Sensamagic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
Tags: Mobile edit Mobile web edit
 
(103 intermediate revisions by 15 users not shown)
Line 1: Line 1:
The ''sensamagic clan'' tempers out the [[sensamagic_comma|sensamagic comma]], [[245/243]], a [[comma|triprime comma]] with no factors of 2. |0 -5 1 2> to be exact. There are a number of [[Regular Temperaments|linear temperament]]s in the [[Regular Temperaments|clan]] (magic, father, sensi, godzilla, superpyth, octacot, rodan, hedgehog, clyde, shrutar, sidi) but they've mostly been discussed elsewhere. Tempering out 245/243 alone leads to a [[Planar temperament|rank three temperament]] for which [[283edo]] is the [[Optimal_patent_val|optimal patent val]].
{{Technical data page}}
The '''sensamagic clan''' tempers out the sensamagic comma, [[245/243]], a triprime [[comma]] with no factors of 2, {{val| 0 -5 1 2 }} to be exact. Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], [[sensamagic]], for which [[283edo]] is the [[optimal patent val]].


=Bohpier=
== BPS ==
Comma: 1220703125/1162261467
{{Main| BPS }}


POTE generator: ~27/25 = 146.476
BPS, for ''Bohlen–Pierce–Stearns'', is the 3.5.7-subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]].


Map: [<1 0 0|, <0 13 19|]
[[Subgroup]]: 3.5.7


EDOs: 8, 41, 131, 172, 213c
[[Comma list]]: 245/243


Badness: 0.8605
{{Mapping|legend=2| 1 1 2 | 0 -2 1 }}


==7-limit==
: sval mapping generators: ~3, ~9/7
[[Comma]]s: 245/243, 3125/3087


[[POTE_tuning|POTE generator]]: ~27/25 = 146.474
[[Optimal tuning]] ([[POTE]]): ~3 = 1901.9550, ~9/7 = 440.4881


Map: [<1 0 0 0|, <0 13 19 23|]
[[Optimal ET sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]]


[[Wedgie]]: <<13 19 23 0 0 0||
=== Overview to extensions ===
The full 7-limit extensions' relation to BPS is clearer if the mapping is normalized in terms of 3.5.7.2. In fact, the strong extensions are sensi, cohemiripple, hedgehog, and fourfives.


EDOs: [[41edo|41]], [[49edo|49]], [[90edo|90]], [[131edo|131]]
These temperaments are distributed into different family pages.
* [[Sensi]] (+126/125) → [[Sensipent family #Sensi|Sensipent family]]
* ''[[Hedgehog]]'' (+50/49) → [[Porcupine family #Hedgehog|Porcupine family]]
* ''[[Cohemiripple]]'' (+1323/1250) → [[Ripple family #Cohemiripple|Ripple family]]
* ''[[Fourfives]]'' (+235298/234375) → [[Fifive family #Fourfives|Fifive family]]


EDTs: [[13edt|13]]
The others are weak extensions. Father tempers out [[16/15]], splitting the generator in two. Godzilla tempers out [[49/48]] with a hemitwelfth period. Sidi tempers out [[25/24]], splitting the generator in two with a hemitwelfth period. Clyde tempers out [[3136/3125]] with a 1/6-twelfth period. Superpyth tempers out [[64/63]], splitting the generator in six. Magic tempers out [[225/224]] with a 1/5-twelfth period. Octacot tempers out [[2401/2400]], splitting the generator in five. Hemiaug tempers out [[128/125]]. Pentacloud tempers out [[16807/16384]]. These split the generator in seven. Bamity tempers out [[64827/64000]], splitting the generator in nine. Rodan tempers out [[1029/1024]], splitting the generator in ten. Shrutar tempers out [[2048/2025]], splitting the generator in eleven. Finally, escaped tempers out [[65625/65536]], splitting the generator in sixteen.


[[Badness]]: 0.0682
Discussed elsewhere are
* [[Father]] (+16/15 or 28/27) → [[Father family #Father|Father family]]
* [[Godzilla]] (+49/48 or 81/80) → [[Semaphoresmic clan #Godzilla|Semaphoresmic clan]]
* ''[[Sidi]]'' (+25/24) → [[Dicot family #Sidi|Dicot family]]
* ''[[Clyde]]'' (+3136/3125) → [[Kleismic family #Clyde|Kleismic family]]
* [[Superpyth]] (+64/63) → [[Archytas clan #Superpyth|Archytas clan]]
* [[Magic]] (+225/224) → [[Magic family #Septimal magic|Magic family]]
* ''[[Octacot]]'' (+2401/2400) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Hemiaug]]'' (+128/125) → [[Augmented family #Hemiaug|Augmented family]]
* ''[[Pentacloud]]'' (+16807/16384) → [[Quintile family #Pentacloud|Quintile family]]
* ''[[Bamity]]'' (+64827/64000) → [[Amity family #Bamity|Amity family]]
* [[Rodan]] (+1029/1024) → [[Gamelismic clan #Rodan|Gamelismic clan]]
* ''[[Shrutar]]'' (+2048/2025) → [[Diaschismic family #Shrutar|Diaschismic family]]
* ''[[Escaped]]'' (+65625/65536) → [[Escapade family #Escaped|Escapade family]]


==11-limit==
For ''no-twos'' extensions, see [[No-twos subgroup temperaments #BPS]].
Commas: 100/99, 245/243, 1344/1331


POTE generator: ~12/11 = 146.545
Considered below are bohpier, salsa, pycnic, superthird, magus and leapweek.


Map: [<1 0 0 0 2|, <0 13 19 23 12|]
== Bohpier ==
{{Main| Bohpier }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Bohpier]].''


EDOs: 41, 90e, 131e
Bohpier is named after its interesting [[relationship between Bohlen–Pierce and octave-ful temperaments|relationship with the non-octave Bohlen–Pierce equal temperament]].


Badness: 0.0339
[[Subgroup]]: 2.3.5.7


==13-limit==
[[Comma list]]: 245/243, 3125/3087
Commas: 100/99, 144/143, 196/195, 275/273


POTE generator: ~12/11 = 146.603
{{Mapping|legend=1| 1 0 0 0 | 0 13 19 23 }}


Map: [<1 0 0 0 2 2|, <0 13 19 23 12 14|]
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~27/25 = 146.474


EDOs: 41, 90ef, 131ef, 221bdeff
[[Minimax tuning]]:  
* [[7-odd-limit]]: ~27/25 = {{monzo| 0 0 1/19 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
* [[9-odd-limit]]: ~27/25 = {{monzo| 0 1/13 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3


Badness: 0.0249
{{Optimal ET sequence|legend=1| 41, 131, 172, 213c }}


==Music==
[[Badness]]: 0.068237
By [[Chris_Vaisvil|Chris Vaisvil]]


[http://micro.soonlabel.com/bophier/bophier-1.mp3 http://micro.soonlabel.com/bophier/bophier-1.mp3]
=== 11-limit ===
Subgroup: 2.3.5.7.11


[http://micro.soonlabel.com/bophier/bophier-12equal-six-octaves.mp3 http://micro.soonlabel.com/bophier/bophier-12equal-six-octaves.mp3]
Comma list: 100/99, 245/243, 1344/1331


=Sensa=
Mapping: {{mapping| 1 0 0 0 2 | 0 13 19 23 12 }}
Commas: 245/243, 65625/65536


POTE generator: ~28/27 = 55.122
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.545


Map: [<1 2 2 4|, <0 -9 7 -26|]
Minimax tuning:  
* 11-odd-limit: ~12/11 = {{monzo| 1/7 1/7 0 0 -1/14 }}
: unchanged-interval (eigenmonzo) basis: 2.11/9


Wedgie: <<9 -7 26 -32 16 80||
{{Optimal ET sequence|legend=0| 41, 90e, 131e }}


EDOs: [[22edo|22]], [[43edo|43d]], [[65edo|65]], [[87edo|87]], [[109edo|109]], [[196edo|196]], [[283edo|283]]
Badness: 0.033949


Badness: 0.0887
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


==11-limit==
Comma list: 100/99, 144/143, 196/195, 275/273
Commas: 245/243, 385/384, 4000/3993


POTE generator: ~28/27 = 55.126
Mapping: {{mapping| 1 0 0 0 2 2 | 0 13 19 23 12 14 }}


Map: [<1 2 2 4 3|, <0 -9 7 -26 10|]
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.603


EDOs: 22, 43d, 65, 87, 109, 196, 283
Minimax tuning:  
* 13- and 15-odd-limit: ~12/11 = {{monzo| 0 0 1/19 }}
: Unchanged-interval (eigenmonzo) basis: 2.5


Badness: 0.0358
{{Optimal ET sequence|legend=0| 41, 90ef, 131ef, 221bdeff }}


==13-limit==
Badness: 0.024864
Commas: 245/243, 352/351, 385/384, 625/624


POTE generator: ~28/27 = 55.138
=== Triboh ===
Triboh is named after the "[[39edt|Triple Bohlen–Pierce scale]]", which divides each step of the [[13edt|equal-tempered]] [[Bohlen–Pierce]] scale into three equal parts.  


Map: [<1 2 2 4 3 2|, <0 -9 7 -26 10 37|]
Subgroup: 2.3.5.7.11


EDOs: 22, 65, 87, 109, 196, 283
Comma list: 245/243, 1331/1323, 3125/3087


Badness: 0.0317
Mapping: {{mapping| 1 0 0 0 0 | 0 39 57 69 85 }}


=Salsa=
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.828
Commas: 245/243, 32805/32768


POTE generator: ~128/105 = 351.049
{{Optimal ET sequence|legend=0| 49, 123ce, 172 }}


Map: [<1 1 7 -1|, <0 2 -16 13|]
Badness: 0.162592


Wedgie: <<2 -16 13 -30 15 75||
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


EDOs: 17, 24, 41, 106d, 147d, 188cd, 335cd
Comma list: 245/243, 275/273, 847/845, 1331/1323


Badness: 0.08015
Mapping: {{mapping| 1 0 0 0 0 0 | 0 39 57 69 85 91 }}


==11-limit==
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.822
Commas: 243/242, 245/242, 385/384


POTE generator: ~11/9 = 351.014
{{Optimal ET sequence|legend=0| 49f, 123ce, 172f, 295ce, 467bccef }}


Map: [<1 1 7 -1 2|, <0 2 -16 13 5|]
Badness: 0.082158


EDOs: 17, 24, 41, 106d, 147d
== Salsa ==
{{See also| Schismatic family }}


Badness: 0.0394
[[Subgroup]]: 2.3.5.7


==13-limit==
[[Comma list]]: 245/243, 32805/32768
Commas: 105/104, 144/143, 243/242, 245/242


POTE generator: ~11/9 = 351.025
{{Mapping|legend=1| 1 1 7 -1 | 0 2 -16 13 }}


Map: [<1 1 7 -1 2 4|, <0 2 -16 13 5 -1|]
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~128/105 = 351.049


EDOs: 17, 24, 41, 106df, 147df
{{Optimal ET sequence|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }}


Badness: 0.0310
[[Badness]]: 0.080152


=Pycnic=
=== 11-limit ===
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has MOS of size 9, 11, 13, 15, 17... which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
Subgroup: 2.3.5.7.11


Commas: 245/243, 525/512
Comma list: 243/242, 245/242, 385/384


POTE generator: ~45/32 = 567.720
Mapping: {{mapping| 1 1 7 -1 2 | 0 2 -16 13 5 }}


Map: [<1 3 -1 8|, <0 -3 7 -11|]
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.014


Wedgie: <<3 -7 11 -18 9 45||
{{Optimal ET sequence|legend=0| 17, 24, 41, 106d, 147d }}


EDOs: 17, 19, 36c, 55c, 74cd, 93cdd
Badness: 0.039444


Badness: 0.0737
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


=Cohemiripple=
Comma list: 105/104, 144/143, 243/242, 245/242
Commas: 245/243, 1323/1250


POTE generator: ~7/5 = 549.944
Mapping: {{mapping| 1 1 7 -1 2 4 | 0 2 -16 13 5 -1 }}


Map: [<1 7 11 12|, <0 -10 -16 -17|]
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.025


Wedgie: <<10 16 17 2 -1 -5||
{{Optimal ET sequence|legend=0| 17, 24, 41, 106df, 147df }}


EDOs: 11cd, 13cd, 24
Badness: 0.030793


Badness: 0.1902
== Pycnic ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Stump]].''


==11-limit==
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has [[mos]] of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
Commas: 77/75, 243/242, 245/242


POTE generator: ~7/5 = 549.945
[[Subgroup]]: 2.3.5.7


Map: [<1 7 11 12 17|, <0 -10 -16 -17 -25|]
[[Comma list]]: 245/243, 525/512


EDOs: 11cdee, 13cdee, 24
{{Mapping|legend=1| 1 3 -1 8 | 0 -3 7 -11 }}


Badness: 0.0827
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~45/32 = 567.720


==13-limit==
{{Optimal ET sequence|legend=1| 17, 19, 55c, 74cd, 93cdd }}
Commas: 66/65, 77/75, 147/143, 243/242


POTE generator: ~7/5 = 549.958
[[Badness]]: 0.073735


Map: [<1 7 11 12 17 14|, <0 -10 -16 -17 -25 -19|]
== Superthird ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Shibboleth]].''


EDOs: 11cdeef, 13cdeef, 24
[[Subgroup]]: 2.3.5.7


Badness: 0.0499
[[Comma list]]: 245/243, 78125/76832


=Superthird=
{{Mapping|legend=1| 1 -5 -5 -10 | 0 18 20 35 }}
Commas: 245/243, 78125/76832


POTE generator: ~9/7 = 439.076
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~9/7 = 439.076


Map: [<1 13 15 25|, <0 -18 -20 -35|]
{{Optimal ET sequence|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }}


Wedgie: <<18 20 35 -10 5 25||
[[Badness]]: 0.139379


EDOs: 41, 317bc, 358bc, 399bc
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.1394
Comma list: 100/99, 245/243, 78125/76832


==11-limit==
Mapping: {{mapping| 1 -5 -5 -10 2 | 0 18 20 35 4 }}
Commas: 100/99, 245/243, 78125/76832


POTE generator: ~9/7 = 439.152
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.152


Map: [<1 13 15 25 6|, <0 -18 -20 -35 -4|]
{{Optimal ET sequence|legend=0| 11cd, 30d, 41, 153be, 194be, 235bcee }}


EDOs: 41, 153be, 194be, 235bce
Badness: 0.070917


Badness: 0.0709
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


==13-limit==
Comma list: 100/99, 144/143, 196/195, 1375/1352
Commas: 100/99, 144/143, 196/195, 1375/1352


POTE generator: ~9/7 = 439.119
Mapping: {{mapping| 1 -5 -5 -10 2 -8 | 0 18 20 35 4 32 }}


Map: [<1 13 15 25 6 24|, <0 -18 -20 -35 -4 -32|]
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.119


EDOs: 41
{{Optimal ET sequence|legend=0| 11cdf, 30df, 41 }}


Badness: 0.0528
Badness: 0.052835


=Magus=
== Superenneadecal ==
Commas: 50331648/48828125
Superenneadecal is a cousin of [[enneadecal]] but sharper fifth is used to temper 245/243.


POTE generator: ~5/4 = 391.225
[[Subgroup]]: 2.3.5.7


Map: [<1 9 3|, <0 -11 -1|]
[[Comma list]]: 245/243, 395136/390625


EDOs: 40, 43, 46, 181c, 227c, 273c, 319c
{{Mapping|legend=1| 19 0 14 -7 | 0 1 1 2 }}


Badness: 0.3602
[[Optimal tuning]] ([[POTE]]): ~392/375 = 63.158, ~3/2 = 704.166


==7-limit==
{{Optimal ET sequence|legend=1| 19, 76bcd, 95, 114, 133, 247b, 380bcd }}
Commas: 245/243, 28672/28125


POTE generator: ~5/4 = 391.465
[[Badness]]: 0.132311


Map: [<1 9 3 21|, <0 -11 -1 -27|]
=== 11-limit ===
Subgroup: 2.3.5.7.11


Wedgie: <<11 1 27 -24 12 60||
Comma list: 245/243, 2560/2541, 3773/3750


EDOs: 46, 95, 141bc, 187bc, 328bc
Mapping: {{mapping| 19 0 14 -7 96 | 0 1 1 2 -1 }}


Badness: 0.1084
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.667


==11-limit==
{{Optimal ET sequence|legend=0| 19, 76bcd, 95, 114e }}
Commas: 176/175, 245/243, 1331/1323


POTE generator: ~5/4 = 391.503
Badness: 0.101496


Map: [<1 9 3 21 23|, <0 -11 -1 -27 -29|]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


EDOs: 46, 95, 141bc
Comma list: 196/195, 245/243, 832/825, 1001/1000


Badness: 0.0451
Mapping: {{mapping| 19 0 14 -7 96 10 | 0 1 1 2 -1 2 }}


==13-limit==
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.801
Commas: 91/90, 176/175, 245/243, 1331/1323


POTE generator: ~5/4 = 391.366
{{Optimal ET sequence|legend=0| 19, 76bcdf, 95, 114e }}


Map: [<1 9 3 21 23 1|, <0 -11 -1 -27 -29 4|]
Badness: 0.053197


EDOs: 46, 233bcf, 279bcf
== Magus ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Magus]].''


Badness: 0.0430
Magus temperament tempers out [[50331648/48828125]] (salegu) in the 5-limit. This temperament can be described as {{nowrap| 46 & 49 }} temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[starling temperaments #Amigo|amigo]] ({{nowrap|43 & 46}}) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out.


=Leapweek=
Magus has a generator of a sharp ~5/4 (so that ~[[25/16]] is twice as sharp so that it makes sense to equate with [[11/7]] by tempering [[176/175]]), so that three reaches [[128/125]] short of the octave (where 128/125 is tuned narrow); this is significant because magus reaches [[3/2]] as ([[25/16]])/([[128/125]])<sup>3</sup>, that is, {{nowrap|2 + 3 × 3 {{=}} 11}} generators. Therefore, it implies that [[25/24]] is split into three [[128/125]]'s. Therefore, in the 5-limit, magus can be thought of as a higher-complexity and sharper analogue of [[würschmidt]] (which reaches [[3/2]] as (25/16)/(128/125)<sup>2</sup> implying 25/24 is split into two 128/125's thus having a guaranteed neutral third), which itself is a higher-complexity and sharper analogue of [[magic]] (which equates 25/24 with 128/125 by flattening 5). For more details on these connections see [[Würschmidt comma]].
Commas: 245/243, 2097152/2066715


POTE generator: ~3/2 = 704.536
[[Subgroup]]: 2.3.5.7


Map: [&lt;1 1 17 -6|, &lt;0 1 -25 15|]
[[Comma list]]: 245/243, 28672/28125


EDOs: 17, 46, 109, 155, 264b, 419b
{{Mapping|legend=1| 1 -2 2 -6 | 0 11 1 27 }}


Badness: 0.14058
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~5/4 = 391.465


==11-limit==
{{Optimal ET sequence|legend=1| 46, 95, 141bc, 187bc, 328bbcc }}
Commas: 245/243, 385/384, 1331/1323


POTE generator: ~3/2 = 704.554
[[Badness]]: 0.108417


Map: [&lt;1 1 17 -6 -3|, &lt;0 1 -25 15 11|]
=== 11-limit ===
Subgroup: 2.3.5.7.11


EDOs: 17, 46, 109, 264b, 373b, 637be
Comma list: 176/175, 245/243, 1331/1323


Badness: 0.0507
Mapping: {{mapping| 1 -2 2 -6 -6 | 0 11 1 27 29 }}


==13-limit==
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.503
Commas: 169/168, 245/243, 352/351, 364/363


POTE generator: ~3/2 = 704.571
{{Optimal ET sequence|legend=0| 46, 95, 141bc }}


Map: [&lt;1 1 17 -6 -3 -1|, &lt;0 1 -25 15 11 8|]
Badness: 0.045108


EDOs: 17, 46, 63, 109, 218f, 373bf
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Badness: 0.0327
Comma list: 91/90, 176/175, 245/243, 1331/1323
[[Category:clan]]
 
[[Category:family]]
Mapping: {{mapping| 1 -2 2 -6 -6 5 | 0 11 1 27 29 -4 }}
[[Category:overview]]
 
[[Category:sensamagic]]
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.366
[[Category:theory]]
 
{{Optimal ET sequence|legend=0| 46, 233bcff, 279bccff }}
 
Badness: 0.043024
 
== Leapweek ==
: ''Not to be confused with scales produced by leap week calendars such as [[Symmetry454]].''
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 2097152/2066715
 
{{Mapping|legend=1| 1 0 42 -21 | 0 1 -25 15 }}
 
: mapping generators: ~2, ~3
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~3/2 = 704.536
 
{{Optimal ET sequence|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }}
 
[[Badness]]: 0.140577
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 245/243, 385/384, 1331/1323
 
Mapping: {{mapping| 1 0 42 -21 -14 | 0 1 -25 15 11 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.554
 
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109, 264b, 373b, 637bbe }}
 
Badness: 0.050679
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 169/168, 245/243, 352/351, 364/363
 
Mapping: {{mapping| 1 0 42 -21 -14 -9 | 0 1 -25 15 11 8 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.571
 
{{Optimal ET sequence|legend=0| 17, 29c, 46, 63, 109 }}
 
Badness: 0.032727
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 154/153, 169/168, 245/243, 256/255, 273/272
 
Mapping: {{mapping| 1 0 42 -21 -14 -9 -34 | 0 1 -25 15 11 8 24 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.540
 
{{Optimal ET sequence|legend=0| 17g, 29cg, 46, 109, 155f, 264bfg }}
 
Badness: 0.026243
 
==== Leapweeker ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 136/135, 169/168, 221/220, 245/243, 364/363
 
Mapping: {{mapping| 1 0 42 -21 -14 -9 39 | 0 1 -25 15 11 8 -22 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.537
 
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109g, 155fg, 264bfgg }}
 
Badness: 0.026774
 
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Sensamagic clan| ]] <!-- main article -->
[[Category:Rank 2]]
[[Category:Listen]]

Latest revision as of 00:33, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The sensamagic clan tempers out the sensamagic comma, 245/243, a triprime comma with no factors of 2, 0 -5 1 2] to be exact. Tempering out 245/243 alone in the full 7-limit leads to a rank-3 temperament, sensamagic, for which 283edo is the optimal patent val.

BPS

BPS, for Bohlen–Pierce–Stearns, is the 3.5.7-subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the lambda temperament, which was named after the lambda scale.

Subgroup: 3.5.7

Comma list: 245/243

Sval mapping[1 1 2], 0 -2 1]]

sval mapping generators: ~3, ~9/7

Optimal tuning (POTE): ~3 = 1901.9550, ~9/7 = 440.4881

Optimal ET sequence: b4, b9, b13, b56, b69, b82, b95

Overview to extensions

The full 7-limit extensions' relation to BPS is clearer if the mapping is normalized in terms of 3.5.7.2. In fact, the strong extensions are sensi, cohemiripple, hedgehog, and fourfives.

These temperaments are distributed into different family pages.

The others are weak extensions. Father tempers out 16/15, splitting the generator in two. Godzilla tempers out 49/48 with a hemitwelfth period. Sidi tempers out 25/24, splitting the generator in two with a hemitwelfth period. Clyde tempers out 3136/3125 with a 1/6-twelfth period. Superpyth tempers out 64/63, splitting the generator in six. Magic tempers out 225/224 with a 1/5-twelfth period. Octacot tempers out 2401/2400, splitting the generator in five. Hemiaug tempers out 128/125. Pentacloud tempers out 16807/16384. These split the generator in seven. Bamity tempers out 64827/64000, splitting the generator in nine. Rodan tempers out 1029/1024, splitting the generator in ten. Shrutar tempers out 2048/2025, splitting the generator in eleven. Finally, escaped tempers out 65625/65536, splitting the generator in sixteen.

Discussed elsewhere are

For no-twos extensions, see No-twos subgroup temperaments #BPS.

Considered below are bohpier, salsa, pycnic, superthird, magus and leapweek.

Bohpier

For the 5-limit version, see Miscellaneous 5-limit temperaments #Bohpier.

Bohpier is named after its interesting relationship with the non-octave Bohlen–Pierce equal temperament.

Subgroup: 2.3.5.7

Comma list: 245/243, 3125/3087

Mapping[1 0 0 0], 0 13 19 23]]

Optimal tuning (POTE): ~2 = 1200.000, ~27/25 = 146.474

Minimax tuning:

unchanged-interval (eigenmonzo) basis: 2.5
unchanged-interval (eigenmonzo) basis: 2.3

Optimal ET sequence41, 131, 172, 213c

Badness: 0.068237

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 245/243, 1344/1331

Mapping: [1 0 0 0 2], 0 13 19 23 12]]

Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.545

Minimax tuning:

  • 11-odd-limit: ~12/11 = [1/7 1/7 0 0 -1/14
unchanged-interval (eigenmonzo) basis: 2.11/9

Optimal ET sequence: 41, 90e, 131e

Badness: 0.033949

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 144/143, 196/195, 275/273

Mapping: [1 0 0 0 2 2], 0 13 19 23 12 14]]

Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.603

Minimax tuning:

  • 13- and 15-odd-limit: ~12/11 = [0 0 1/19
Unchanged-interval (eigenmonzo) basis: 2.5

Optimal ET sequence: 41, 90ef, 131ef, 221bdeff

Badness: 0.024864

Triboh

Triboh is named after the "Triple Bohlen–Pierce scale", which divides each step of the equal-tempered Bohlen–Pierce scale into three equal parts.

Subgroup: 2.3.5.7.11

Comma list: 245/243, 1331/1323, 3125/3087

Mapping: [1 0 0 0 0], 0 39 57 69 85]]

Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.828

Optimal ET sequence: 49, 123ce, 172

Badness: 0.162592

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 245/243, 275/273, 847/845, 1331/1323

Mapping: [1 0 0 0 0 0], 0 39 57 69 85 91]]

Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.822

Optimal ET sequence: 49f, 123ce, 172f, 295ce, 467bccef

Badness: 0.082158

Salsa

Subgroup: 2.3.5.7

Comma list: 245/243, 32805/32768

Mapping[1 1 7 -1], 0 2 -16 13]]

Optimal tuning (POTE): ~2 = 1200.000, ~128/105 = 351.049

Optimal ET sequence17, 24, 41, 106d, 147d, 188cd, 335cd

Badness: 0.080152

11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 245/242, 385/384

Mapping: [1 1 7 -1 2], 0 2 -16 13 5]]

Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.014

Optimal ET sequence: 17, 24, 41, 106d, 147d

Badness: 0.039444

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 144/143, 243/242, 245/242

Mapping: [1 1 7 -1 2 4], 0 2 -16 13 5 -1]]

Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.025

Optimal ET sequence: 17, 24, 41, 106df, 147df

Badness: 0.030793

Pycnic

For the 5-limit version, see Miscellaneous 5-limit temperaments #Stump.

The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has mos of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.

Subgroup: 2.3.5.7

Comma list: 245/243, 525/512

Mapping[1 3 -1 8], 0 -3 7 -11]]

Optimal tuning (POTE): ~2 = 1200.000, ~45/32 = 567.720

Optimal ET sequence17, 19, 55c, 74cd, 93cdd

Badness: 0.073735

Superthird

For the 5-limit version, see Miscellaneous 5-limit temperaments #Shibboleth.

Subgroup: 2.3.5.7

Comma list: 245/243, 78125/76832

Mapping[1 -5 -5 -10], 0 18 20 35]]

Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.076

Optimal ET sequence11cd, 30d, 41, 317bcc, 358bcc, 399bcc

Badness: 0.139379

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 245/243, 78125/76832

Mapping: [1 -5 -5 -10 2], 0 18 20 35 4]]

Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.152

Optimal ET sequence: 11cd, 30d, 41, 153be, 194be, 235bcee

Badness: 0.070917

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 144/143, 196/195, 1375/1352

Mapping: [1 -5 -5 -10 2 -8], 0 18 20 35 4 32]]

Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.119

Optimal ET sequence: 11cdf, 30df, 41

Badness: 0.052835

Superenneadecal

Superenneadecal is a cousin of enneadecal but sharper fifth is used to temper 245/243.

Subgroup: 2.3.5.7

Comma list: 245/243, 395136/390625

Mapping[19 0 14 -7], 0 1 1 2]]

Optimal tuning (POTE): ~392/375 = 63.158, ~3/2 = 704.166

Optimal ET sequence19, 76bcd, 95, 114, 133, 247b, 380bcd

Badness: 0.132311

11-limit

Subgroup: 2.3.5.7.11

Comma list: 245/243, 2560/2541, 3773/3750

Mapping: [19 0 14 -7 96], 0 1 1 2 -1]]

Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.667

Optimal ET sequence: 19, 76bcd, 95, 114e

Badness: 0.101496

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 245/243, 832/825, 1001/1000

Mapping: [19 0 14 -7 96 10], 0 1 1 2 -1 2]]

Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.801

Optimal ET sequence: 19, 76bcdf, 95, 114e

Badness: 0.053197

Magus

For the 5-limit version, see Miscellaneous 5-limit temperaments #Magus.

Magus temperament tempers out 50331648/48828125 (salegu) in the 5-limit. This temperament can be described as 46 & 49 temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension amigo (43 & 46) tempers out the same 5-limit comma as the magus, but with the starling comma (126/125) rather than the sensamagic tempered out.

Magus has a generator of a sharp ~5/4 (so that ~25/16 is twice as sharp so that it makes sense to equate with 11/7 by tempering 176/175), so that three reaches 128/125 short of the octave (where 128/125 is tuned narrow); this is significant because magus reaches 3/2 as (25/16)/(128/125)3, that is, 2 + 3 × 3 = 11 generators. Therefore, it implies that 25/24 is split into three 128/125's. Therefore, in the 5-limit, magus can be thought of as a higher-complexity and sharper analogue of würschmidt (which reaches 3/2 as (25/16)/(128/125)2 implying 25/24 is split into two 128/125's thus having a guaranteed neutral third), which itself is a higher-complexity and sharper analogue of magic (which equates 25/24 with 128/125 by flattening 5). For more details on these connections see Würschmidt comma.

Subgroup: 2.3.5.7

Comma list: 245/243, 28672/28125

Mapping[1 -2 2 -6], 0 11 1 27]]

Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.465

Optimal ET sequence46, 95, 141bc, 187bc, 328bbcc

Badness: 0.108417

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 245/243, 1331/1323

Mapping: [1 -2 2 -6 -6], 0 11 1 27 29]]

Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.503

Optimal ET sequence: 46, 95, 141bc

Badness: 0.045108

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 176/175, 245/243, 1331/1323

Mapping: [1 -2 2 -6 -6 5], 0 11 1 27 29 -4]]

Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.366

Optimal ET sequence: 46, 233bcff, 279bccff

Badness: 0.043024

Leapweek

Not to be confused with scales produced by leap week calendars such as Symmetry454.

Subgroup: 2.3.5.7

Comma list: 245/243, 2097152/2066715

Mapping[1 0 42 -21], 0 1 -25 15]]

mapping generators: ~2, ~3

Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.536

Optimal ET sequence17, 29c, 46, 109, 155, 264b, 419b

Badness: 0.140577

11-limit

Subgroup: 2.3.5.7.11

Comma list: 245/243, 385/384, 1331/1323

Mapping: [1 0 42 -21 -14], 0 1 -25 15 11]]

Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.554

Optimal ET sequence: 17, 29c, 46, 109, 264b, 373b, 637bbe

Badness: 0.050679

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 245/243, 352/351, 364/363

Mapping: [1 0 42 -21 -14 -9], 0 1 -25 15 11 8]]

Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.571

Optimal ET sequence: 17, 29c, 46, 63, 109

Badness: 0.032727

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 154/153, 169/168, 245/243, 256/255, 273/272

Mapping: [1 0 42 -21 -14 -9 -34], 0 1 -25 15 11 8 24]]

Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.540

Optimal ET sequence: 17g, 29cg, 46, 109, 155f, 264bfg

Badness: 0.026243

Leapweeker

Subgroup: 2.3.5.7.11.13.17

Comma list: 136/135, 169/168, 221/220, 245/243, 364/363

Mapping: [1 0 42 -21 -14 -9 39], 0 1 -25 15 11 8 -22]]

Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.537

Optimal ET sequence: 17, 29c, 46, 109g, 155fg, 264bfgg

Badness: 0.026774