Augmented–cloudy equivalence continuum
The augmented–cloudy equivalence continuum is a continuum of 2.5.7 subgroup temperaments which equate a number of lesser dieses (128/125) with the cloudy comma (16807/16384).
All temperaments in the continuum satisfy (128/125)n ~ 16807/16384. Varying n results in different temperaments listed in the table below. It converges to augmented as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 2.5.7 subgroup temperaments supported by 15edo (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of n is approximately 1.0747..., and temperaments having n near this value tend to be the most accurate ones.
n | Temperament | Comma | 1/n | Temperament | Comma | ||
---|---|---|---|---|---|---|---|
Ratio | Monzo | Ratio | Monzo | ||||
−2 | 2 & 15 | 16807/15625 | [0 0 -6 5⟩ | −2 | 15 & 14c | 282475249/262144000 | [-21 0 -3 10⟩ |
−1 | 4 & 15 | 16807/16000 | [-7 0 -3 5⟩ | −1 | 4 & 15 | 16807/16000 | [-7 0 -3 5⟩ |
0 | Cloudy | 16807/16384 | [-14 0 0 5⟩ | 0 | Augmented | 128/125 | [7 0 -3⟩ |
1 | Rainy | 2100875/2097152 | [-21 0 3 5⟩ | 1 | Rainy | 2100875/2097152 | [-21 0 3 5⟩ |
2 | 37 & 15 | 268435456/262609375 | [-28 0 6 5⟩ | 2 | 15 & 41 | 35309406125/34359738368 | [-35 0 3 10⟩ |
3 | 15 & 28 | [-35 0 9 5⟩ | 3 | 15 & 51 | [-49 0 3 15⟩ | ||
… | … | … | … | … | … | … | … |
∞ | Augmented | 128/125 | [7 0 -3⟩ | ∞ | Cloudy | 16807/16384 | [-14 0 0 5⟩ |
Examples of temperaments with fractional values of n not listed above:
- 15 & 72 (n = 2/3)
- 379 & 4184 (n = 13/12)
- 410 & 3675 (n = 14/13)
- 851 & 1687 (n = 29/27)
- 441 & 1308 (n = 15/14)
- 68 & 15 (n = 3/2)
37 & 15
Commas: [-28 0 6 5⟩ = 268435456/262609375
POTE generator: 162.1073 cents
Mapping: [⟨1 3 2], ⟨0 -5 6]]
EDOs: 7, 15, 22, 37, 44, 52, 49, 74, 89
The temperament finder - 2.5.7 37 & 15
15 & 41
Commas: [-35 0 3 10⟩ = 35309406125/34359738368
POTE generator: 321.5916 cents
Mapping: [⟨1 5 2], ⟨0 -10 3]]
EDOs: 11c, 15, 26, 41, 56, 67c, 71, 97
The temperament finder - 2.5.7 15 & 41
15 & 28
Commas: [-35 0 9 5⟩ = 34359738368/32826171875
POTE generator: 558.3680 cents
Mapping: [⟨1 0 7], ⟨0 5 -9]]
EDOs: 13d, 15, 28, 43, 58, 71d, 73
The temperament finder - 2.5.7 15 & 28
15 & 51
Commas: [-49 0 3 15⟩ = 593445188742875/562949953421312
POTE generator: 163.2989 cents
Mapping: [⟨3 9 8], ⟨0 -5 1]]
EDOs: 15, 21c, 36c, 51, 66, 81, 96d, 117c
The temperament finder - 2.5.7 15 & 51
4 & 15
Commas: [0 0 -6 5⟩ = 16807/16800
POTE generator: 163.2989 cents
Mapping: [⟨1 1 2], ⟨0 5 3]]
The temperament finder - 2.5.7 4 & 15
2 & 15
Commas: [-7 0 -3 5⟩ = 16807/15625
POTE generator: 640.6490 cents
Mapping: [⟨1 5 6], ⟨0 -5 -6]]
The temperament finder - 2.5.7 2 & 15
15 & 14c
Commas: [-21 0 -3 10⟩ = 282475249/262144000
POTE generator: 81.6979 cents
Mapping: [⟨1 3 3], ⟨0 -10 -3]]
The temperament finder - 2.5.7 15 & 14c
379 & 4184
Commas: [280 0 -42 -65⟩
POTE generator: 319.7896 cents
Mapping: [⟨1 -15 14], ⟨0 65 -42]]
EDOs: 379, 758, 1137, 1516, 3426, 3805, 4184, 4563, 4942, 5321
The temperament finder - 2.5.7 379 & 4184
410 & 3675
Commas: [-301 0 45 70⟩
POTE generator: 79.0215 cents
Mapping: [⟨5 7 17], ⟨0 14 -9]]
EDOs: 410, 820, 1230, 1640, 2050, 2855, 3265, 3675, 4085, 4495
The temperament finder - 2.5.7 410 & 3675
441 & 1308
Commas: [-322 0 48 75⟩
POTE generator: 160.5487 cents
Mapping: [⟨3 17 2], ⟨0 -25 16]]
EDOs: 426, 441, 867, 882, 1308, 1323, 1749, 2190, 2631, 3057
The temperament finder - 2.5.7 441 & 1308
851 & 1687
Commas: [-623 0 93 145⟩
POTE generator: 320.0945 cents
Mapping: [⟨1 41 -22], ⟨0 -145 93]]
EDOs: 15, 836, 851, 1687, 1702, 2538, 3374, 3389, 4225, 5076
The temperament finder - 2.5.7 851 & 1687
68 & 15
Commas: [-49 0 9 10⟩ = 562949953421312/551709470703125
POTE generator: 158.7877 cents
Mapping: [⟨1 1 4], ⟨0 10 -9]]
EDOs: 15, 38, 53, 68, 83, 106, 121, 136, 151
The temperament finder - 2.5.7 68 & 15
15 & 72
Commas: [-56 0 6 15⟩ = 74180648592859375/72057594037927936
POTE generator: 83.0570 cents
Mapping: [⟨3 8 8], ⟨0 -5 2]]