Pentacircle clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Pentafrost: review
m Update
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Technical data page}}
The '''pentacircle clan''' of [[rank-3 temperament]]s tempers out the pentacircle comma, [[896/891]]. This has the effect of identifying [[14/11]] at the [[81/64|Pythagorean major third]].  
The '''pentacircle clan''' of [[rank-3 temperament]]s tempers out the pentacircle comma, [[896/891]]. This has the effect of identifying [[14/11]] at the [[81/64|Pythagorean major third]].  


Line 16: Line 17:
: sval mapping generators: ~2, ~3, ~7
: sval mapping generators: ~2, ~3, ~7


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 703.8345, ~7/4 = 969.8722
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~3/2 = 703.576, ~7/4 = 967.554
: [[error map]]: {{val| 0.000 +1.621 -1.272 +1.937 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 703.834, ~7/4 = 969.872
: error map: {{val| 0.000 +1.879 +1.046 +3.216 }}


{{Optimal ET sequence|legend=1| 12, 17, 36, 41, 58, 63, 104, 225e, 266e, 370bee, 699bbdeee }}
{{Optimal ET sequence|legend=1| 12, 17, 36, 41, 58, 63, 104, 225e, 266e, 370bee, 699bbdeee }}
Line 29: Line 34:
The second comma in the comma list determines how we extend parapyth to include the harmonic 5.  
The second comma in the comma list determines how we extend parapyth to include the harmonic 5.  


Pele adds [[441/440]] and finds the harmonic 5 by equating the [[81/80|syntonic comma (81/80)]] with the [[64/63|septimal comma (64/63)]]. Together with the slightly sharp fifth this extension makes for one of the most natural interpretations. Sensamagic adds [[245/243]] or [[385/384]], a traditional RTT favorite. Apollo adds [[100/99]] or [[225/224]], and is even simpler than sensamagic. Uni adds [[540/539]]. Melpomene adds [[56/55]] or [[81/80]]. Terrapyth adds 585640/583443, a complex entry that finds the harmonic 5 at the triple augmented unison (AAA1). These all have the same lattice structure as parapyth.  
Pele adds [[441/440]] and finds the harmonic 5 by equating the [[81/80|syntonic comma (81/80)]] with the [[64/63|septimal comma (64/63)]]. Together with the slightly sharp fifth this extension makes for one of the most natural interpretations. Sensamagic adds [[245/243]] or [[385/384]], a traditional RTT favorite. Apollo adds [[100/99]] or [[225/224]], and is even simpler than sensamagic. Pentafrost adds [[245/242]]. Uni adds [[540/539]]. Melpomene adds [[56/55]] or [[81/80]]. Terrapyth adds 585640/583443, a complex entry that finds the harmonic 5 at the triple augmented unison (AAA1). These all have the same lattice structure as parapyth.  


Julius aka varda adds [[176/175]], splitting the octave into two. Parahemif adds [[243/242]], splitting the perfect fifth into two. Kujuku adds 14700/14641, splitting the perfect twelfth into two. Tolerant adds 2200/2187, splitting the ~33/32 into two. Finally, canta adds 472392/471625, splitting the ~14/9 into three.  
Julius aka varda adds [[176/175]], splitting the octave into two. Parahemif adds [[243/242]], splitting the perfect fifth into two. Kujuku adds 14700/14641, splitting the perfect twelfth into two. Tolerant adds 2200/2187, splitting the ~33/32 into two. Finally, canta adds 472392/471625, splitting the ~14/9 into three.  


Temperaments discussed elsewhere are:  
Temperaments discussed elsewhere are:  
* ''[[Melpomene]]'' → [[Didymus rank three family #Melpomene|Didymus rank-3 family]]
* ''[[Melpomene]]'' → [[Didymus rank-3 family #Melpomene|Didymus rank-3 family]]
* ''[[Apollo]]'' → [[Marvel family #Apollo|Marvel family]]
* ''[[Apollo]]'' → [[Marvel family #Apollo|Marvel family]]
* [[Sensamagic]] → [[Sensamagic family #Undecimal sensamagic|Sensamagic family]]
* [[Sensamagic]] → [[Sensamagic family #Undecimal sensamagic|Sensamagic family]]
* ''[[Pele]]'' → [[Hemifamity family #Pele|Hemifamity family]]
* [[Pele]] → [[Hemifamity family #Pele|Hemifamity family]]
* ''[[Uni]]'' → [[Hemimage family #Uni|Hemimage family]]
* ''[[Uni]]'' → [[Hemimage family #Uni|Hemimage family]]
* ''[[Julius]]'' or ''[[varda]]'' → [[Diaschismic rank three family #Julius aka varda|Diaschismic rank-3 family]]
* ''[[Varda]]'' → [[Diaschismic rank-3 family #Varda|Diaschismic rank-3 family]]
* ''[[Parahemif]]'' → [[Rastmic rank three clan #Parahemif|Rastmic rank-3 clan]]
* ''[[Parahemif]]'' → [[Rastmic rank-3 clan #Parahemif|Rastmic rank-3 clan]]
* ''[[Canta]]'' → [[Canou family #Canta|Canou family]]
* ''[[Canta]]'' → [[Canou family #Canta|Canou family]]


Line 54: Line 59:
Sval mapping: {{mapping| 1 0 0 7 12 | 0 1 0 -4 -7 | 0 0 1 1 1 }}
Sval mapping: {{mapping| 1 0 0 7 12 | 0 1 0 -4 -7 | 0 0 1 1 1 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 703.8563, ~7/4 = 969.9074
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 703.786, ~7/4 = 967.665
* POTE: ~2 = 1200.000, ~3/2 = 703.856, ~7/4 = 969.907


{{Optimal ET sequence|legend=1| 12f, 17, 41, 46, 58, 87, 104, 266ef, 329bef, 370beef, 474beef, 595bdeeeff, 699bbdeeeff }}
Optimal ET sequence: {{Optimal ET sequence| 12f, 17, 41, 46, 58, 87, 104, 266ef, 329bef, 370beef, 474beef, 595bdeeeff, 699bbdeeeff }}


Badness: 0.101 × 10<sup>-3</sup>
Badness: 0.101 × 10<sup>-3</sup>
Line 67: Line 74:
Sval mapping: {{mapping| 1 0 0 7 12 -13 | 0 1 0 -4 -7 9 | 0 0 1 1 1 1 }}
Sval mapping: {{mapping| 1 0 0 7 12 -13 | 0 1 0 -4 -7 9 | 0 0 1 1 1 1 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.0315, ~7/4 = 970.6051
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 703.978, ~7/4 = 968.399
* POTE: ~2 = 1200.000, ~3/2 = 704.032, ~7/4 = 970.605


{{Optimal ET sequence|legend=1| 12f, 17g, 29g, 41g, 46, 58, 75e, 104, 121, 225e }}
Optimal ET sequence: {{Optimal ET sequence| 12f, 17g, 29g, 41g, 46, 58, 75e, 104, 121, 225e }}


Badness: 0.325 × 10<sup>-3</sup>
Badness: 0.325 × 10<sup>-3</sup>
Line 84: Line 93:
: mapping generators: ~2, ~3, ~7
: mapping generators: ~2, ~3, ~7


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 704.1814, ~7/4 = 970.6217
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~3/2 = 704.102, ~7/4 = 968.390
: [[error map]]: {{val| 0.000 +2.147 -0.163 -0.436 +0.662 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 704.181, ~7/4 = 970.622
: error map: {{val| 0.000 +2.226 +1.496 +1.796 +2.578 }}


{{Optimal ET sequence|legend=1| 17c, 29, 46, 92de, 121, 167, 288be }}
{{Optimal ET sequence|legend=1| 17c, 29, 46, 92de, 121, 167, 288be }}
Line 97: Line 110:
Mapping: {{mapping| 1 0 -31 0 7 12 | 0 1 0 21 0 4 -7 | 0 0 0 1 1 1 }}
Mapping: {{mapping| 1 0 -31 0 7 12 | 0 1 0 21 0 4 -7 | 0 0 0 1 1 1 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.1691, ~7/4 = 970.8432
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 704.099, ~7/4 = 968.601
* POTE: ~2 = 1200.000, ~3/2 = 704.169, ~7/4 = 970.843


{{Optimal ET sequence|legend=1| 17c, 29, 46, 75e, 92def, 121, 167, 288be }}
Optimal ET sequence: {{Optimal ET sequence| 17c, 29, 46, 75e, 92def, 121, 167, 288be }}


Badness: 2.48 × 10<sup>-3</sup>
Badness: 2.48 × 10<sup>-3</sup>
Line 110: Line 125:
Mapping: {{mapping| 1 0 -31 0 7 12 -13 | 0 1 0 21 0 4 -7 9 | 0 0 0 1 1 1 1 1 }}
Mapping: {{mapping| 1 0 -31 0 7 12 -13 | 0 1 0 21 0 4 -7 9 | 0 0 0 1 1 1 1 1 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.1628, ~7/4 = 970.6620
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 704.096, ~7/4 = 968.504
* POTE: ~2 = 1200.000, ~3/2 = 704.163, ~7/4 = 970.662


{{Optimal ET sequence|legend=1| 17cg, 29g, 46, 75e, 92defg, 121, 167, 288beg }}
Optimal ET sequence: {{Optimal ET sequence| 17cg, 29g, 46, 75e, 92defg, 121, 167, 288beg }}


Badness: 1.52 × 10<sup>-3</sup>
Badness: 1.52 × 10<sup>-3</sup>
== Pentafrost ==
Pentafrost tempers out the [[245/242|frostma]] in addition to 896/891 which also means that the [[schisma]] is tempered out, mapping prime 5 to 8 [[4/3|perfect fourths]] and -1 octaves.
[[Subgroup]]: 2.3.5.7.11
[[Comma list]]: [[245/242]], [[896/891]]
{{Mapping|legend=1| 1 0 15 0 7 | 0 1 -8 0 -4 | 0 0 0 1 1 }}
: mapping generators: ~2, ~3, ~7
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~3/2 = 701.883, ~7/4 = 964.864
: [[error map]]: {{val| 0.000 -0.072 -1.375 -3.962 +6.016 }}
* [[CWE]]: ~2 = 1200.000, ~3/2 = 701.903, ~7/4 = 964.614
: error map: {{val| 0.000 -0.052 -1.541 -4.212 +5.683 }}
* [[CE]]: ~2 = 1200.000, ~3/2 = 702.006, ~7/4 = 964.085
: error map: {{val| 0.000 +0.051 -2.364 -4.741 +4.741 }}
{{Optimal ET sequence|legend=1| 12, 24, 29, 36, 41, 106d }}
[[Badness]]: 1.58 × 10<sup>-3</sup>
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: [[105/104]], [[245/242]], [[352/351]]
Mapping: {{mapping| 1 0 15 0 7 12 | 0 1 -8 0 -4 -7 | 0 0 0 1 1 1 }}
: mapping generators: ~2, ~3, ~7
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 702.106, ~7/4 = 962.655
* CWE: ~2 = 1200.000, ~3/2 = 702.145, ~7/4 = 962.175
* CE: ~2 = 1200.000, ~3/2 = 702.360, ~7/4 = 962.210
Optimal ET sequence: {{Optimal ET sequence| 12f, 24, 29, 41 }}
Badness: 1.59 × 10<sup>-3</sup>
=== Permafrost ===
Subgroup: 2.3.5.7.11.13
Comma list: [[144/143]], [[245/242]], [[896/891]]
Mapping: {{mapping| 1 0 15 0 7 -3 | 0 1 -8 0 -4 6 | 0 0 0 1 1 -1 }}
: mapping generators: ~2, ~3, ~7
Optimal tunings:
* CTE: 2 = 1200.000, ~3/2 = 701.783, ~7/4 = 966.113
* CWE: 2 = 1200.000, ~3/2 = 701.753, ~7/4 = 966.445
* CE: 2 = 1200.000, ~3/2 = 701.770, ~7/4 = 965.771
Optimal ET sequence: {{Optimal ET sequence| 12, 17, 24, 36, 41, 77e }}
Badness: 2.62 × 10<sup>-3</sup>


== Tolerant ==
== Tolerant ==
Line 126: Line 202:
: mapping generators: ~2, ~3, ~5
: mapping generators: ~2, ~3, ~5


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 703.9571, ~5/4 = 386.8863
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~3/2 = 703.608, ~5/4 = 385.669
: [[error map]]: {{val| 0.000 +1.653 -0.645 -0.472 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 703.957, ~5/4 = 386.886
: error map: {{val| 0.000 +2.002 +0.573 +0.930 }}


{{Optimal ET sequence|legend=1| 41, 80, 87, 121, 167, 208, 329b, 375b, 537b, 583b, 704bd }}
{{Optimal ET sequence|legend=1| 34d, 39d, 41, 80, 87, 121, 167, 208, 329b, 375b, 496bd }}


[[Badness]]: 0.165 × 10<sup>-3</sup>
[[Badness]]: 0.165 × 10<sup>-3</sup>
Line 139: Line 219:
{{Mapping|legend=1| 1 0 0 -10 -3 | 0 1 0 11 7 | 0 0 1 -2 -2 }}
{{Mapping|legend=1| 1 0 0 -10 -3 | 0 1 0 11 7 | 0 0 1 -2 -2 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 704.0412, ~5/4 = 387.2927
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~3/2 = 703.642, ~5/4 = 386.223
: [[error map]]: {{val| 0.000 +1.687 -0.091 -1.207 +1.732 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 704.041, ~5/4 = 387.293
: error map: {{val| 0.000 +2.086 +0.979 +1.042 +2.385 }}


{{Optimal ET sequence|legend=1| 41, 80, 87, 121, 167, 208, 334be, 375be, 542bce }}
{{Optimal ET sequence|legend=1| 34d, 39d, 41, 80, 87, 121, 167, 208, 288be, 375be }}


[[Badness]]: 1.039 × 10<sup>-3</sup>
[[Badness]]: 1.039 × 10<sup>-3</sup>
Line 152: Line 236:
Mapping: {{mapping| 1 0 0 -10 -3 2 | 0 1 0 11 7 4 | 0 0 1 -2 -2 -2 }}
Mapping: {{mapping| 1 0 0 -10 -3 2 | 0 1 0 11 7 4 | 0 0 1 -2 -2 -2 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 703.9605, ~5/4 = 386.9831
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 703.705, ~5/4 = 386.616
* POTE: ~2 = 1200.000, ~3/2 = 703.961, ~5/4 = 386.983


{{Optimal ET sequence|legend=1| 41, 46, 80, 87, 121, 167, 208, 375be, 583bef }}
Optimal ET sequence: {{Optimal ET sequence| 34d, 41, 46, 75e, 80, 87, 121, 167, 208, 375be }}


Badness: 1.021 × 10<sup>-3</sup>
Badness: 1.02 × 10<sup>-3</sup>


=== 17-limit ===
=== 17-limit ===
Line 165: Line 251:
Mapping: {{mapping| 1 0 0 -10 -3 2 8 | 0 1 0 11 7 4 -1 | 0 0 1 -2 -2 -2 -1 }}
Mapping: {{mapping| 1 0 0 -10 -3 2 8 | 0 1 0 11 7 4 -1 | 0 0 1 -2 -2 -2 -1 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.0831, ~5/4 = 387.3269
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 703.891, ~5/4 = 387.424
* POTE: ~2 = 1200.000, ~3/2 = 704.083, ~5/4 = 387.327


{{Optimal ET sequence|legend=1| 41, 46, 75e, 80, 87, 121, 167, 288beg }}
Optimal ET sequence: {{Optimal ET sequence| 34d, 41, 46, 75e, 80, 87, 121, 167, 288beg, 496bdeefggg }}


Badness: 0.982 × 10<sup>-3</sup>
Badness: 0.982 × 10<sup>-3</sup>
Line 182: Line 270:
: mapping generators: ~2, ~121/70, ~5
: mapping generators: ~2, ~121/70, ~5


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~121/70 = 951.4956, ~5/4 = 386.7868
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~121/70 = 951.837, ~5/4 = 386.405
: [[error map]]: {{val| 0.000 +1.718 +0.091 -1.198 +1.617 }}
* [[CWE]]: ~2 = 1200.000, ~121/70 = 951.871, ~5/4 = 387.243
: error map: {{val| 0.000 +1.787 +0.930 +0.220 +2.762 }}


{{Optimal ET sequence|legend=1| 24, 29, 34d, 53d, 58, 87, 121, 145, 179e, 208, 266e }}
{{Optimal ET sequence|legend=1| 24, 29, 34d, 53d, 58, 87, 121, 145, 179e, 208, 266e }}
Line 195: Line 287:
Mapping: {{mapping| 1 0 0 -13 -6 -1 | 0 2 0 17 9 3 | 0 0 1 1 1 1 }}
Mapping: {{mapping| 1 0 0 -13 -6 -1 | 0 2 0 17 9 3 | 0 0 1 1 1 1 }}


Optimal tuning (CTE): ~2 = 1\1, ~26/15 = 951.8367, ~5/4 = 386.4048
Optimal tunings:
* CTE: ~2 = 1200.000, ~26/15 = 951.852, ~5/4 = 386.089
* CWE: ~2 = 1200.000, ~26/15 = 951.881, ~5/4 = 387.104


{{Optimal ET sequence|legend=1| 24, 29, 34d, 53d, 58, 87, 121, 179ef, 208, 266ef, 474beef }}
Optimal ET sequence: {{Optimal ET sequence| 24, 29, 34d, 53d, 58, 87, 121, 179ef, 208, 266ef, 474beef }}


Badness: 1.06 × 10<sup>-3</sup>
Badness: 1.06 × 10<sup>-3</sup>
Line 210: Line 304:
Mapping: {{mapping| 1 0 0 -13 -6 -1 8 | 0 2 0 17 9 3 -2 | 0 0 1 1 1 1 -1 }}
Mapping: {{mapping| 1 0 0 -13 -6 -1 8 | 0 2 0 17 9 3 -2 | 0 0 1 1 1 1 -1 }}


Optimal tuning (CTE): ~2 = 1\1, ~26/15 = 951.8015, ~5/4 = 386.9912
Optimal tunings:
* CTE: ~2 = 1200.000, ~26/15 = 951.802, ~5/4 = 386.991
* CWE: ~2 = 1200.000, ~26/15 = 951.879, ~5/4 = 387.723


{{Optimal ET sequence|legend=1| 24, 34d, 58, 87, 121, 179ef, 208g, 266efg }}
Optimal ET sequence: {{Optimal ET sequence| 24, 34d, 58, 87, 121, 179ef, 208g, 266efg }}


Badness: 1.24 × 10<sup>-3</sup>
Badness: 1.24 × 10<sup>-3</sup>
[[Category:Temperament clans]]
[[Category:Pentacircle clan| ]] <!-- main article -->
[[Category:Rank 3]]
[[Category:Tolerant]]


== Trienparapyth ==
== Trienparapyth ==
Line 235: Line 326:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1\1, ~11/10 = 165.4134, ~5/4 = 386.8872
* [[CTE]]: ~2 = 1200.000, ~11/10 = 165.413, ~5/4 = 386.887
* [[CWE]]: ~2 = 1\1, ~11/10 = 165.3593, ~5/4 = 387.8093
: [[error map]]: {{val| 0.000 +1.805 +0.574 -1.486 +0.983 }}
* [[CWE]]: ~2 = 1200.000, ~11/10 = 165.359, ~5/4 = 387.809
: error map: {{val| 0.000 +1.967 +1.496 +0.031 +1.851 }}


{{Optimal ET sequence|legend=1| 7d, 14e, 15d, 22, 51, 58, 80, 87, 145, 167, 312ce, 479bce }}
{{Optimal ET sequence|legend=1| 7d, 14e, 15d, 22, 51, 58, 80, 87, 145, 167, 312ce, 479bce }}
Line 252: Line 345:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~11/10 = 165.3975, ~5/4 = 386.7908
* CTE: ~2 = 1200.000, ~11/10 = 165.398, ~5/4 = 386.791
* CWE: ~2 = 1\1, ~11/10 = 165.3802, ~5/4 = 387.8759
* CWE: ~2 = 1200.000, ~11/10 = 165.380, ~5/4 = 387.876


Optimal ET sequence: {{Optimal ET sequence| 7d, 22, 29, 51f, 51cde, 58, 80, 87, 145, 167, 225ce, 254, 312ce }}
Optimal ET sequence: {{Optimal ET sequence| 7d, 22, 29, 51f, 51cde, 58, 80, 87, 145, 167, 225ce, 254, 312ce }}
Line 259: Line 352:
Badness: 1.23 × 10<sup>-3</sup>
Badness: 1.23 × 10<sup>-3</sup>


=== no-17's 19-limit ===
=== 2.3.5.7.11.13.19 subgroup ===
Note [[109edo]] is a good patent val tuning not listed in the optimal ET sequence here.
Note [[109edo]] is a good patent val tuning not listed in the optimal ET sequence here.


Line 271: Line 364:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~11/10 = 165.2990, ~5/4 = 386.3154
* CTE: ~2 = 1200.000, ~11/10 = 165.299, ~5/4 = 386.315
* CWE: ~2 = 1\1, ~11/10 = 165.2976, ~5/4 = 387.7451
* CWE: ~2 = 1200.000, ~11/10 = 165.298, ~5/4 = 387.745


Optimal ET sequence: {{Optimal ET sequence| 7d, 22, 29, 51fh, 51cde, 58h, 80, 87, 138cdeh, 167h }}
Optimal ET sequence: {{Optimal ET sequence| 7d, 22, 29, 51fh, 51cde, 58h, 80, 87, 138cdeh, 167h }}
Line 278: Line 371:
Badness: 1.22 × 10<sup>-3</sup>
Badness: 1.22 × 10<sup>-3</sup>


=== no-17's 23-limit ===
=== 2.3.5.7.11.13.19.23 subgroup ===
Note [[109edo]] is a good patent val tuning not listed in the optimal ET sequence here.
 
Subgroup: 2.3.5.7.11.13.19.23
Subgroup: 2.3.5.7.11.13.19.23


Line 290: Line 381:


Optimal tunings  
Optimal tunings  
* CTE: ~2 = 1\1, ~11/10 = 165.2579, ~5/4 = 386.1446
* CTE: ~2 = 1200.000, ~11/10 = 165.258, ~5/4 = 386.145
* CWE: ~2 = 1\1, ~11/10 = 165.2679, ~5/4 = 387.7240
* CWE: ~2 = 1200.000, ~11/10 = 165.268, ~5/4 = 387.724


Optimal ET sequence: {{Optimal ET sequence| 22i, 29, 51fhi, 51cde, 58hi, 80, 87, 109, 138cdehi, 167hi }}
Optimal ET sequence: {{Optimal ET sequence| 22i, 29, 51fhi, 51cde, 58hi, 80, 87, 109, 138cdehi, 167hi }}
Line 297: Line 388:
Badness: 1.04 × 10<sup>-3</sup>
Badness: 1.04 × 10<sup>-3</sup>


== Pentafrost ==
[[Category:Temperament clans]]
Pentafrost tempers out the [[245/242|frostma]] in addition to 896/891 which also means that the [[schisma]] is tempered out, mapping prime 5 to 8 [[4/3|perfect fourths]] and -1 octaves.
[[Category:Pages with mostly numerical content]]
 
[[Category:Pentacircle clan| ]] <!-- main article -->
[[Subgroup]]: 2.3.5.7.11
[[Category:Rank 3]]
 
[[Category:Tolerant]]
[[Comma list]]: [[245/242]], [[896/891]]
 
{{Mapping|legend=1| 1 0 15 0 7 | 0 1 -8 0 -4 | 0 0 0 1 1 }}
 
: mapping generators: ~2, ~3, ~7
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~3/2 = 701.883, ~7/4 = 964.864
* [[CWE]]: ~2 = 1\1, ~3/2 = 701.903, ~7/4 = 964.614
* [[CE]]: ~2 = 1\1, ~3/2 = 702.006, ~7/4 = 964.085
 
{{Optimal ET sequence|legend=1| 12, 24, 29, 36, 41, 106d }}
 
[[Badness]]: 1.58 × 10<sup>-3</sup>
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: [[105/104]], [[245/242]], [[352/351]]
 
Mapping: {{mapping| 1 0 15 0 7 12 | 0 1 -8 0 -4 -7 | 0 0 0 1 1 1 }}
 
: mapping generators: ~2, ~3, ~7
 
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 702.106, ~7/4 = 962.655
* CWE: ~2 = 1\1, ~3/2 = 702.145, ~7/4 = 962.175
* CE: ~2 = 1\1, ~3/2 = 702.360, ~7/4 = 962.210
 
Optimal ET sequence: {{Optimal ET sequence| 12f, 24, 29, 41 }}
 
Badness: 1.59 × 10<sup>-3</sup>
 
=== Permafrost ===
Subgroup: 2.3.5.7.11.13
 
Comma list: [[144/143]], [[245/242]], [[896/891]]
 
Mapping: {{mapping| 1 0 15 0 7 -3 | 0 1 -8 0 -4 6 | 0 0 0 1 1 -1 }}
 
: mapping generators: ~2, ~3, ~7
 
Optimal tunings:
* CTE: 2 = 1\1, ~3/2 = 701.783, ~7/4 = 966.113
* CWE: 2 = 1\1, ~3/2 = 701.753, ~7/4 = 966.445
* CE: 2 = 1\1, ~3/2 = 701.770, ~7/4 = 965.771
 
Optimal ET sequence: {{Optimal ET sequence| 12, 17, 24, 36, 41, 77e }}
 
Badness: 2.62 × 10<sup>-3</sup>

Latest revision as of 14:12, 29 August 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The pentacircle clan of rank-3 temperaments tempers out the pentacircle comma, 896/891. This has the effect of identifying 14/11 at the Pythagorean major third.

For the rank-4 pentacircle temperament, see Rank-4 temperament #Pentacircle (896/891).

Parapythic

Parapyth, by the original definition, is the 2.3.7.11.13 subgroup temperament tempering out 352/351 and 364/363. We begin by looking at the 2.3.7.11 restriction thereof.

Subgroup: 2.3.7.11

Comma list: 896/891

Mapping[1 0 0 7], 0 1 0 -4], 0 0 1 1]]

sval mapping generators: ~2, ~3, ~7

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 703.576, ~7/4 = 967.554
error map: 0.000 +1.621 -1.272 +1.937]
  • POTE: ~2 = 1200.000, ~3/2 = 703.834, ~7/4 = 969.872
error map: 0.000 +1.879 +1.046 +3.216]

Optimal ET sequence12, 17, 36, 41, 58, 63, 104, 225e, 266e, 370bee, 699bbdeee

Badness: 0.0205 × 10-3

Overview to extensions

Subgroup extensions

By tempering out 896/891, we have mapped 14/11 to the major third, suggesting a slightly sharp fifth. This makes the minor third very close to the flat-of-Pythagorean 13/11, and extending the temperament to include harmonic 13 this way implies we temper out 352/351. In fact, 896/891 = (352/351)(364/363), so it is a very natural interpretation, giving rise to the 2.3.7.11.13 subgroup temperament shown below.

Full 11-limit extensions

The second comma in the comma list determines how we extend parapyth to include the harmonic 5.

Pele adds 441/440 and finds the harmonic 5 by equating the syntonic comma (81/80) with the septimal comma (64/63). Together with the slightly sharp fifth this extension makes for one of the most natural interpretations. Sensamagic adds 245/243 or 385/384, a traditional RTT favorite. Apollo adds 100/99 or 225/224, and is even simpler than sensamagic. Pentafrost adds 245/242. Uni adds 540/539. Melpomene adds 56/55 or 81/80. Terrapyth adds 585640/583443, a complex entry that finds the harmonic 5 at the triple augmented unison (AAA1). These all have the same lattice structure as parapyth.

Julius aka varda adds 176/175, splitting the octave into two. Parahemif adds 243/242, splitting the perfect fifth into two. Kujuku adds 14700/14641, splitting the perfect twelfth into two. Tolerant adds 2200/2187, splitting the ~33/32 into two. Finally, canta adds 472392/471625, splitting the ~14/9 into three.

Temperaments discussed elsewhere are:

Considered below are tolerant, kujuku, and terrapyth.

Parapyth

Subgroup: 2.3.7.11.13

Comma list: 352/351, 364/363

Sval mapping: [1 0 0 7 12], 0 1 0 -4 -7], 0 0 1 1 1]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 703.786, ~7/4 = 967.665
  • POTE: ~2 = 1200.000, ~3/2 = 703.856, ~7/4 = 969.907

Optimal ET sequence: 12f, 17, 41, 46, 58, 87, 104, 266ef, 329bef, 370beef, 474beef, 595bdeeeff, 699bbdeeeff

Badness: 0.101 × 10-3

Etypyth

Subgroup: 2.3.7.11.13.17

Comma list: 352/351, 364/363, 442/441

Sval mapping: [1 0 0 7 12 -13], 0 1 0 -4 -7 9], 0 0 1 1 1 1]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 703.978, ~7/4 = 968.399
  • POTE: ~2 = 1200.000, ~3/2 = 704.032, ~7/4 = 970.605

Optimal ET sequence: 12f, 17g, 29g, 41g, 46, 58, 75e, 104, 121, 225e

Badness: 0.325 × 10-3

Terrapyth

Terrapyth tempers out the leapday comma, and can be described as 29 & 46 & 121.

Subgroup: 2.3.5.7.11

Comma list: 896/891, 585640/583443

Mapping: [1 0 -31 0 7], 0 1 21 0 -4], 0 0 0 1 1]]

mapping generators: ~2, ~3, ~7

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 704.102, ~7/4 = 968.390
error map: 0.000 +2.147 -0.163 -0.436 +0.662]
  • POTE: ~2 = 1200.000, ~3/2 = 704.181, ~7/4 = 970.622
error map: 0.000 +2.226 +1.496 +1.796 +2.578]

Optimal ET sequence17c, 29, 46, 92de, 121, 167, 288be

Badness: 5.35 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 364/363, 9295/9261

Mapping: [1 0 -31 0 7 12], 0 1 0 21 0 4 -7], 0 0 0 1 1 1]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 704.099, ~7/4 = 968.601
  • POTE: ~2 = 1200.000, ~3/2 = 704.169, ~7/4 = 970.843

Optimal ET sequence: 17c, 29, 46, 75e, 92def, 121, 167, 288be

Badness: 2.48 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 352/351, 364/363, 442/441, 715/714

Mapping: [1 0 -31 0 7 12 -13], 0 1 0 21 0 4 -7 9], 0 0 0 1 1 1 1 1]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 704.096, ~7/4 = 968.504
  • POTE: ~2 = 1200.000, ~3/2 = 704.163, ~7/4 = 970.662

Optimal ET sequence: 17cg, 29g, 46, 75e, 92defg, 121, 167, 288beg

Badness: 1.52 × 10-3

Pentafrost

Pentafrost tempers out the frostma in addition to 896/891 which also means that the schisma is tempered out, mapping prime 5 to 8 perfect fourths and -1 octaves.

Subgroup: 2.3.5.7.11

Comma list: 245/242, 896/891

Mapping[1 0 15 0 7], 0 1 -8 0 -4], 0 0 0 1 1]]

mapping generators: ~2, ~3, ~7

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 701.883, ~7/4 = 964.864
error map: 0.000 -0.072 -1.375 -3.962 +6.016]
  • CWE: ~2 = 1200.000, ~3/2 = 701.903, ~7/4 = 964.614
error map: 0.000 -0.052 -1.541 -4.212 +5.683]
  • CE: ~2 = 1200.000, ~3/2 = 702.006, ~7/4 = 964.085
error map: 0.000 +0.051 -2.364 -4.741 +4.741]

Optimal ET sequence12, 24, 29, 36, 41, 106d

Badness: 1.58 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 245/242, 352/351

Mapping: [1 0 15 0 7 12], 0 1 -8 0 -4 -7], 0 0 0 1 1 1]]

mapping generators: ~2, ~3, ~7

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 702.106, ~7/4 = 962.655
  • CWE: ~2 = 1200.000, ~3/2 = 702.145, ~7/4 = 962.175
  • CE: ~2 = 1200.000, ~3/2 = 702.360, ~7/4 = 962.210

Optimal ET sequence: 12f, 24, 29, 41

Badness: 1.59 × 10-3

Permafrost

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 245/242, 896/891

Mapping: [1 0 15 0 7 -3], 0 1 -8 0 -4 6], 0 0 0 1 1 -1]]

mapping generators: ~2, ~3, ~7

Optimal tunings:

  • CTE: 2 = 1200.000, ~3/2 = 701.783, ~7/4 = 966.113
  • CWE: 2 = 1200.000, ~3/2 = 701.753, ~7/4 = 966.445
  • CE: 2 = 1200.000, ~3/2 = 701.770, ~7/4 = 965.771

Optimal ET sequence: 12, 17, 24, 36, 41, 77e

Badness: 2.62 × 10-3

Tolerant

7-limit

Subgroup: 2.3.5.7

Comma list: 179200/177147

Mapping[1 0 0 -10], 0 1 0 11], 0 0 1 -2]]

mapping generators: ~2, ~3, ~5

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 703.608, ~5/4 = 385.669
error map: 0.000 +1.653 -0.645 -0.472]
  • POTE: ~2 = 1200.000, ~3/2 = 703.957, ~5/4 = 386.886
error map: 0.000 +2.002 +0.573 +0.930]

Optimal ET sequence34d, 39d, 41, 80, 87, 121, 167, 208, 329b, 375b, 496bd

Badness: 0.165 × 10-3

11-limit

Subgroup: 2.3.5.7.11

Comma list: 896/891, 2200/2187

Mapping[1 0 0 -10 -3], 0 1 0 11 7], 0 0 1 -2 -2]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 703.642, ~5/4 = 386.223
error map: 0.000 +1.687 -0.091 -1.207 +1.732]
  • POTE: ~2 = 1200.000, ~3/2 = 704.041, ~5/4 = 387.293
error map: 0.000 +2.086 +0.979 +1.042 +2.385]

Optimal ET sequence34d, 39d, 41, 80, 87, 121, 167, 208, 288be, 375be

Badness: 1.039 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 364/363

Mapping: [1 0 0 -10 -3 2], 0 1 0 11 7 4], 0 0 1 -2 -2 -2]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 703.705, ~5/4 = 386.616
  • POTE: ~2 = 1200.000, ~3/2 = 703.961, ~5/4 = 386.983

Optimal ET sequence: 34d, 41, 46, 75e, 80, 87, 121, 167, 208, 375be

Badness: 1.02 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 325/324, 352/351, 364/363

Mapping: [1 0 0 -10 -3 2 8], 0 1 0 11 7 4 -1], 0 0 1 -2 -2 -2 -1]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~3/2 = 703.891, ~5/4 = 387.424
  • POTE: ~2 = 1200.000, ~3/2 = 704.083, ~5/4 = 387.327

Optimal ET sequence: 34d, 41, 46, 75e, 80, 87, 121, 167, 288beg, 496bdeefggg

Badness: 0.982 × 10-3

Kujuku

Kujuku splits the perfect twelfth into two. Scott Dakota has aliased this temperament SQPP (for semiquartal parapyth).

Subgroup: 2.3.5.7.11

Comma list: 896/891, 14700/14641

Mapping[1 0 0 -13 -6], 0 2 0 17 9], 0 0 1 1 1]]

mapping generators: ~2, ~121/70, ~5

Optimal tunings:

  • CTE: ~2 = 1200.000, ~121/70 = 951.837, ~5/4 = 386.405
error map: 0.000 +1.718 +0.091 -1.198 +1.617]
  • CWE: ~2 = 1200.000, ~121/70 = 951.871, ~5/4 = 387.243
error map: 0.000 +1.787 +0.930 +0.220 +2.762]

Optimal ET sequence24, 29, 34d, 53d, 58, 87, 121, 145, 179e, 208, 266e

Badness: 2.26 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 364/363, 676/675

Mapping: [1 0 0 -13 -6 -1], 0 2 0 17 9 3], 0 0 1 1 1 1]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~26/15 = 951.852, ~5/4 = 386.089
  • CWE: ~2 = 1200.000, ~26/15 = 951.881, ~5/4 = 387.104

Optimal ET sequence: 24, 29, 34d, 53d, 58, 87, 121, 179ef, 208, 266ef, 474beef

Badness: 1.06 × 10-3

Complexity spectrum: 15/13, 4/3, 13/10, 9/8, 13/11, 15/11, 12/11, 11/9, 11/8, 14/11, 16/13, 16/15, 11/10, 13/12, 9/7, 5/4, 18/13, 7/6, 6/5, 8/7, 10/9, 14/13, 15/14, 7/5

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 256/255, 352/351, 364/363, 676/675

Mapping: [1 0 0 -13 -6 -1 8], 0 2 0 17 9 3 -2], 0 0 1 1 1 1 -1]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~26/15 = 951.802, ~5/4 = 386.991
  • CWE: ~2 = 1200.000, ~26/15 = 951.879, ~5/4 = 387.723

Optimal ET sequence: 24, 34d, 58, 87, 121, 179ef, 208g, 266efg

Badness: 1.24 × 10-3

Trienparapyth

Trienparapyth can be described as the no-17's 23-limit 80 & 87 & 109 temperament. It splits the ~4/3 generator of parapythic into three ~11/10's by tempering out 4000/3993 = S10/S11 in the 11-limit and it interprets (11/10)2 accurately as 23/19 in its full subgroup, tempering out 2300/2299 = S20/S22, or optionally less accurately as ~17/14, though because this mapping only really makes much sense in 80edo it is not included here; however, its connection to parapyth structure comes from later in the generator chain; specifically, from (11/10)7 onwards. We may simplify (11/10)7 as (4/3)2(11/10) = 88/45, the octave-complement of 45/44. Notice that parapythic wants a slightly flat ~4/3 corresponding to an 11/10 being tuned anywhere from around just (in an extremely sharp-for-parapyth tuning) to a little less than 1-cent sharp, a very narrow tuning range; therefore 88/45 is flattened so that 2/(11/10)7~45/44 is sharpened so that we can equate it with 40/39, tempering out (40/39)/(45/44) = 352/351, and because we know we want prime 19 later on, we equate this with 39/38 by tempering out the pinkanberry, 1521/1520 = S39. Next, for eight generator steps, observe that (11/10)9/(11/10)/2 = (4/3)3/(11/10)/2 = (32/27)/(11/10) = 320/297 is sharp of 15/14 by 896/891, which is reasonable to equate it with because in an optimal tuning 11/10 will be very slightly sharp so that the interval of eight generator steps is eight times as sharp. Thus, tempering out 896/891 and 4000/3993 defines trienparapyth in the 11-limit, which also tempers out 3388/3375, the 13-limit adds 352/351, the no-17's 19-limit equates 40/39 with 39/38 and the no-17's 23-limit equates 23/19 with (11/10)2 as already mentioned.

Structurally, trienparapyth is three copies of parapyth with the independent generator of 7 connected to an equivalent independent generator for 5 through the ~15/7 reached at (11/10)8 so that ~20/7 is reached at (11/10)11, and this is how the last generator can be either 5 or 7.

Subgroup: 2.3.5.7.11

Comma list: 896/891, 3388/3375

Mapping[1 2 0 2 1], 0 -3 0 -11 1], 0 0 1 1 1]]

mapping generators: ~2, ~11/10, ~5

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 165.413, ~5/4 = 386.887
error map: 0.000 +1.805 +0.574 -1.486 +0.983]
  • CWE: ~2 = 1200.000, ~11/10 = 165.359, ~5/4 = 387.809
error map: 0.000 +1.967 +1.496 +0.031 +1.851]

Optimal ET sequence7d, 14e, 15d, 22, 51, 58, 80, 87, 145, 167, 312ce, 479bce

Badness: 1.26 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 364/363, 1001/1000

Mapping: [1 2 0 2 1 0], 0 -3 0 -11 1 10], 0 0 1 1 1 1]]

mapping generators: ~2, ~11/10, ~5

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 165.398, ~5/4 = 386.791
  • CWE: ~2 = 1200.000, ~11/10 = 165.380, ~5/4 = 387.876

Optimal ET sequence: 7d, 22, 29, 51f, 51cde, 58, 80, 87, 145, 167, 225ce, 254, 312ce

Badness: 1.23 × 10-3

2.3.5.7.11.13.19 subgroup

Note 109edo is a good patent val tuning not listed in the optimal ET sequence here.

Subgroup: 2.3.5.7.11.13.19

Comma list: 286/285, 352/351, 364/363, 400/399

Mapping: [1 2 0 2 1 0 0], 0 -3 0 -11 1 10 14], 0 0 1 1 1 1 1]]

mapping generators: ~2, ~11/10, ~5

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 165.299, ~5/4 = 386.315
  • CWE: ~2 = 1200.000, ~11/10 = 165.298, ~5/4 = 387.745

Optimal ET sequence: 7d, 22, 29, 51fh, 51cde, 58h, 80, 87, 138cdeh, 167h

Badness: 1.22 × 10-3

2.3.5.7.11.13.19.23 subgroup

Subgroup: 2.3.5.7.11.13.19.23

Comma list: 208/207, 286/285, 352/351, 364/363, 400/399

Mapping: [1 2 0 2 1 0 0 0], 0 -3 0 -11 1 10 14 16], 0 0 1 1 1 1 1 1]]

mapping generators: ~2, ~11/10, ~5

Optimal tunings

  • CTE: ~2 = 1200.000, ~11/10 = 165.258, ~5/4 = 386.145
  • CWE: ~2 = 1200.000, ~11/10 = 165.268, ~5/4 = 387.724

Optimal ET sequence: 22i, 29, 51fhi, 51cde, 58hi, 80, 87, 109, 138cdehi, 167hi

Badness: 1.04 × 10-3