1583edo
← 1582edo | 1583edo | 1584edo → |
1583 equal divisions of the octave (abbreviated 1583edo or 1583ed2), also called 1583-tone equal temperament (1583tet) or 1583 equal temperament (1583et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1583 equal parts of about 0.758 ¢ each. Each step represents a frequency ratio of 21/1583, or the 1583rd root of 2.
Theory
1583edo is consistent to the 9-odd-limit. Using the patent val, it tempers out 2401/2400, [36 -16 -7 2⟩ and [9 21 -17 -1⟩ in the 7-limit; 2401/2400, 172032/171875, 766656/765625 and 387420489/387200000 in the 11-limit. It supports empress and vili.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.003 | +0.294 | -0.032 | -0.212 | +0.155 | -0.344 | -0.356 | +0.153 | -0.139 | -0.374 |
Relative (%) | +0.0 | +0.4 | +38.8 | -4.3 | -28.0 | +20.4 | -45.4 | -46.9 | +20.1 | -18.4 | -49.3 | |
Steps (reduced) |
1583 (0) |
2509 (926) |
3676 (510) |
4444 (1278) |
5476 (727) |
5858 (1109) |
6470 (138) |
6724 (392) |
7161 (829) |
7690 (1358) |
7842 (1510) |
Subsets and supersets
1583edo is the 250th prime EDO.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [2509 -1583⟩ | [⟨1583 2509]] | −0.0010 | 0.0010 | 0.13 |
2.3.5 | [77 -31 -12⟩, [-23 57 -29⟩ | [⟨1583 2509 3676]] | −0.0429 | 0.0592 | 7.81 |
2.3.5.7 | 2401/2400, 3367254360064/3363025078125, 5355700839936/5340576171875 | [⟨1583 2509 3676 4444]] | −0.0293 | 0.0564 | 7.44 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 341\1583 | 258.497 | [-32 13 5⟩ | Lafa |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct