Breed family
The breed family of temperaments are rank-3 microtemperaments which temper out 2401/2400. While it is so accurate it hardly matters what is used to temper it, or whether it is tempered at all, the optimal patent val 2749et will certainly do the trick.
Breed
Subgroup: 2.3.5.7
Comma list: 2401/2400
Mapping: [⟨1 1 1 2], ⟨0 2 1 1], ⟨0 0 2 1]]
Mapping generators: ~2, ~49/40, ~10/7
Mapping to lattice: [⟨0 2 -1 0], ⟨0 0 -2 -1]]
Lattice basis:
- 49/40 length = 0.7858, 8/7 length = 1.1241
- Angle (49/40, 8/7) = 107.367°
- 7- and 9-odd-limit eigenmonzos (unchanged intervals): 2, 6/5, 5/4
Optimal GPV sequence: 27, 31, 41, 58, 68, 72, 99, 171, 441, 612, 1966, 2308, 2578, 2749, 3361d
Badness: 0.0153 × 10-3
Projection pair: 3 = ~2401/800 to 2.5.7
Scales: breed11
Jove
- Main article: Jove
Jove, formerly known as wonder, tempers out 243/242 and 441/440. Wonder has been deprecated as a name due to conflict with another temperament also given that name. Jove converts breed into an 11-limit temperament via 441/440, which equates 49/40 with 11/9, and 243/242, which tells us 11/9 can serve as a neutral third. While jove is no longer a super-accurate microtemperament like breed, it has the advantage of adjusting its tuning to deal with the 11-limit. 72, 130, 171 and 202 are good edos for jove.
Subgroup: 2.3.5.7.11
Comma list: 243/242, 441/440
Mapping: [⟨1 1 1 2 2], ⟨0 2 1 1 5], ⟨0 0 2 1 0]]
Mapping generators: ~2, ~11/9, ~10/7
- 11-odd-limit eigenmonzos (unchanged intervals): 2, 7/5, 11/8
Optimal GPV sequence: 27e, 31, 41, 58, 72, 130, 202
Badness: 0.241 × 10-3
Projection pairs: ~3 = ~242/81, ~5 = ~2200/441, ~7 = ~440/63, ~11 = ~644204/59049 to 2.7/5.11/9
Jovial
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 364/363, 441/440
Minimax tuning:
- 13-odd-limit eigenmonzos (unchanged intervals): 2, 10/9, 13/10
- 15-odd-limit eigenmonzos (unchanged intervals): 2, 15/13, 7/5
Mapping: [⟨1 1 1 2 2 1], ⟨0 2 1 1 5 11], ⟨0 0 2 1 0 -1]]
Mapping generators: ~2, ~11/9, ~10/7
Vals: 27eff, 31f, 41, 58, 72, 130, 243, 301e, 373e
Badness: 0.624 × 10-3
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 243/242, 364/363, 441/440, 595/594
Mapping: [⟨1 1 1 2 2 1 3], ⟨0 2 1 1 5 11 9], ⟨0 0 2 1 0 -1 -3]]
Mapping generators: ~2, ~11/9, ~10/7
Minimax tuning:
- 17-odd-limit eigenmonzos (unchanged intervals): 2, 18/17, 6/5
Vals: 27effg, 31fg, 41, 58, 72, 130, 171, 243
Badness: 0.741 × 10-3
Jofur
Subgroup: 2.3.5.7.11.13
Comma list: 144/143, 196/195, 243/242
Mapping: [⟨1 1 1 2 2 4], ⟨0 2 1 1 5 -1], ⟨0 0 2 1 0 0]]
Mapping generators: ~2, ~11/9, ~10/7
Vals: 27e, 31, 41, 58, 99ef, 157eff
Badness: 0.749 × 10-3
Jovis
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 351/350, 441/440
Mapping: [⟨1 1 1 2 2 2], ⟨0 2 1 1 5 -3], ⟨0 0 2 1 0 5]]
Mapping generators: ~2, ~11/9, ~10/7
Vals: 27e, 31, 45ef, 58, 72, 103, 130, 233, 363
Badness: 0.542 × 10-3
Agni
Subgroup: 2.3.5.7.11
Comma list: 385/384, 1375/1372
Mapping: [⟨1 1 1 2 5], ⟨0 2 1 1 0], ⟨0 0 2 1 -3]]
Mapping generators: ~2, ~49/40, ~10/7
Mapping to lattice: [⟨0 2 1 1 0], ⟨0 0 2 1 -3]]
Lattice basis:
- 49/40 length = 0.756, 10/7 length = 0.819
- Angle (49/40, 10/7) = 106.460 degrees
- [[1 0 0 0 0⟩, [0 1 0 0 0⟩, [23/10 3/10 2/5 0 -2/5⟩, [12/5 2/5 1/5 0 -1/5⟩, [23/10 3/10 -3/5 0 3/5⟩]
- Eigenmonzos (unchanged intervals): 2, 4/3, 11/10
Optimal GPV sequence: 27, 31, 41, 68, 72, 140, 171e, 212, 284, 496ce, 527cee, 739cdeee, 811ccdeee, 1023ccdeee
Badness: 0.494 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 385/384, 625/624, 1375/1372
Mapping: [⟨1 1 1 2 5 -1], ⟨0 2 1 1 0 2], ⟨0 0 2 1 -3 8]]
Vals: 31, 68, 72, 103, 140, 212, 243e, 315ef, 455eef, 770cdeeeff
Badness: 0.923 × 10-3
Zisa
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 5632/5625
Mapping: [⟨1 1 1 2 -3], ⟨0 2 1 1 8], ⟨0 0 2 1 8]]
Optimal GPV sequence: 31, 68e, 99e, 130, 239, 270, 670, 940, 1210, 2150c
Badness: 0.640 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 1716/1715, 4096/4095
Mapping: [⟨1 1 1 2 -3 7], ⟨0 2 1 1 8 -6], ⟨0 0 2 1 8 -3]]
Vals: 31, 78f, 99e, 109, 130, 239, 270, 571, 701, 841, 971, 1241
Badness: 0.830 × 10-3
Baldur
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 9801/9800
Mapping: [⟨2 0 1 3 7], ⟨0 2 1 1 -2], ⟨0 0 2 1 3]]
Mapping generators: ~99/70, ~343/198, ~10/7
- [[1 0 0 0 0⟩, [3/4 0 1/2 1/2 -1/2⟩, [0 0 1 0 0⟩, [23/16 0 5/8 1/8 -1/8⟩, [23/16 0 5/8 -7/8 7/8⟩]
- Eigenmonzos (unchanged intervals): 5/4, 14/11
Optimal GPV sequence: 58, 72, 130, 198, 212, 270, 342, 612, 954, 1084, 1354, 1696, 4004de, 5700de
Badness: 0.166 × 10-3
Projection pairs: 2 9801/4900 3 117649/39204 7 9801/1400 11 913517247483640899/83082326424002500 to 5.7/2.99/4
Greenland
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715
Mapping: [⟨2 0 1 3 7 -1], ⟨0 2 1 1 -2 4], ⟨0 0 2 1 3 2]]
Vals: 58, 72, 130, 198, 270, 940, 1210f
Badness: 0.433 × 10-3
Complexity spectrum: 15/13, 7/5, 8/7, 7/6, 4/3, 15/14, 5/4, 18/13, 13/12, 14/13, 13/10, 6/5, 16/15, 11/10, 9/7, 9/8, 16/13, 10/9, 14/11, 11/8, 15/11, 12/11, 13/11, 11/9
Projection pairs: 2 19600/9801 3 676/225 5 10400/2079 7 20384000/2910897 11 19208000000000000/1750211597736459 13 5026736/385875 to 10/7.200/99.26/15
Freya
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3025/3024
Mapping: [⟨1 1 3 3 2], ⟨0 2 3 2 1], ⟨0 0 -4 -2 3]]
Mapping generators: ~2, ~49/40, ~55/42
- 11-odd-limit eigenmonzos (unchanged intervals): 2, 14/11, 4/3
Optimal GPV sequence: 31, 41, 72, 167, 188, 198, 239, 270, 342, 612, 954, 1566, 3101de, 3443de, 4055de, 4397cdee, 4667dee, 5009cddee
Badness: 0.170 × 10-3
Projection pairs: ~3 = ~2401/800, ~5 = ~22880495169/4575312500, ~7 = ~1058841/151250, ~11 = ~33275/3024 to 2.49/5.77/3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2401/2400, 3025/3024, 4096/4095
Mapping: [⟨1 1 3 3 2 4], ⟨0 2 3 2 1 -9], ⟨0 0 -4 -2 3 6]]
Mapping generators: ~2, ~49/40, ~55/42
Vals: 31, 41, 72f, 198f, 229, 239, 270, 571, 581, 851, 882, 1152, 1463, 1733, 2615
Badness: 0.855 × 10-3
Projection pairs: ~3 = ~2401/800, ~5 = ~22880495169/4575312500, ~7 = ~1058841/151250, ~11 = ~33275/3024, ~13 = ~1814078464000000000000000/139662717676432916098329 to 2.49/5.77/3
Eir
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 3025/3024
Mapping: [⟨1 1 3 3 2 0], ⟨0 2 3 2 1 6], ⟨0 0 -4 -2 3 5]]
Mapping generators: ~2, ~49/40, ~55/42
Vals: 13cdf, 31f, 41, 72, 157, 185cf, 198, 270, 581, 851, 1504, 1774f, 2085, 2355f
Badness: 0.581 × 10-3
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 1225/1224, 2058/2057, 2080/2079, 2401/2400
Mapping: [⟨1 1 3 3 2 0 7], ⟨0 2 3 2 1 6 6], ⟨0 0 -4 -2 3 5 -12]]
Mapping generators: ~2, ~49/40, ~55/42
Vals: 41g, 72, 198g, 239f, 270, 311, 509, 581, 1234, 1815
Badness: 0.700 × 10-3
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 1225/1224, 1540/1539, 2080/2079, 3136/3135, 4200/4199
Mapping: [⟨1 1 3 3 2 0 7 6], ⟨0 2 3 2 1 6 6 -2], ⟨0 0 -4 -2 3 5 -12 -3]]
Mapping generators: ~2, ~49/40, ~55/42
Vals: 41g, 72, 198g, 239f, 270, 311, 581, 1234, 1815
Badness: 0.692 × 10-3
Heimlaug
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 1716/1715, 3025/3024
Mapping: [⟨1 1 3 3 2 7], ⟨0 2 3 2 1 6], ⟨0 0 -4 -2 3 -13]]
Mapping generators: ~2, ~49/40, ~55/42
Vals: 8bcef, 15bbccdeeff, 23bcf, 31, 72, 103, 167, 198, 270, 571, 643, 913f
Badness: 0.601 × 10-3
17-limit
Equave 10/7 and 16-note scales with that period are of interest.
Subgroup: 2.3.5.7.11.13.17
Comma list: 715/714, 936/935, 1001/1000, 1225/1224, 1716/1715
Mapping: [⟨1 1 3 3 2 7 7], ⟨0 2 3 2 1 6 6], ⟨0 0 -4 -2 3 -13 -12]]
Mapping generators: ~2, ~49/40, ~17/13
Vals: 8bcefg, 15bbccdeeffggg, 23bcfg, 31, 64be, 72, 103, 167, 198g, 239, 270
Badness: 0.829 × 10-3
Vili
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 391314/390625
Mapping: [⟨1 1 5 4 10], ⟨0 2 3 2 6], ⟨0 0 -6 -3 -14]]
Optimal GPV sequence: 27e, 64be, 76e, 93, 103, 130, 233, 243e, 270, 643, 670, 913, 1043, 1313, 1583
Badness: 1.26 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 1716/1715, 4225/4224
Mapping: [⟨1 1 5 4 10 4], ⟨0 2 3 2 6 1], ⟨0 0 -6 -3 -14 -1]]
Vals: 27e, 37, 64be, 76e, 93, 103, 130, 233, 243e, 270, 643, 913f
Badness: 0.738 × 10-3
Frigg
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 644204/643125
Mapping: [⟨1 1 3 3 4], ⟨0 2 3 2 4], ⟨0 0 -10 -5 -11]]
Optimal GPV sequence: 45e, 58, 103, 161, 212, 270, 643, 913, 1183e
Badness: 1.79 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 1716/1715, 10648/10647
Mapping: [⟨1 1 3 3 4 5], ⟨0 2 3 2 4 3], ⟨0 0 -10 -5 -11 -14]]
Vals: 45ef, 58, 103, 161, 212, 270, 643, 913f, 1614ef *
Badness: 0.934 × 10-3
Ennealimmic
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374
Mapping: [⟨9 1 1 12 0], ⟨0 2 3 2 0], ⟨0 0 0 0 1]]
Mapping generators: 27/25, 5/3, 11
Optimal GPV sequence: 27, 45, 72, 171, 198, 270, 342, 612, 954, 1323, 1395, 1665, 2007, 2277, 2619, 4284d, 6561dd
Badness: 0.275 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4375/4374
Mapping: [⟨9 1 1 12 0 -31], ⟨0 2 3 2 0 5], ⟨0 0 0 0 1 1]]
Vals: 27, 45f, 54cff, 72, 171, 198, 270, 639, 711, 981, 1692e
Badness: 0.755 × 10-3