45/44, 99/98, 640/637 |
40/39 | 15edo | Blacksmith | 28/27, 40/39, 49/48, 55/54 |
65/64 | 29edo | Negril | 49/48, 65/64, 91/90, 875/858 |
65/64 | 29edo | Coendou | 55/54, 65/64, 100/99, 105/104 |
66/65 | 31edo | Winston | 66/65, 99/98, 105/104, 121/120 |
66/65 | 31edo | Mohajira | 66/65, 81/80, 105/104, 121/120 |
66/65 | 31edo | Squares | 66/65, 81/80, 99/98, 121/120 |
78/77 | 43edo | Amavil | 78/77, 99/98, 144/143, 176/175 |
78/77 | 43edo | Jerome | 78/77, 81/80, 99/98, 144/143 |
91/90 | 102edo | Echidnic | 91/90, 169/168, 385/384, 441/440 |
105/104 | 91edo | Septimin | 105/104, 144/143, 196/195, 245/242 |
275/273 | 94edo | Garibaldi | 225/224, 275/273, 325/324, 385/384 |
144/143 | 84edo | Merman | 144/143, 225/224, 364/363, 441/440 |
144/143 | 84edo | Secant | 144/143, 351/350, 364/363, 441/440 |
169/168 | 152edo | Octopus | 169/168, 325/324, 364/363, 540/539 |
196/195 | 232edo | Mystery | 196/195, 352/351, 364/363, 676/675 |
640/637 | 205edo | Quanic | 352/351, 540/539, 729/728, 1331/1323 |
1188/1183 | 255edo | Subsemifourth | 540/539, 847/845, 1375/1372, 1575/1573 |
1573/1568 | 323edo | Stockhausenic | 676/675, 1001/1000, 1375/1372, 4096/4095 |
325/324 | 333edo | Novemkleismic | 325/324, 625/624, 1375/1372, 4000/3993 |
351/350 | 546edo | Fermionic | 351/350, 540/539, 40656/40625, 142884/142805 |
352/351 | 198edo | Semihemi | 352/351, 676/675, 847/845, 1716/1715 |
352/351 | 198edo | Hemimist | 352/351, 676/675, 847/845, 3025/3024 |
847/845 | 388edo | Neusec | 847/845, 1001/1000, 3025/3024, 4375/4374 |
676/675 | 940edo | Decoid | 676/675, 1001/1000, 1716/1715, 4225/4224 |
2200/2197 | 836edo | Quasithird | 2200/2197, 3025/3024, 4375/4374, 468512/468195 |