|
|
(45 intermediate revisions by 13 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{MOS intro}} |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-04 15:39:59 UTC</tt>.<br>
| | == Names == |
| : The original revision id was <tt>565207855</tt>.<br>
| | {{TAMNAMS name}} |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">There are two notable harmonic entropy minima with this [[MOSScales|MOS]] pattern. The first is [[Tetracot family|tetracot]], in which four generators make a 3/2, and the second is known as [[roulette7]], the seven note albitonic scale for the 2.5.7.11.13 subgroup temperament [[Chromatic pairs#Roulette|roulette]]. (Other temperaments like "luna", "hemithird", and "hemiwürschmidt" have very similar 7-note MOSes.)
| |
|
| |
|
| The 6L+1s pattern also houses a temperament of the 11th and 13th harmonics, for example L=7 s=4 (46 edo) is such a scale.
| | == Scale properties == |
| Scales of this form are always [[Rothenberg propriety|proper]], because there is only one small step.
| |
| ||||||||||||~ Generator ||~ Cents ||~ Comments ||
| |
| || 1\7 || || || || || || 171.43 ||= ||
| |
| || || || || || || 6\41 || 175.61 ||= Enipucrop is between here and 1\7 ||
| |
| || || || || || 5\34 || || 176.47 ||= Tetracot is around here ||
| |
| || || || || 4\27 || || || 177.78 ||= ||
| |
| || || || 3\20 || || || || 180 ||= ||
| |
| || || || || || || || 180.815 || ||
| |
| || || || || || 8\53 || || 181.13 ||= ||
| |
| || || || || || || || 1200/(5+phi) ||= Unnamed golden temperament (discussed in [[http://launch.groups.yahoo.com/group/tuning/message/100254|this thread]]) ||
| |
| || || || || 5\33 || || || 181.82 ||= ||
| |
| || || || || || || || 182.44 || ||
| |
| || || || || || 7\46 || || 182.61 || ||
| |
| || || 2\13 || || || || || 184.62 ||= Optimum rank range glacial (L/s=2/1) ||
| |
| || || || || 5\32 || || || 187.5 || ||
| |
| || || || || || || || 188.03 || ||
| |
| || || || || || 8\51 || || 188.235 || ||
| |
| || || || || || || || 188.45 ||= <span style="display: block; text-align: center;">L/s = e</span> ||
| |
| || || || 3\19 || || || || 189.47 ||= L/s = 3 ||
| |
| || || || || || || || 189.92 ||= <span style="display: block; text-align: center;">L/s = pi</span> ||
| |
| || || || || 4\25 || || || 192 ||= L/s = 4 ||
| |
| || || || || || 5\31 || || 193.55 ||= Luna/hemithird/roulette is around here ||
| |
| || 1\6 || || || || || || 200 ||= ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>6L 1s</title></head><body>There are two notable harmonic entropy minima with this <a class="wiki_link" href="/MOSScales">MOS</a> pattern. The first is <a class="wiki_link" href="/Tetracot%20family">tetracot</a>, in which four generators make a 3/2, and the second is known as <a class="wiki_link" href="/roulette7">roulette7</a>, the seven note albitonic scale for the 2.5.7.11.13 subgroup temperament <a class="wiki_link" href="/Chromatic%20pairs#Roulette">roulette</a>. (Other temperaments like &quot;luna&quot;, &quot;hemithird&quot;, and &quot;hemiwürschmidt&quot; have very similar 7-note MOSes.)<br />
| |
| <br />
| |
| The 6L+1s pattern also houses a temperament of the 11th and 13th harmonics, for example L=7 s=4 (46 edo) is such a scale.<br />
| |
| Scales of this form are always <a class="wiki_link" href="/Rothenberg%20propriety">proper</a>, because there is only one small step.<br />
| |
|
| |
|
| | === Intervals === |
| | {{MOS intervals}} |
|
| |
|
| <table class="wiki_table">
| | === Generator chain === |
| <tr>
| | {{MOS genchain}} |
| <th colspan="6">Generator<br />
| |
| </th>
| |
| <th>Cents<br />
| |
| </th>
| |
| <th>Comments<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>1\7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>171.43<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6\41<br />
| |
| </td>
| |
| <td>175.61<br />
| |
| </td>
| |
| <td style="text-align: center;">Enipucrop is between here and 1\7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\34<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>176.47<br />
| |
| </td>
| |
| <td style="text-align: center;">Tetracot is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\27<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>177.78<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\20<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>180<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>180.815<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\53<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>181.13<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1200/(5+phi)<br />
| |
| </td>
| |
| <td style="text-align: center;">Unnamed golden temperament (discussed in <a class="wiki_link_ext" href="http://launch.groups.yahoo.com/group/tuning/message/100254" rel="nofollow">this thread</a>)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\33<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>181.82<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>182.44<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>182.61<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>2\13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>184.62<br />
| |
| </td>
| |
| <td style="text-align: center;">Optimum rank range glacial (L/s=2/1)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\32<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>187.5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>188.03<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\51<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>188.235<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>188.45<br />
| |
| </td>
| |
| <td style="text-align: center;"><span style="display: block; text-align: center;">L/s = e</span><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\19<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>189.47<br />
| |
| </td>
| |
| <td style="text-align: center;">L/s = 3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>189.92<br />
| |
| </td>
| |
| <td style="text-align: center;"><span style="display: block; text-align: center;">L/s = pi</span><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>192<br />
| |
| </td>
| |
| <td style="text-align: center;">L/s = 4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>193.55<br />
| |
| </td>
| |
| <td style="text-align: center;">Luna/hemithird/roulette is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1\6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>200<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | ==== Proposed names ==== |
| | [[File:Archeotonic.png|alt=Archeotonic.png|Archeotonic.png]] |
| | |
| | == Temperaments == |
| | There are two notable harmonic entropy minima with this [[MOS]] pattern. The first is [[Tetracot family|tetracot]], in which the generator is identified with [[10/9]] and four generators make a [[3/2]]. These produce very soft tunings of archaeotonic, ranging from 4:3 in [[27edo]] to 7:6 in [[48edo]]. The second is known as [[didacus]], which is at a basic level the temperament in the [[2.5.7 subgroup]] defined by [[3136/3125]], where two generators make [[5/4]] and five make [[7/4]], and produces very hard tunings, ranging from 4:1 in [[25edo]] to 7:1 in [[43edo]]; it has various extensions that span portions of this range, including [[Hemimean clan#Roulette|roulette]] and [[Hemimean clan#Mediantone|mediantone]] to the no-twos 19-limit, and [[hemithirds]] (along with its 5-limit microtemperament restriction [[luna]]) and [[hemiwürschmidt]] to the full 7-limit. |
| | |
| | The 6L 1s pattern also houses a temperament of the 11th and 13th harmonics, i.e. [[No-threes subgroup temperaments#Bluebirds|Bluebirds]], where the generator is identified with [[143/128]]; for example {{nowrap|L {{=}} 7|s {{=}} 4}} (46 edo) is such a scale. |
| | |
| | == Scales == |
| | * [[Tetracot7]] – 34edo, 41edo, and POTE tuning |
| | * [[Bluebirds7]] – 329edo tuning |
| | * [[Glacial7]] – 84edo tuning |
| | * [[Deutone7]] – 44edo tuning |
| | * [[Leantone7]] – 81edo tuning |
| | * [[Roulette7]] – 37edo tuning |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 5/4 = [[Tetracot]] is in this region |
| | | 9/7 = Tetracot/[[modus]]/[[wollemia]] |
| | | 13/8 = Wilson Golden 2 (181.3227{{c}}) |
| | | 12/7 = [[Bluebirds]] |
| | | 13/5 = Golden [[glacial]] (188.0298{{c}}) |
| | | 3/1 = [[Spell]] |
| | | 7/2 = [[Isra]]/[[deutone]] |
| | | 4/1 = Isra/[[leantone]] |
| | | 5/1 = Didacus/[[hemithirds]]/[[hemiwürschmidt]] |
| | | 6/1 = Didacus/[[roulette]] |
| | }} |
| | |
| | [[Category:Archaeotonic| ]] |
| | [[Category:7-tone scales]] |
| | <!-- main article --> |
6L 1s, named archaeotonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 6 large steps and 1 small step, repeating every octave. Generators that produce this scale range from 171.4 ¢ to 200 ¢, or from 1000 ¢ to 1028.6 ¢. Scales of this form are always proper because there is only one small step.
Names
TAMNAMS suggests the temperament-agnostic name archaeotonic as the name of 6L 1s. The name was originally used as a name for the 6L 1s scale in 13edo.
Scale properties
Intervals
Intervals of 6L 1s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-archstep
|
Perfect 0-archstep
|
P0arcs
|
0
|
0.0 ¢
|
1-archstep
|
Diminished 1-archstep
|
d1arcs
|
s
|
0.0 ¢ to 171.4 ¢
|
Perfect 1-archstep
|
P1arcs
|
L
|
171.4 ¢ to 200.0 ¢
|
2-archstep
|
Minor 2-archstep
|
m2arcs
|
L + s
|
200.0 ¢ to 342.9 ¢
|
Major 2-archstep
|
M2arcs
|
2L
|
342.9 ¢ to 400.0 ¢
|
3-archstep
|
Minor 3-archstep
|
m3arcs
|
2L + s
|
400.0 ¢ to 514.3 ¢
|
Major 3-archstep
|
M3arcs
|
3L
|
514.3 ¢ to 600.0 ¢
|
4-archstep
|
Minor 4-archstep
|
m4arcs
|
3L + s
|
600.0 ¢ to 685.7 ¢
|
Major 4-archstep
|
M4arcs
|
4L
|
685.7 ¢ to 800.0 ¢
|
5-archstep
|
Minor 5-archstep
|
m5arcs
|
4L + s
|
800.0 ¢ to 857.1 ¢
|
Major 5-archstep
|
M5arcs
|
5L
|
857.1 ¢ to 1000.0 ¢
|
6-archstep
|
Perfect 6-archstep
|
P6arcs
|
5L + s
|
1000.0 ¢ to 1028.6 ¢
|
Augmented 6-archstep
|
A6arcs
|
6L
|
1028.6 ¢ to 1200.0 ¢
|
7-archstep
|
Perfect 7-archstep
|
P7arcs
|
6L + s
|
1200.0 ¢
|
Generator chain
Generator chain of 6L 1s
Bright gens |
Scale degree |
Abbrev.
|
12 |
Augmented 5-archdegree |
A5arcd
|
11 |
Augmented 4-archdegree |
A4arcd
|
10 |
Augmented 3-archdegree |
A3arcd
|
9 |
Augmented 2-archdegree |
A2arcd
|
8 |
Augmented 1-archdegree |
A1arcd
|
7 |
Augmented 0-archdegree |
A0arcd
|
6 |
Augmented 6-archdegree |
A6arcd
|
5 |
Major 5-archdegree |
M5arcd
|
4 |
Major 4-archdegree |
M4arcd
|
3 |
Major 3-archdegree |
M3arcd
|
2 |
Major 2-archdegree |
M2arcd
|
1 |
Perfect 1-archdegree |
P1arcd
|
0 |
Perfect 0-archdegree Perfect 7-archdegree |
P0arcd P7arcd
|
−1 |
Perfect 6-archdegree |
P6arcd
|
−2 |
Minor 5-archdegree |
m5arcd
|
−3 |
Minor 4-archdegree |
m4arcd
|
−4 |
Minor 3-archdegree |
m3arcd
|
−5 |
Minor 2-archdegree |
m2arcd
|
−6 |
Diminished 1-archdegree |
d1arcd
|
−7 |
Diminished 7-archdegree |
d7arcd
|
−8 |
Diminished 6-archdegree |
d6arcd
|
−9 |
Diminished 5-archdegree |
d5arcd
|
−10 |
Diminished 4-archdegree |
d4arcd
|
−11 |
Diminished 3-archdegree |
d3arcd
|
−12 |
Diminished 2-archdegree |
d2arcd
|
Modes
Scale degrees of the modes of 6L 1s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (archdegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
6|0
|
1
|
LLLLLLs
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Aug.
|
Perf.
|
5|1
|
2
|
LLLLLsL
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Maj.
|
Perf.
|
Perf.
|
4|2
|
3
|
LLLLsLL
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Maj.
|
Min.
|
Perf.
|
Perf.
|
3|3
|
4
|
LLLsLLL
|
Perf.
|
Perf.
|
Maj.
|
Maj.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
2|4
|
5
|
LLsLLLL
|
Perf.
|
Perf.
|
Maj.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
1|5
|
6
|
LsLLLLL
|
Perf.
|
Perf.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
0|6
|
7
|
sLLLLLL
|
Perf.
|
Dim.
|
Min.
|
Min.
|
Min.
|
Min.
|
Perf.
|
Perf.
|
Proposed names
Temperaments
There are two notable harmonic entropy minima with this MOS pattern. The first is tetracot, in which the generator is identified with 10/9 and four generators make a 3/2. These produce very soft tunings of archaeotonic, ranging from 4:3 in 27edo to 7:6 in 48edo. The second is known as didacus, which is at a basic level the temperament in the 2.5.7 subgroup defined by 3136/3125, where two generators make 5/4 and five make 7/4, and produces very hard tunings, ranging from 4:1 in 25edo to 7:1 in 43edo; it has various extensions that span portions of this range, including roulette and mediantone to the no-twos 19-limit, and hemithirds (along with its 5-limit microtemperament restriction luna) and hemiwürschmidt to the full 7-limit.
The 6L 1s pattern also houses a temperament of the 11th and 13th harmonics, i.e. Bluebirds, where the generator is identified with 143/128; for example L = 7, s = 4 (46 edo) is such a scale.
Scales
Scale tree
Scale tree and tuning spectrum of 6L 1s
Generator(edo)
|
Cents
|
Step ratio
|
Comments(always proper)
|
Bright
|
Dark
|
L:s
|
Hardness
|
1\7
|
|
|
|
|
|
171.429
|
1028.571
|
1:1
|
1.000
|
Equalized 6L 1s
|
|
|
|
|
|
6\41
|
175.610
|
1024.390
|
6:5
|
1.200
|
|
|
|
|
|
5\34
|
|
176.471
|
1023.529
|
5:4
|
1.250
|
Tetracot is in this region
|
|
|
|
|
|
9\61
|
177.049
|
1022.951
|
9:7
|
1.286
|
Tetracot/modus/wollemia
|
|
|
|
4\27
|
|
|
177.778
|
1022.222
|
4:3
|
1.333
|
Supersoft 6L 1s
|
|
|
|
|
|
11\74
|
178.378
|
1021.622
|
11:8
|
1.375
|
|
|
|
|
|
7\47
|
|
178.723
|
1021.277
|
7:5
|
1.400
|
|
|
|
|
|
|
10\67
|
179.104
|
1020.896
|
10:7
|
1.429
|
|
|
|
3\20
|
|
|
|
180.000
|
1020.000
|
3:2
|
1.500
|
Soft 6L 1s
|
|
|
|
|
|
11\73
|
180.822
|
1019.178
|
11:7
|
1.571
|
|
|
|
|
|
8\53
|
|
181.132
|
1018.868
|
8:5
|
1.600
|
|
|
|
|
|
|
13\86
|
181.395
|
1018.605
|
13:8
|
1.625
|
Wilson Golden 2 (181.3227 ¢)
|
|
|
|
5\33
|
|
|
181.818
|
1018.182
|
5:3
|
1.667
|
Semisoft 6L 1s
|
|
|
|
|
|
12\79
|
182.278
|
1017.722
|
12:7
|
1.714
|
Bluebirds
|
|
|
|
|
7\46
|
|
182.609
|
1017.391
|
7:4
|
1.750
|
|
|
|
|
|
|
9\59
|
183.051
|
1016.949
|
9:5
|
1.800
|
|
|
2\13
|
|
|
|
|
184.615
|
1015.385
|
2:1
|
2.000
|
Basic 6L 1s
|
|
|
|
|
|
9\58
|
186.207
|
1013.793
|
9:4
|
2.250
|
|
|
|
|
|
7\45
|
|
186.667
|
1013.333
|
7:3
|
2.333
|
|
|
|
|
|
|
12\77
|
187.013
|
1012.987
|
12:5
|
2.400
|
|
|
|
|
5\32
|
|
|
187.500
|
1012.500
|
5:2
|
2.500
|
Semihard 6L 1s
|
|
|
|
|
|
13\83
|
187.952
|
1012.048
|
13:5
|
2.600
|
Golden glacial (188.0298 ¢)
|
|
|
|
|
8\51
|
|
188.235
|
1011.765
|
8:3
|
2.667
|
|
|
|
|
|
|
11\70
|
188.571
|
1011.429
|
11:4
|
2.750
|
|
|
|
3\19
|
|
|
|
189.474
|
1010.526
|
3:1
|
3.000
|
Hard 6L 1s Spell
|
|
|
|
|
|
10\63
|
190.476
|
1009.524
|
10:3
|
3.333
|
|
|
|
|
|
7\44
|
|
190.909
|
1009.091
|
7:2
|
3.500
|
Isra/deutone
|
|
|
|
|
|
11\69
|
191.304
|
1008.696
|
11:3
|
3.667
|
|
|
|
|
4\25
|
|
|
192.000
|
1008.000
|
4:1
|
4.000
|
Superhard 6L 1s Isra/leantone
|
|
|
|
|
|
9\56
|
192.857
|
1007.143
|
9:2
|
4.500
|
|
|
|
|
|
5\31
|
|
193.548
|
1006.452
|
5:1
|
5.000
|
Didacus/hemithirds/hemiwürschmidt
|
|
|
|
|
|
6\37
|
194.595
|
1005.405
|
6:1
|
6.000
|
Didacus/roulette
|
1\6
|
|
|
|
|
|
200.000
|
1000.000
|
1:0
|
→ ∞
|
Collapsed 6L 1s
|