5L 7s (3/1-equivalent)
↖ 4L 6s⟨3/1⟩ | ↑ 5L 6s⟨3/1⟩ | 6L 6s⟨3/1⟩ ↗ |
← 4L 7s⟨3/1⟩ | 5L 7s (3/1-equivalent) | 6L 7s⟨3/1⟩ → |
↙ 4L 8s⟨3/1⟩ | ↓ 5L 8s⟨3/1⟩ | 6L 8s⟨3/1⟩ ↘ |
┌╥┬╥┬╥┬┬╥┬╥┬┬┐ │║│║│║││║│║│││ ││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┘
ssLsLssLsLsL
5L 7s⟨3/1⟩ is a 3/1-equivalent (tritave-equivalent) moment of symmetry scale containing 5 large steps and 7 small steps, repeating every interval of 3/1 (1902.0¢). Generators that produce this scale range from 1109.5¢ to 1141.2¢, or from 760.8¢ to 792.5¢.
Theory
As a macrochromatic scale
It is a stretched p-chromatic scale, and an extension of a macrodiatonic scale (5L 2s (3/1-equivalent)) with the period of a tritave. This means it is a chromatic scale, but has octaves stretched out to the size of a tritave. Other intervals are also stretched in a way that makes them unrecognizable: the diatonic fifth is now the size of a major seventh. Interestingly, 27edt, an approximation of 17edo, has a tuning of this scale, meaning it contains both an octave-equivalent and tritave-equivalent p-chromatic.
Temperament interpretations
It is possible to construct no-twos rank-2 temperament interpretations of this scale, but it is difficult to interpret within commonly-studied no-twos subgroups like the 3.5.7 subgroup used for Bohlen-Pierce. Hard-of-basic scales can be interpreted in Mintaka temperament in the 3.7.11 subgroup (or its extensions such as Mintra), which tempers out 1331/1323 so that the generator (the stretched counterpart of the fourth) is ~11/7, a stack of 2 generators (equivalent to the minor seventh) is ~27/11, and a stack of three generators (equivalent to the minor third) is ~9/7.
Modes
The modes have step patterns which are the same as the modes of the p-chromatic scale.
UDP | Cyclic order |
Step pattern |
---|---|---|
11|0 | 1 | LsLsLssLsLss |
10|1 | 8 | LsLssLsLsLss |
9|2 | 3 | LsLssLsLssLs |
8|3 | 10 | LssLsLsLssLs |
7|4 | 5 | LssLsLssLsLs |
6|5 | 12 | sLsLsLssLsLs |
5|6 | 7 | sLsLssLsLsLs |
4|7 | 2 | sLsLssLsLssL |
3|8 | 9 | sLssLsLsLssL |
2|9 | 4 | sLssLsLssLsL |
1|10 | 11 | ssLsLsLssLsL |
0|11 | 6 | ssLsLssLsLsL |
Scale degrees
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||
11|0 | 1 | LsLsLssLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Aug. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
10|1 | 8 | LsLssLsLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
9|2 | 3 | LsLssLsLssLs | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. |
8|3 | 10 | LssLsLsLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. |
7|4 | 5 | LssLsLssLsLs | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
6|5 | 12 | sLsLsLssLsLs | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
5|6 | 7 | sLsLssLsLsLs | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
4|7 | 2 | sLsLssLsLssL | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. |
3|8 | 9 | sLssLsLsLssL | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. |
2|9 | 4 | sLssLsLssLsL | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
1|10 | 11 | ssLsLsLssLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
0|11 | 6 | ssLsLssLsLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Dim. | Min. | Min. | Min. | Min. | Perf. |
Notation
Being a descendant of a macrodiatonic scale, it can notated using the traditional diatonic notation, if all intervals are reinterpreted as their stretched versions (like octaves as tritaves). However, this approach involves 1-based indexing for a non-diatonic MOS which is generally discouraged. Alternatively, a generic MOS notation may be used like diamond MOS notation, which enables 0-based indexing at the cost of obscuring the connection to the standard diatonic scale.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 158.5¢ |
Major 1-mosstep | M1ms | L | 158.5¢ to 380.4¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 317.0¢ |
Major 2-mosstep | M2ms | L + s | 317.0¢ to 380.4¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 380.4¢ to 475.5¢ |
Major 3-mosstep | M3ms | 2L + s | 475.5¢ to 760.8¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 380.4¢ to 634.0¢ |
Major 4-mosstep | M4ms | 2L + 2s | 634.0¢ to 760.8¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 2L + 3s | 760.8¢ to 792.5¢ |
Augmented 5-mosstep | A5ms | 3L + 2s | 792.5¢ to 1141.2¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 760.8¢ to 951.0¢ |
Major 6-mosstep | M6ms | 3L + 3s | 951.0¢ to 1141.2¢ | |
7-mosstep | Diminished 7-mosstep | d7ms | 2L + 5s | 760.8¢ to 1109.5¢ |
Perfect 7-mosstep | P7ms | 3L + 4s | 1109.5¢ to 1141.2¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 1141.2¢ to 1268.0¢ |
Major 8-mosstep | M8ms | 4L + 4s | 1268.0¢ to 1521.6¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 3L + 6s | 1141.2¢ to 1426.5¢ |
Major 9-mosstep | M9ms | 4L + 5s | 1426.5¢ to 1521.6¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 4L + 6s | 1521.6¢ to 1585.0¢ |
Major 10-mosstep | M10ms | 5L + 5s | 1585.0¢ to 1902.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 4L + 7s | 1521.6¢ to 1743.5¢ |
Major 11-mosstep | M11ms | 5L + 6s | 1743.5¢ to 1902.0¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 5L + 7s | 1902.0¢ |
Scale tree
Generator(edt) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
7\12 | 1109.474 | 792.481 | 1:1 | 1.000 | Equalized 5L 7s⟨3/1⟩ | |||||
38\65 | 1111.912 | 790.043 | 6:5 | 1.200 | ||||||
31\53 | 1112.464 | 789.491 | 5:4 | 1.250 | ||||||
55\94 | 1112.846 | 789.109 | 9:7 | 1.286 | ||||||
24\41 | 1113.340 | 788.615 | 4:3 | 1.333 | Supersoft 5L 7s⟨3/1⟩ | |||||
65\111 | 1113.757 | 788.198 | 11:8 | 1.375 | ||||||
41\70 | 1114.002 | 787.953 | 7:5 | 1.400 | ||||||
58\99 | 1114.277 | 787.678 | 10:7 | 1.429 | ||||||
17\29 | 1114.939 | 787.016 | 3:2 | 1.500 | Soft 5L 7s⟨3/1⟩ | |||||
61\104 | 1115.570 | 786.385 | 11:7 | 1.571 | ||||||
44\75 | 1115.814 | 786.141 | 8:5 | 1.600 | ||||||
71\121 | 1116.023 | 785.932 | 13:8 | 1.625 | ||||||
27\46 | 1116.365 | 785.590 | 5:3 | 1.667 | Semisoft 5L 7s⟨3/1⟩ | |||||
64\109 | 1116.744 | 785.211 | 12:7 | 1.714 | ||||||
37\63 | 1117.021 | 784.934 | 7:4 | 1.750 | ||||||
47\80 | 1117.399 | 784.556 | 9:5 | 1.800 | ||||||
10\17 | 1118.797 | 783.158 | 2:1 | 2.000 | Basic 5L 7s⟨3/1⟩ Scales with tunings softer than this are proper Just 21/11 generator (1119.463c) | |||||
43\73 | 1120.330 | 781.625 | 9:4 | 2.250 | ||||||
33\56 | 1120.795 | 781.160 | 7:3 | 2.333 | ||||||
56\95 | 1121.152 | 780.803 | 12:5 | 2.400 | Mintra | |||||
23\39 | 1121.666 | 780.289 | 5:2 | 2.500 | Semihard 5L 7s⟨3/1⟩ | |||||
59\100 | 1122.153 | 779.802 | 13:5 | 2.600 | ||||||
36\61 | 1122.465 | 779.490 | 8:3 | 2.667 | ||||||
49\83 | 1122.841 | 779.114 | 11:4 | 2.750 | ||||||
13\22 | 1123.883 | 778.073 | 3:1 | 3.000 | Hard 5L 7s⟨3/1⟩ Mintaka is around here | |||||
42\71 | 1125.100 | 776.855 | 10:3 | 3.333 | Nekkar | |||||
29\49 | 1125.647 | 776.308 | 7:2 | 3.500 | ||||||
45\76 | 1126.158 | 775.797 | 11:3 | 3.667 | ||||||
16\27 | 1127.084 | 774.871 | 4:1 | 4.000 | Superhard 5L 7s⟨3/1⟩ Minalzidar | |||||
35\59 | 1128.278 | 773.677 | 9:2 | 4.500 | ||||||
19\32 | 1129.286 | 772.669 | 5:1 | 5.000 | ||||||
22\37 | 1130.892 | 771.063 | 6:1 | 6.000 | ||||||
3\5 | 1141.173 | 760.782 | 1:0 | → ∞ | Collapsed 5L 7s⟨3/1⟩ |