6L 1s

From Xenharmonic Wiki
Revision as of 13:36, 3 March 2025 by ArrowHead294 (talk | contribs)
Jump to navigation Jump to search
← 5L 1s 6L 1s 7L 1s →
↙ 5L 2s ↓ 6L 2s 7L 2s ↘
┌╥╥╥╥╥╥┬┐
│║║║║║║││
│││││││││
└┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLLLLLs
sLLLLLL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 1\7 to 1\6 (171.4 ¢ to 200.0 ¢)
Dark 5\6 to 6\7 (1000.0 ¢ to 1028.6 ¢)
TAMNAMS information
Name archaeotonic
Prefix arch-
Abbrev. arc
Related MOS scales
Parent 1L 5s
Sister 1L 6s
Daughters 7L 6s, 6L 7s
Neutralized 5L 2s
2-Flought 13L 1s, 6L 8s
Equal tunings
Equalized (L:s = 1:1) 1\7 (171.4 ¢)
Supersoft (L:s = 4:3) 4\27 (177.8 ¢)
Soft (L:s = 3:2) 3\20 (180.0 ¢)
Semisoft (L:s = 5:3) 5\33 (181.8 ¢)
Basic (L:s = 2:1) 2\13 (184.6 ¢)
Semihard (L:s = 5:2) 5\32 (187.5 ¢)
Hard (L:s = 3:1) 3\19 (189.5 ¢)
Superhard (L:s = 4:1) 4\25 (192.0 ¢)
Collapsed (L:s = 1:0) 1\6 (200.0 ¢)

6L 1s, named archaeotonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 6 large steps and 1 small step, repeating every octave. Generators that produce this scale range from 171.4 ¢ to 200 ¢, or from 1000 ¢ to 1028.6 ¢. Scales of this form are always proper because there is only one small step.

Names

TAMNAMS suggests the temperament-agnostic name archaeotonic as the name of 6L 1s. The name was originally used as a name for the 6L 1s scale in 13edo.

Scale properties

MOS data is deprecated. Please use the following templates individually: MOS intervals, MOS genchain, and MOS mode degrees

Proposed names

Archeotonic.png

Temperaments

There are two notable harmonic entropy minima with this MOS pattern. The first is tetracot, in which the generator is identified with 10/9 and four generators make a 3/2. These produce very soft tunings of archaeotonic, ranging from 4:3 in 27edo to 7:6 in 48edo. The second is known as didacus, which is at a basic level the temperament in the 2.5.7 subgroup defined by 3136/3125, where two generators make 5/4 and five make 7/4, and produces very hard tunings, ranging from 4:1 in 25edo to 7:1 in 43edo; it has various extensions that span portions of this range, including roulette and mediantone to the no-twos 19-limit, and hemithirds (along with its 5-limit microtemperament restriction luna) and hemiwürschmidt to the full 7-limit.

The 6L 1s pattern also houses a temperament of the 11th and 13th harmonics, i.e. Bluebirds, where the generator is identified with 143/128; for example L = 7, s = 4 (46 edo) is such a scale.

Scales

Scale tree

Scale tree and tuning spectrum of 6L 1s
Generator(edo) Cents Step ratio Comments(always proper)
Bright Dark L:s Hardness
1\7 171.429 1028.571 1:1 1.000 Equalized 6L 1s
6\41 175.610 1024.390 6:5 1.200
5\34 176.471 1023.529 5:4 1.250 Tetracot is in this region
9\61 177.049 1022.951 9:7 1.286 Tetracot/modus/wollemia
4\27 177.778 1022.222 4:3 1.333 Supersoft 6L 1s
11\74 178.378 1021.622 11:8 1.375
7\47 178.723 1021.277 7:5 1.400
10\67 179.104 1020.896 10:7 1.429
3\20 180.000 1020.000 3:2 1.500 Soft 6L 1s
11\73 180.822 1019.178 11:7 1.571
8\53 181.132 1018.868 8:5 1.600
13\86 181.395 1018.605 13:8 1.625 Wilson Golden 2 (181.3227 ¢)
5\33 181.818 1018.182 5:3 1.667 Semisoft 6L 1s
12\79 182.278 1017.722 12:7 1.714 Bluebirds
7\46 182.609 1017.391 7:4 1.750
9\59 183.051 1016.949 9:5 1.800
2\13 184.615 1015.385 2:1 2.000 Basic 6L 1s
9\58 186.207 1013.793 9:4 2.250
7\45 186.667 1013.333 7:3 2.333
12\77 187.013 1012.987 12:5 2.400
5\32 187.500 1012.500 5:2 2.500 Semihard 6L 1s
13\83 187.952 1012.048 13:5 2.600 Golden glacial (188.0298 ¢)
8\51 188.235 1011.765 8:3 2.667
11\70 188.571 1011.429 11:4 2.750
3\19 189.474 1010.526 3:1 3.000 Hard 6L 1s
Spell
10\63 190.476 1009.524 10:3 3.333
7\44 190.909 1009.091 7:2 3.500 Isra/deutone
11\69 191.304 1008.696 11:3 3.667
4\25 192.000 1008.000 4:1 4.000 Superhard 6L 1s
Isra/leantone
9\56 192.857 1007.143 9:2 4.500
5\31 193.548 1006.452 5:1 5.000 Didacus/hemithirds/hemiwürschmidt
6\37 194.595 1005.405 6:1 6.000 Didacus/roulette
1\6 200.000 1000.000 1:0 → ∞ Collapsed 6L 1s