Breed family

From Xenharmonic Wiki
(Redirected from Agni)
Jump to navigation Jump to search

The breed family of temperaments are rank-3 microtemperaments which temper out 2401/2400. While it is so accurate it hardly matters what is used to temper it, or whether it is tempered at all, the optimal patent val 2749et will certainly do the trick.

Breed

Subgroup: 2.3.5.7

Comma list: 2401/2400

Mapping: [1 1 1 2], 0 2 1 1], 0 0 2 1]]

Mapping generators: ~2, ~49/40, ~10/7

Mapping to lattice: [0 2 -1 0], 0 0 -2 -1]]

Lattice basis:

49/40 length = 0.7858, 8/7 length = 1.1241
Angle (49/40, 8/7) = 107.367°

Minimax tuning:

  • 7- and 9-odd-limit eigenmonzos (unchanged intervals): 2, 6/5, 5/4

Optimal GPV sequence27, 31, 41, 58, 68, 72, 99, 171, 441, 612, 1966, 2308, 2578, 2749, 3361d

Badness: 0.0153 × 10-3

Projection pair: 3 = ~2401/800 to 2.5.7

Scales: breed11

Jove

Main article: Jove

Jove, formerly known as wonder, tempers out 243/242 and 441/440. Wonder has been deprecated as a name due to conflict with another temperament also given that name. Jove converts breed into an 11-limit temperament via 441/440, which equates 49/40 with 11/9, and 243/242, which tells us 11/9 can serve as a neutral third. While jove is no longer a super-accurate microtemperament like breed, it has the advantage of adjusting its tuning to deal with the 11-limit. 72, 130, 171 and 202 are good edos for jove.

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440

Mapping: [1 1 1 2 2], 0 2 1 1 5], 0 0 2 1 0]]

Mapping generators: ~2, ~11/9, ~10/7

Minimax tuning:

  • 11-odd-limit eigenmonzos (unchanged intervals): 2, 7/5, 11/8

Optimal GPV sequence27e, 31, 41, 58, 72, 130, 202

Badness: 0.241 × 10-3

Projection pairs: ~3 = ~242/81, ~5 = ~2200/441, ~7 = ~440/63, ~11 = ~644204/59049 to 2.7/5.11/9

Jovial

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 364/363, 441/440

Minimax tuning:

  • 13-odd-limit eigenmonzos (unchanged intervals): 2, 10/9, 13/10
  • 15-odd-limit eigenmonzos (unchanged intervals): 2, 15/13, 7/5

Mapping: [1 1 1 2 2 1], 0 2 1 1 5 11], 0 0 2 1 0 -1]]

Mapping generators: ~2, ~11/9, ~10/7

Vals: 27eff, 31f, 41, 58, 72, 130, 243, 301e, 373e

Badness: 0.624 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 243/242, 364/363, 441/440, 595/594

Mapping: [1 1 1 2 2 1 3], 0 2 1 1 5 11 9], 0 0 2 1 0 -1 -3]]

Mapping generators: ~2, ~11/9, ~10/7

Minimax tuning:

  • 17-odd-limit eigenmonzos (unchanged intervals): 2, 18/17, 6/5

Vals: 27effg, 31fg, 41, 58, 72, 130, 171, 243

Badness: 0.741 × 10-3

Jofur

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 196/195, 243/242

Mapping: [1 1 1 2 2 4], 0 2 1 1 5 -1], 0 0 2 1 0 0]]

Mapping generators: ~2, ~11/9, ~10/7

Vals: 27e, 31, 41, 58, 99ef, 157eff

Badness: 0.749 × 10-3

Jovis

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 351/350, 441/440

Mapping: [1 1 1 2 2 2], 0 2 1 1 5 -3], 0 0 2 1 0 5]]

Mapping generators: ~2, ~11/9, ~10/7

Vals: 27e, 31, 45ef, 58, 72, 103, 130, 233, 363

Badness: 0.542 × 10-3

Agni

Subgroup: 2.3.5.7.11

Comma list: 385/384, 1375/1372

Mapping: [1 1 1 2 5], 0 2 1 1 0], 0 0 2 1 -3]]

Mapping generators: ~2, ~49/40, ~10/7

Mapping to lattice: [0 2 1 1 0], 0 0 2 1 -3]]

Lattice basis:

49/40 length = 0.756, 10/7 length = 0.819
Angle (49/40, 10/7) = 106.460 degrees

Minimax tuning:

[[1 0 0 0 0, [0 1 0 0 0, [23/10 3/10 2/5 0 -2/5, [12/5 2/5 1/5 0 -1/5, [23/10 3/10 -3/5 0 3/5]
Eigenmonzos (unchanged intervals): 2, 4/3, 11/10

Optimal GPV sequence27, 31, 41, 68, 72, 140, 171e, 212, 284, 496ce, 527cee, 739cdeee, 811ccdeee, 1023ccdeee

Badness: 0.494 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 385/384, 625/624, 1375/1372

Mapping: [1 1 1 2 5 -1], 0 2 1 1 0 2], 0 0 2 1 -3 8]]

Vals: 31, 68, 72, 103, 140, 212, 243e, 315ef, 455eef, 770cdeeeff

Badness: 0.923 × 10-3

Zisa

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 5632/5625

Mapping: [1 1 1 2 -3], 0 2 1 1 8], 0 0 2 1 8]]

Optimal GPV sequence31, 68e, 99e, 130, 239, 270, 670, 940, 1210, 2150c

Badness: 0.640 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1001/1000, 1716/1715, 4096/4095

Mapping: [1 1 1 2 -3 7], 0 2 1 1 8 -6], 0 0 2 1 8 -3]]

Vals: 31, 78f, 99e, 109, 130, 239, 270, 571, 701, 841, 971, 1241

Badness: 0.830 × 10-3

Baldur

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 9801/9800

Mapping: [2 0 1 3 7], 0 2 1 1 -2], 0 0 2 1 3]]

Mapping generators: ~99/70, ~343/198, ~10/7

Minimax tuning:

[[1 0 0 0 0, [3/4 0 1/2 1/2 -1/2, [0 0 1 0 0, [23/16 0 5/8 1/8 -1/8, [23/16 0 5/8 -7/8 7/8]
Eigenmonzos (unchanged intervals): 5/4, 14/11

Optimal GPV sequence58, 72, 130, 198, 212, 270, 342, 612, 954, 1084, 1354, 1696, 4004de, 5700de

Badness: 0.166 × 10-3

Projection pairs: 2 9801/4900 3 117649/39204 7 9801/1400 11 913517247483640899/83082326424002500 to 5.7/2.99/4

Greenland

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 1716/1715

Mapping: [2 0 1 3 7 -1], 0 2 1 1 -2 4], 0 0 2 1 3 2]]

Vals: 58, 72, 130, 198, 270, 940, 1210f

Badness: 0.433 × 10-3

Complexity spectrum: 15/13, 7/5, 8/7, 7/6, 4/3, 15/14, 5/4, 18/13, 13/12, 14/13, 13/10, 6/5, 16/15, 11/10, 9/7, 9/8, 16/13, 10/9, 14/11, 11/8, 15/11, 12/11, 13/11, 11/9

Projection pairs: 2 19600/9801 3 676/225 5 10400/2079 7 20384000/2910897 11 19208000000000000/1750211597736459 13 5026736/385875 to 10/7.200/99.26/15

Freya

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024

Mapping: [1 1 3 3 2], 0 2 3 2 1], 0 0 -4 -2 3]]

Mapping generators: ~2, ~49/40, ~55/42

Minimax tuning:

  • 11-odd-limit eigenmonzos (unchanged intervals): 2, 14/11, 4/3

Optimal GPV sequence31, 41, 72, 167, 188, 198, 239, 270, 342, 612, 954, 1566, 3101de, 3443de, 4055de, 4397cdee, 4667dee, 5009cddee

Badness: 0.170 × 10-3

Projection pairs: ~3 = ~2401/800, ~5 = ~22880495169/4575312500, ~7 = ~1058841/151250, ~11 = ~33275/3024 to 2.49/5.77/3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2401/2400, 3025/3024, 4096/4095

Mapping: [1 1 3 3 2 4], 0 2 3 2 1 -9], 0 0 -4 -2 3 6]]

Mapping generators: ~2, ~49/40, ~55/42

Vals: 31, 41, 72f, 198f, 229, 239, 270, 571, 581, 851, 882, 1152, 1463, 1733, 2615

Badness: 0.855 × 10-3

Projection pairs: ~3 = ~2401/800, ~5 = ~22880495169/4575312500, ~7 = ~1058841/151250, ~11 = ~33275/3024, ~13 = ~1814078464000000000000000/139662717676432916098329 to 2.49/5.77/3

Eir

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2401/2400, 3025/3024

Mapping: [1 1 3 3 2 0], 0 2 3 2 1 6], 0 0 -4 -2 3 5]]

Mapping generators: ~2, ~49/40, ~55/42

Vals: 13cdf, 31f, 41, 72, 157, 185cf, 198, 270, 581, 851, 1504, 1774f, 2085, 2355f

Badness: 0.581 × 10-3

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 1225/1224, 2058/2057, 2080/2079, 2401/2400

Mapping: [1 1 3 3 2 0 7], 0 2 3 2 1 6 6], 0 0 -4 -2 3 5 -12]]

Mapping generators: ~2, ~49/40, ~55/42

Vals: 41g, 72, 198g, 239f, 270, 311, 509, 581, 1234, 1815

Badness: 0.700 × 10-3

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 1225/1224, 1540/1539, 2080/2079, 3136/3135, 4200/4199

Mapping: [1 1 3 3 2 0 7 6], 0 2 3 2 1 6 6 -2], 0 0 -4 -2 3 5 -12 -3]]

Mapping generators: ~2, ~49/40, ~55/42

Vals: 41g, 72, 198g, 239f, 270, 311, 581, 1234, 1815

Badness: 0.692 × 10-3

Heimlaug

Subgroup: 2.3.5.7.11.13

Comma list: 1001/1000, 1716/1715, 3025/3024

Mapping: [1 1 3 3 2 7], 0 2 3 2 1 6], 0 0 -4 -2 3 -13]]

Mapping generators: ~2, ~49/40, ~55/42

Vals: 8bcef, 15bbccdeeff, 23bcf, 31, 72, 103, 167, 198, 270, 571, 643, 913f

Badness: 0.601 × 10-3

17-limit

Equave 10/7 and 16-note scales with that period are of interest.

Subgroup: 2.3.5.7.11.13.17

Comma list: 715/714, 936/935, 1001/1000, 1225/1224, 1716/1715

Mapping: [1 1 3 3 2 7 7], 0 2 3 2 1 6 6], 0 0 -4 -2 3 -13 -12]]

Mapping generators: ~2, ~49/40, ~17/13

Vals: 8bcefg, 15bbccdeeffggg, 23bcfg, 31, 64be, 72, 103, 167, 198g, 239, 270

Badness: 0.829 × 10-3

Vili

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 391314/390625

Mapping: [1 1 5 4 10], 0 2 3 2 6], 0 0 -6 -3 -14]]

Optimal GPV sequence27e, 64be, 76e, 93, 103, 130, 233, 243e, 270, 643, 670, 913, 1043, 1313, 1583

Badness: 1.26 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1001/1000, 1716/1715, 4225/4224

Mapping: [1 1 5 4 10 4], 0 2 3 2 6 1], 0 0 -6 -3 -14 -1]]

Vals: 27e, 37, 64be, 76e, 93, 103, 130, 233, 243e, 270, 643, 913f

Badness: 0.738 × 10-3

Frigg

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 644204/643125

Mapping: [1 1 3 3 4], 0 2 3 2 4], 0 0 -10 -5 -11]]

Optimal GPV sequence45e, 58, 103, 161, 212, 270, 643, 913, 1183e

Badness: 1.79 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1001/1000, 1716/1715, 10648/10647

Mapping: [1 1 3 3 4 5], 0 2 3 2 4 3], 0 0 -10 -5 -11 -14]]

Vals: 45ef, 58, 103, 161, 212, 270, 643, 913f, 1614ef *

* optimal patent val: 1241

Badness: 0.934 × 10-3

Ennealimmic

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4375/4374

Mapping: [9 1 1 12 0], 0 2 3 2 0], 0 0 0 0 1]]

Mapping generators: 27/25, 5/3, 11

Optimal GPV sequence27, 45, 72, 171, 198, 270, 342, 612, 954, 1323, 1395, 1665, 2007, 2277, 2619, 4284d, 6561dd

Badness: 0.275 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2401/2400, 4375/4374

Mapping: [9 1 1 12 0 -31], 0 2 3 2 0 5], 0 0 0 0 1 1]]

Vals: 27, 45f, 54cff, 72, 171, 198, 270, 639, 711, 981, 1692e

Badness: 0.755 × 10-3