739edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 738edo 739edo 740edo →
Prime factorization 739 (prime)
Step size 1.62382¢ 
Fifth 432\739 (701.488¢)
Semitones (A1:m2) 68:57 (110.4¢ : 92.56¢)
Consistency limit 5
Distinct consistency limit 5

739 equal divisions of the octave (abbreviated 739edo or 739ed2), also called 739-tone equal temperament (739tet) or 739 equal temperament (739et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 739 equal parts of about 1.62 ¢ each. Each step represents a frequency ratio of 21/739, or the 739th root of 2.

Theory

739edo is consistent to the 5-odd-limit. It can be used in the 2.3.5.19.23.29.31.41.43 subgroup, tempering out 2001/2000, 59049/58880, 2945/2944, 1026/1025, 1161/1160, 564975/564224 and 2271564/2265625.

Odd harmonics

Approximation of odd harmonics in 739edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.467 +0.154 +0.592 +0.691 +0.779 +0.609 -0.312 +0.593 -0.355 +0.126 +0.142
Relative (%) -28.7 +9.5 +36.5 +42.5 +48.0 +37.5 -19.2 +36.5 -21.8 +7.7 +8.8
Steps
(reduced)
1171
(432)
1716
(238)
2075
(597)
2343
(126)
2557
(340)
2735
(518)
2887
(670)
3021
(65)
3139
(183)
3246
(290)
3343
(387)

Subsets and supersets

739edo is the 131st prime edo. 2217edo, which triples it, gives a good correction to the harmonic 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-1171 739 [739 1171]] 0.1472 0.1472 9.06
2.3.5 [38 -2 -15, [-35 47 -17 [739 1171 1716]] 0.0759 0.1568 9.66

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 119\739 193.234 262144/234375 Luna

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct