(73 intermediate revisions by 21 users not shown) Line 1:
Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox MOS
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| Periods = 1
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2012-05-07 21:54:47 UTC</tt>.<br>
| nLargeSteps = 4
: The original revision id was <tt>331504202</tt>.<br>
| nSmallSteps = 7
: The revision comment was: <tt></tt><br>
| Equalized = 3
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| Collapsed = 1
<h4>Original Wikitext content:</h4>
| Pattern = LssLssLssLs
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, like [[8L 3s]], has no proper harmonic entropy minimum, which composers may see as either a bug or a feature. It is generated by an approximate 6/5 minor third between 300 (1\[[4edo]]) and 327.__27__¢ (3\[[11edo]]).
}}
{{ MOS intro}}
One of the [[harmonic entropy]] minimums in this range is [[Kleismic family|Kleismic/Hanson ]].
|| 1/4 || || || || || || || || 300¢ ||= ||
== Name ==
|| || || || || || || || 10/39 || 307.69231 || ||
TAMNAMS formerly used the name ''kleistonic'' for the name of this scale (prefix ''klei-'' ). Other names include '''p -chro smitonic''' or '''smipechromic''' .
|| || || || || || || 9/35 || || 308.57143 || ||
|| || || || || || || || 17/66 || 309.__09__ || ||
|| || || || || || 8/31 || || || 309.67742 || ||
|| || || || || || || || 23/89 || 310.11236 || ||
|| || || || || || || 15/58 || || 310.34483 || ||
|| || || || || || || || 22/85 || 310.588235 || ||
|| || || || || 7/27 || || || || 311.__1__ ||= ||
|| || || || || || || || 27/104 || 311.53846 || ||
|| || || || || || || 20/77 || || 311.68831 || ||
|| || || || || || || || 33/127 || 311.81102 || ||
|| || || || || || 13/50 || || || 312 || ||
|| || || || || || || || 32/123 || 312.__19512__ || ||
|| || || || || || || 19/73 || || 312.32877 || ||
|| || || || || || || || 25/96 || 312.5 || ||
|| || || || 6/23 || || || || || 313.04348 ||= ||
|| || || || || || || || 29/111 || 313.__513__ || ||
|| || || || || || || 23/88 || || 313.__63__ || ||
|| || || || || || || || 40/153 || 313.72549 || ||
|| || || || || || 17/65 || || || 313.84615 || ||
|| || || || || || || || 45/172 || 313.95349 || ||
|| || || || || || || 28/107 || || 314.01869 || ||
|| || || || || || || || 39/149 || 314.09396 || ||
|| || || || || 11/42 || || || || 314.28751 ||= ||
|| || || || || || || || 38/145 || 314.48276 || ||
|| || || || || || || 27/103 || || 314.56311 || ||
|| || || || || || || || 43/164 || 314.__63414__ || ||
|| || || || || || 16/61 || || || 314.7541 || ||
|| || || || || || || || 37/141 || 314.89362 || ||
|| || || || || || || 21/80 || || 315 || ||
|| || || || || || || || 26/99 || 315.__15__ || ||
|| || || 5/19 || || || || || || 315.78947 ||= ||
|| || || || || || || || 29/110 || 316.__36__ || ||
|| || || || || || || 24/91 || || 316.48352 || ||
|| || || || || || || || 43/163 || 316.56442 || ||
|| || || || || || 19/72 || || || 316.__6__ || ||
|| || || || || || || || 52/197 || 316.75127 || ||
|| || || || || || || 33/125 || || 316.8 || ||
|| || || || || || || || 47/178 || 316.85393 || ||
|| || || || || 14/53 || || || || 316.98113 ||= ||
|| || || || || || || || 51/193 || 317.09845 || ||
|| || || || || || || 37/140 || || 317.14286 || ||
|| || || || || || || || 60/227 || 317.18062 || ||
|| || || || || || 23/87 || || || 317.24137 || ||
|| || || || || || || || 55/208 || 317.30769 || ||
|| || || || || || || 32/121 || || 317.35537 || ||
|| || || || || || || || 41/155 || 317.419355 || ||
|| || || || 9/34 || || || || || 317.64706 ||= ||
|| || || || || || || || 40/151 || 317.880795 || ||
|| || || || || || || 31/117 || || 317.94872 || ||
|| || || || || || || || 53/200 || 318 || ||
|| || || || || || 22/83 || || || 318.07229 || ||
|| || || || || || || || 57/215 || 318.139535 || ||
|| || || || || || || 35/132 || || 318.__18__ || ||
|| || || || || || || || 48/181 || 318.23204 || ||
|| || || || || 13/49 || || || || 318.36735 ||= ||
|| || || || || || || || 43/162 || 318.__518__ || ||
|| || || || || || || 30/113 || || 318.58407 || ||
|| || || || || || || || 47/177 || 318.64407 || ||
|| || || || || || 17/64 || || || 318.75 || ||
|| || || || || || || || 38/143 || 318.88112 || ||
|| || || || || || || 21/79 || || 318.98734 || ||
|| || || || || || || || 25/94 || 319.14894 || ||
|| || 4/15 || || || || || || || 320 ||= Boundary of propriety
(generators larger than this are proper) ||
|| 3/11 || || || || || || || || 327.__27__ ||= ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>4L 7s</title></head><body>This MOS, like <a class="wiki_link" href="/8L%203s">8L 3s</a>, has no proper harmonic entropy minimum, which composers may see as either a bug or a feature. It is generated by an approximate 6/5 minor third between 300 (1\<a class="wiki_link" href="/4edo">4edo</a>) and 327.<u>27</u>¢ (3\<a class="wiki_link" href="/11edo">11edo</a>).<br />
<br />
== Scale properties ==
{{TAMNAMS use}}
<table class="wiki_table">
=== Intervals ===
<tr>
{{MOS intervals}}
<td>1/4<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>300¢<br />
</td>
<td style="text-align: center;"><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>10/39<br />
</td>
<td>307.69231<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>9/35<br />
</td>
<td><br />
</td>
<td>308.57143<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>17/66<br />
</td>
<td>309.<u>09</u><br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>8/31<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>309.67742<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>23/89<br />
</td>
<td>310.11236<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>15/58<br />
</td>
<td><br />
</td>
<td>310.34483<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>22/85<br />
</td>
<td>310.588235<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>7/27<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>311.<u>1</u><br />
</td>
<td style="text-align: center;"><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>27/104<br />
</td>
<td>311.53846<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>20/77<br />
</td>
<td><br />
</td>
<td>311.68831<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>33/127<br />
</td>
<td>311.81102<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>13/50<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>312<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>32/123<br />
</td>
<td>312.<u>19512</u><br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>19/73<br />
</td>
<td><br />
</td>
<td>312.32877<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>25/96<br />
</td>
<td>312.5<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>6/23<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>313.04348<br />
</td>
<td style="text-align: center;"><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>29/111<br />
</td>
<td>313.<u>513</u><br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>23/88<br />
</td>
<td><br />
</td>
<td>313.<u>63</u><br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>40/153<br />
</td>
<td>313.72549<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>17/65<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>313.84615<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>45/172<br />
</td>
<td>313.95349<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>28/107<br />
</td>
<td><br />
</td>
<td>314.01869<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>39/149<br />
</td>
<td>314.09396<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>11/42<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>314.28751<br />
</td>
<td style="text-align: center;"><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>38/145<br />
</td>
<td>314.48276<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>27/103<br />
</td>
<td><br />
</td>
<td>314.56311<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>43/164<br />
</td>
<td>314.<u>63414</u><br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>16/61<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>314.7541<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>37/141<br />
</td>
<td>314.89362<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>21/80<br />
</td>
<td><br />
</td>
<td>315<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>26/99<br />
</td>
<td>315.<u>15</u><br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td>5/19<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>315.78947<br />
</td>
<td style="text-align: center;"><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>29/110<br />
</td>
<td>316.<u>36</u><br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>24/91<br />
</td>
<td><br />
</td>
<td>316.48352<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>43/163<br />
</td>
<td>316.56442<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>19/72<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>316.<u>6</u><br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>52/197<br />
</td>
<td>316.75127<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>33/125<br />
</td>
<td><br />
</td>
<td>316.8<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>47/178<br />
</td>
<td>316.85393<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>14/53<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>316.98113<br />
</td>
<td style="text-align: center;"><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>51/193<br />
</td>
<td>317.09845<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>37/140<br />
</td>
<td><br />
</td>
<td>317.14286<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>60/227<br />
</td>
<td>317.18062<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>23/87<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>317.24137<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>55/208<br />
</td>
<td>317.30769<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>32/121<br />
</td>
<td><br />
</td>
<td>317.35537<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>41/155<br />
</td>
<td>317.419355<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>9/34<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>317.64706<br />
</td>
<td style="text-align: center;"><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>40/151<br />
</td>
<td>317.880795<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>31/117<br />
</td>
<td><br />
</td>
<td>317.94872<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>53/200<br />
</td>
<td>318<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>22/83<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>318.07229<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>57/215<br />
</td>
<td>318.139535<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>35/132<br />
</td>
<td><br />
</td>
<td>318.<u>18</u><br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>48/181<br />
</td>
<td>318.23204<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>13/49<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>318.36735<br />
</td>
<td style="text-align: center;"><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>43/162<br />
</td>
<td>318.<u>518</u><br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>30/113<br />
</td>
<td><br />
</td>
<td>318.58407<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>47/177<br />
</td>
<td>318.64407<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>17/64<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>318.75<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>38/143<br />
</td>
<td>318.88112<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>21/79<br />
</td>
<td><br />
</td>
<td>318.98734<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>25/94<br />
</td>
<td>319.14894<br />
</td>
<td><br />
</td>
</tr>
<tr>
<td><br />
</td>
<td>4/15<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>320<br />
</td>
<td style="text-align: center;">Boundary of propriety<br />
(generators larger than this are proper)<br />
</td>
</tr>
<tr>
<td>3/11<br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td><br />
</td>
<td>327.<u>27</u><br />
</td>
<td style="text-align: center;"><br />
</td>
</tr>
</table>
</body></html></pre></div>
=== Generator chain ===
{{MOS genchain}}
=== Modes ===
{{MOS mode degrees}}
== Tuning ranges==
=== Soft range ===
The soft range for tunings of 4L   ;7s encompasses parasoft and hyposoft tunings. This implies step ratios smaller than 2 /1, meaning a generator sharper than {{nowrap|4\15 {{=}} 320{{c}}}}.
This is the range associated with extensions of [[Orgone|Orgone[7]]]. The small step is recognizable as a near diatonic semitone, while the large step is in the ambiguous area of neutral seconds.
Soft edos include [[15edo]] and [[26edo]].
The sizes of the generator, large step and small step of 4L 7s are as follows in various soft tunings:
{| class="wikitable right-2 right-3 right-4"
|-
!
! [[15edo]] (basic)
! [[26edo]] (soft)
! Some JI approximations
|-
| generator (g)
| 4\15, 320.00
| 7\26, 323.08
| 77/64, 6/5
|-
| L (octave - 3g)
| 2\15, 160.00
| 3\26, 138.46
| 12/11, 13/12
|-
| s (4g - octave)
| 1\15, 80.00
| 2\19, 92.31
| 21/20, 22/21, 20/19
|}
=== Hypohard ===
Hypohard tunings of 4L   ;7s have step ratios between 2/1 and 3/1, implying a generator sharper than {{nowrap|5\19 {{=}} 315.79{{c}}}} and flatter than {{nowrap|4\15 {{=}} 320{{c}}}}.
This range represents one of the harmonic entropy minimums, where 6 generators make a just diatonic fifth ([[3/2]]), an octave above. This is the range associated with the eponymous Kleismic (aka [[Hanson]]) temperament and its extensions.
Hypohard edos include [[15edo]], [[19edo]], and [[34edo]].
The sizes of the generator, large step and small step of 4L   ;7s are as follows in various hypohard tunings:
{| class="wikitable right-2 right-3 right-4"
|-
!
! [[15edo]] (basic)
! [[19edo]] (hard)
! [[34edo]] (semihard)
! Some JI approximations
|-
| generator (g)
| 4\15, 320.00
| 5\19, 315.79
| 9\34, 317.65
| 6/5
|-
| L ({{nowrap|octave − 3g}})
| 2\15, 160.00
| 3\19, 189.47
| 5\34, 176.47
| 10/9, 11/10 (in 15edo)
|-
| s ({{nowrap|4g − octave}})
| 1\15, 80.00
| 1\19, 63.16
| 2\34, 70.59
| 25/24, 26/25 (in better kleismic tunings)
|}
=== Parahard ===
Parahard tunings of 4L 7s have step ratios between 3/1 and 4/1, implying a generator sharper than 6\23 = 313.04¢ and flatter than 5\19 = 315.79¢.
The minor third is at its purest here, but the resulting scales tend to approximate intervals that employ a much higher limit harmony, especially in the case of the superhard 23edo. However, the large step is recognizable as a regular diatonic whole step, approximating both 10/9 and 9/8, while the small step is a slightly sharp of a quarter tone.
Parahard edos include [[19edo]], 23[[23edo|edo]], and [[42edo]].
The sizes of the generator, large step and small step of 4L 7s are as follows in various parahard tunings:
{| class="wikitable right-2 right-3 right-4"
|-
!
! [[19edo]] (hard)
! [[23edo]] (superhard)
! [[42edo]] (parahard)
! Some JI approximations
|-
| generator (g)
| 5\19, 315.79
| 6\23, 313.04
| 11\42, 314.29
| 6/5
|-
| L ({{nowrap|octave − 3g}})
| 3\19, 189.47
| 4\23, 208.70
| 7\42, 200.00
| 10/9, 9/8
|-
| s ({{nowrap|4g − octave}})
| 1\19, 63.16
| 1\23, 52.17
| 2\42, 57.14
| 28/27, 33/32
|}
=== Hyperhard===
Hyperhard tunings of 4L 7s have step ratios between 4/1 and 6/1, implying a generator sharper than 8\31 = 309.68¢ and flatter than 6\23 = 313.04¢.
The temperament known as Myna (a pun on "minor third") resides here, as this is the range where 10 generators make a just diatonic fifth (3/2), two octaves above.
These scales are stacked with simple intervals, but are melodically difficult due to the extreme step size disparity, where the small step is generally flat of a quarter tone.
Hyperhard edos include [[23edo]], [[31edo]], and [[27edo]].
The sizes of the generator, large step and small step of 4L 7s are as follows in various hyperhard tunings:
{| class="wikitable right-2 right-3 right-4"
|-
!
! [[23edo]] (superhard)
! [[31edo]] (extrahard)
! [[27edo]] (pentahard)
! Some JI approximations
|-
| generator (g)
| 6\23, 313.04
| 8\31, 309.68
| 7\27, 311.11
| 6/5
|-
| L ({{nowrap|octave − 3g}})
| 4\23, 208.70
| 6\31, 232.26
| 5\27, 222.22
| 8/7, 9/8
|-
| s ({{nowrap|4g − octave}})
| 1\23, 52.17
| 1\31, 38.71
| 1\27, 44.44
| 36/35, 45/44
|}
== Temperaments ==
== Scales ==
* [[Oregon11]]
* [[Orgone11]]
* [[Magicaltet11]]
* [[Cata11]]
* [[Starlingtet11]]
* [[Myna11]]
== Scale tree ==
{{MOS tuning spectrum
| 6/5 = [[Oregon]]
| 10/7 = [[Orgone]]
| 11/7 = [[Magicaltet]]
| 13/8 = Golden superklesimic
| 5/3 = [[Superkleismic]]
| 7/3 = [[Catalan]]
| 13/5 = [[Countercata]]
| 8/3 = [[Hanson]]/[[cata]]
| 11/4 = [[Catakleismic]]
| 10/3 = [[Parakleismic]]
| 9/2 = [[Oolong]]
| 5/1 = [[Starlingtet]]
| 6 /1 = [[Myna]]
}}
== Gallery ==
[[File:19EDO_Kleistonic_cheat_sheet.png|825x825px|thumb|Cheat sheet for 19EDO, a hard tuning for 4L   ;7s (or kleistonic).|alt=|left]]
[[Category:11-tone scales]]
[[Category:Kleistonic]] <!-- main article -- >
4L 7s is a 2/1-equivalent (octave-equivalent ) moment of symmetry scale containing 4 large steps and 7 small steps, repeating every octave . 4L 7s is a child scale of 4L 3s , expanding it by 4 tones. Generators that produce this scale range from 872.7 ¢ to 900 ¢ , or from 300 ¢ to 327.3 ¢ .
One of the harmonic entropy minimums in this range is Kleismic/Hanson .
Name
TAMNAMS formerly used the name kleistonic for the name of this scale (prefix klei- ). Other names include p-chro smitonic or smipechromic .
Scale properties
This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees . The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 4L 7s
Intervals
Steps subtended
Range in cents
Generic
Specific
Abbrev.
0-mosstep
Perfect 0-mosstep
P0ms
0
0.0 ¢
1-mosstep
Minor 1-mosstep
m1ms
s
0.0 ¢ to 109.1 ¢
Major 1-mosstep
M1ms
L
109.1 ¢ to 300.0 ¢
2-mosstep
Minor 2-mosstep
m2ms
2s
0.0 ¢ to 218.2 ¢
Major 2-mosstep
M2ms
L + s
218.2 ¢ to 300.0 ¢
3-mosstep
Perfect 3-mosstep
P3ms
L + 2s
300.0 ¢ to 327.3 ¢
Augmented 3-mosstep
A3ms
2L + s
327.3 ¢ to 600.0 ¢
4-mosstep
Minor 4-mosstep
m4ms
L + 3s
300.0 ¢ to 436.4 ¢
Major 4-mosstep
M4ms
2L + 2s
436.4 ¢ to 600.0 ¢
5-mosstep
Minor 5-mosstep
m5ms
L + 4s
300.0 ¢ to 545.5 ¢
Major 5-mosstep
M5ms
2L + 3s
545.5 ¢ to 600.0 ¢
6-mosstep
Minor 6-mosstep
m6ms
2L + 4s
600.0 ¢ to 654.5 ¢
Major 6-mosstep
M6ms
3L + 3s
654.5 ¢ to 900.0 ¢
7-mosstep
Minor 7-mosstep
m7ms
2L + 5s
600.0 ¢ to 763.6 ¢
Major 7-mosstep
M7ms
3L + 4s
763.6 ¢ to 900.0 ¢
8-mosstep
Diminished 8-mosstep
d8ms
2L + 6s
600.0 ¢ to 872.7 ¢
Perfect 8-mosstep
P8ms
3L + 5s
872.7 ¢ to 900.0 ¢
9-mosstep
Minor 9-mosstep
m9ms
3L + 6s
900.0 ¢ to 981.8 ¢
Major 9-mosstep
M9ms
4L + 5s
981.8 ¢ to 1200.0 ¢
10-mosstep
Minor 10-mosstep
m10ms
3L + 7s
900.0 ¢ to 1090.9 ¢
Major 10-mosstep
M10ms
4L + 6s
1090.9 ¢ to 1200.0 ¢
11-mosstep
Perfect 11-mosstep
P11ms
4L + 7s
1200.0 ¢
Generator chain
Generator chain of 4L 7s
Bright gens
Scale degree
Abbrev.
14
Augmented 2-mosdegree
A2md
13
Augmented 5-mosdegree
A5md
12
Augmented 8-mosdegree
A8md
11
Augmented 0-mosdegree
A0md
10
Augmented 3-mosdegree
A3md
9
Major 6-mosdegree
M6md
8
Major 9-mosdegree
M9md
7
Major 1-mosdegree
M1md
6
Major 4-mosdegree
M4md
5
Major 7-mosdegree
M7md
4
Major 10-mosdegree
M10md
3
Major 2-mosdegree
M2md
2
Major 5-mosdegree
M5md
1
Perfect 8-mosdegree
P8md
0
Perfect 0-mosdegree Perfect 11-mosdegree
P0md P11md
−1
Perfect 3-mosdegree
P3md
−2
Minor 6-mosdegree
m6md
−3
Minor 9-mosdegree
m9md
−4
Minor 1-mosdegree
m1md
−5
Minor 4-mosdegree
m4md
−6
Minor 7-mosdegree
m7md
−7
Minor 10-mosdegree
m10md
−8
Minor 2-mosdegree
m2md
−9
Minor 5-mosdegree
m5md
−10
Diminished 8-mosdegree
d8md
−11
Diminished 11-mosdegree
d11md
−12
Diminished 3-mosdegree
d3md
−13
Diminished 6-mosdegree
d6md
−14
Diminished 9-mosdegree
d9md
Modes
Scale degrees of the modes of 4L 7s
UDP
Cyclic order
Step pattern
Scale degree (mosdegree)
0
1
2
3
4
5
6
7
8
9
10
11
10|0
1
LsLssLssLss
Perf.
Maj.
Maj.
Aug.
Maj.
Maj.
Maj.
Maj.
Perf.
Maj.
Maj.
Perf.
9|1
9
LssLsLssLss
Perf.
Maj.
Maj.
Perf.
Maj.
Maj.
Maj.
Maj.
Perf.
Maj.
Maj.
Perf.
8|2
6
LssLssLsLss
Perf.
Maj.
Maj.
Perf.
Maj.
Maj.
Min.
Maj.
Perf.
Maj.
Maj.
Perf.
7|3
3
LssLssLssLs
Perf.
Maj.
Maj.
Perf.
Maj.
Maj.
Min.
Maj.
Perf.
Min.
Maj.
Perf.
6|4
11
sLsLssLssLs
Perf.
Min.
Maj.
Perf.
Maj.
Maj.
Min.
Maj.
Perf.
Min.
Maj.
Perf.
5|5
8
sLssLsLssLs
Perf.
Min.
Maj.
Perf.
Min.
Maj.
Min.
Maj.
Perf.
Min.
Maj.
Perf.
4|6
5
sLssLssLsLs
Perf.
Min.
Maj.
Perf.
Min.
Maj.
Min.
Min.
Perf.
Min.
Maj.
Perf.
3|7
2
sLssLssLssL
Perf.
Min.
Maj.
Perf.
Min.
Maj.
Min.
Min.
Perf.
Min.
Min.
Perf.
2|8
10
ssLsLssLssL
Perf.
Min.
Min.
Perf.
Min.
Maj.
Min.
Min.
Perf.
Min.
Min.
Perf.
1|9
7
ssLssLsLssL
Perf.
Min.
Min.
Perf.
Min.
Min.
Min.
Min.
Perf.
Min.
Min.
Perf.
0|10
4
ssLssLssLsL
Perf.
Min.
Min.
Perf.
Min.
Min.
Min.
Min.
Dim.
Min.
Min.
Perf.
Tuning ranges
Soft range
The soft range for tunings of 4L 7s encompasses parasoft and hyposoft tunings. This implies step ratios smaller than 2/1, meaning a generator sharper than 4\15 = 320 ¢ .
This is the range associated with extensions of Orgone[7] . The small step is recognizable as a near diatonic semitone, while the large step is in the ambiguous area of neutral seconds.
Soft edos include 15edo and 26edo .
The sizes of the generator, large step and small step of 4L 7s are as follows in various soft tunings:
15edo (basic)
26edo (soft)
Some JI approximations
generator (g)
4\15, 320.00
7\26, 323.08
77/64, 6/5
L (octave - 3g)
2\15, 160.00
3\26, 138.46
12/11, 13/12
s (4g - octave)
1\15, 80.00
2\19, 92.31
21/20, 22/21, 20/19
Hypohard
Hypohard tunings of 4L 7s have step ratios between 2/1 and 3/1, implying a generator sharper than 5\19 = 315.79 ¢ and flatter than 4\15 = 320 ¢ .
This range represents one of the harmonic entropy minimums, where 6 generators make a just diatonic fifth (3/2 ), an octave above. This is the range associated with the eponymous Kleismic (aka Hanson ) temperament and its extensions.
Hypohard edos include 15edo , 19edo , and 34edo .
The sizes of the generator, large step and small step of 4L 7s are as follows in various hypohard tunings:
15edo (basic)
19edo (hard)
34edo (semihard)
Some JI approximations
generator (g)
4\15, 320.00
5\19, 315.79
9\34, 317.65
6/5
L (octave − 3g )
2\15, 160.00
3\19, 189.47
5\34, 176.47
10/9, 11/10 (in 15edo)
s (4g − octave )
1\15, 80.00
1\19, 63.16
2\34, 70.59
25/24, 26/25 (in better kleismic tunings)
Parahard
Parahard tunings of 4L 7s have step ratios between 3/1 and 4/1, implying a generator sharper than 6\23 = 313.04¢ and flatter than 5\19 = 315.79¢.
The minor third is at its purest here, but the resulting scales tend to approximate intervals that employ a much higher limit harmony, especially in the case of the superhard 23edo. However, the large step is recognizable as a regular diatonic whole step, approximating both 10/9 and 9/8, while the small step is a slightly sharp of a quarter tone.
Parahard edos include 19edo , 23edo , and 42edo .
The sizes of the generator, large step and small step of 4L 7s are as follows in various parahard tunings:
19edo (hard)
23edo (superhard)
42edo (parahard)
Some JI approximations
generator (g)
5\19, 315.79
6\23, 313.04
11\42, 314.29
6/5
L (octave − 3g )
3\19, 189.47
4\23, 208.70
7\42, 200.00
10/9, 9/8
s (4g − octave )
1\19, 63.16
1\23, 52.17
2\42, 57.14
28/27, 33/32
Hyperhard
Hyperhard tunings of 4L 7s have step ratios between 4/1 and 6/1, implying a generator sharper than 8\31 = 309.68¢ and flatter than 6\23 = 313.04¢.
The temperament known as Myna (a pun on "minor third") resides here, as this is the range where 10 generators make a just diatonic fifth (3/2), two octaves above.
These scales are stacked with simple intervals, but are melodically difficult due to the extreme step size disparity, where the small step is generally flat of a quarter tone.
Hyperhard edos include 23edo , 31edo , and 27edo .
The sizes of the generator, large step and small step of 4L 7s are as follows in various hyperhard tunings:
23edo (superhard)
31edo (extrahard)
27edo (pentahard)
Some JI approximations
generator (g)
6\23, 313.04
8\31, 309.68
7\27, 311.11
6/5
L (octave − 3g )
4\23, 208.70
6\31, 232.26
5\27, 222.22
8/7, 9/8
s (4g − octave )
1\23, 52.17
1\31, 38.71
1\27, 44.44
36/35, 45/44
Temperaments
Scales
Scale tree
Scale tree and tuning spectrum of 4L 7s
Generator(edo)
Cents
Step ratio
Comments
Bright
Dark
L:s
Hardness
8\11
872.727
327.273
1:1
1.000
Equalized 4L 7s
43\59
874.576
325.424
6:5
1.200
Oregon
35\48
875.000
325.000
5:4
1.250
62\85
875.294
324.706
9:7
1.286
27\37
875.676
324.324
4:3
1.333
Supersoft 4L 7s
73\100
876.000
324.000
11:8
1.375
46\63
876.190
323.810
7:5
1.400
65\89
876.404
323.596
10:7
1.429
Orgone
19\26
876.923
323.077
3:2
1.500
Soft 4L 7s
68\93
877.419
322.581
11:7
1.571
Magicaltet
49\67
877.612
322.388
8:5
1.600
79\108
877.778
322.222
13:8
1.625
Golden superklesimic
30\41
878.049
321.951
5:3
1.667
Semisoft 4L 7s Superkleismic
71\97
878.351
321.649
12:7
1.714
41\56
878.571
321.429
7:4
1.750
52\71
878.873
321.127
9:5
1.800
11\15
880.000
320.000
2:1
2.000
Basic 4L 7s Scales with tunings softer than this are proper
47\64
881.250
318.750
9:4
2.250
36\49
881.633
318.367
7:3
2.333
Catalan
61\83
881.928
318.072
12:5
2.400
25\34
882.353
317.647
5:2
2.500
Semihard 4L 7s
64\87
882.759
317.241
13:5
2.600
Countercata
39\53
883.019
316.981
8:3
2.667
Hanson /cata
53\72
883.333
316.667
11:4
2.750
Catakleismic
14\19
884.211
315.789
3:1
3.000
Hard 4L 7s
45\61
885.246
314.754
10:3
3.333
Parakleismic
31\42
885.714
314.286
7:2
3.500
48\65
886.154
313.846
11:3
3.667
17\23
886.957
313.043
4:1
4.000
Superhard 4L 7s
37\50
888.000
312.000
9:2
4.500
Oolong
20\27
888.889
311.111
5:1
5.000
Starlingtet
23\31
890.323
309.677
6:1
6.000
Myna
3\4
900.000
300.000
1:0
→ ∞
Collapsed 4L 7s
Gallery
Cheat sheet for 19EDO, a hard tuning for 4L 7s (or kleistonic).