Dicot family
The dicot family of temperaments tempers out 25/24, the classical chromatic semitone. The head of this family, dicot, is generated by a classical third (major and minor mean the same thing), and two such thirds give a fifth. In fact, (5/4)2 = (3/2)(25/24).
Possible tunings for dicot are 7edo, 10edo, 17edo, 24edo using the val ⟨24 38 55] (24c), and 31edo using the val ⟨31 49 71] (31c). In a sense, what dicot is all about is using neutral thirds and sixths and pretending that these are 5-limit, and like any temperament which seems to involve a lot of "pretending", dicot is close to the edge of what can be sensibly called a temperament at all. In other words, it is an exotemperament.
Dicot
Subgroup: 2.3.5
Comma list: 25/24
Mapping: [⟨1 1 2], ⟨0 2 1]]
- mapping generators: ~2, ~5/4
- CTE: ~2 = 1200.000, ~5/4 = 354.664
- error map: ⟨0.000 +7.374 -31.649]
- POTE: ~2 = 1200.000, ~6/5 = 348.594
- error map: ⟨0.000 -4.766 -37.719]
- 5-odd-limit diamond monotone: ~5/4 = [300.000, 400.000] (1\4 to 1\3)
- 5-odd-limit diamond tradeoff: ~5/4 = [315.641, 386.314] (full comma to untempered)
Optimal ET sequence: 3, 4, 7, 17, 24c, 31c
Badness (Smith): 0.013028
Overview to extensions
The second comma of the normal comma list defines which 7-limit family member we are looking at. Septimal dicot adds 36/35, sharpie adds 28/27, and dichotic adds 64/63, all retaining the same period and generator.
Decimal adds 49/48, sidi adds 245/243, and jamesbond adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
Temperaments discussed elsewhere are:
The rest are considered below.
2.3.5.11 subgroup
The 2.3.5.11-subgroup extension is related to septimal dicot, sharpie, and dichotic.
Subgroup: 2.3.5.11
Comma list: 25/24, 45/44
Sval mapping: [⟨1 1 2 2], ⟨0 2 1 5]]
Gencom mapping: [⟨1 1 2 0 2], ⟨0 2 1 0 5]]
- gencom: [2 5/4; 25/24 45/44]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 352.287
- POTE: ~2 = 1200.000, ~6/5 = 346.734
Optimal ET sequence: 3e, 4e, 7, 24c, 31c, 38cc, 45cce
RMS error: 5.621 cents
2.3.5.11.13 subgroup
Subgroup: 2.3.5.11.13
Comma list: 25/24, 40/39, 45/44
Sval mapping: [⟨1 1 2 2 4], ⟨0 2 1 5 -1]]
Gencom mapping: [⟨1 1 2 0 2 4], ⟨0 2 1 0 5 -1]]
- gencom: [2 5/4; 25/24 40/39 45/44]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 352.420
- POTE: ~2 = 1200.000, ~6/5 = 350.526
Optimal ET sequence: 3e, 7, 17, 24c
RMS error: 5.916 cents
Septimal dicot
Septimal dicot is the extension where 7/6 and 9/7 are also conflated into 5/4~6/5. Although 5/4~6/5 is a giant block already, 7/6 and 9/7 are often considered as thirds too. On that account one could argue for the canonicity of this extension, despite the relatively poor accuracy.
Subgroup: 2.3.5.7
Comma list: 15/14, 25/24
Mapping: [⟨1 1 2 2], ⟨0 2 1 3]]
Wedgie: ⟨⟨ 2 1 3 -3 -1 4 ]]
- CTE: ~2 = 1200.000, ~6/5 = 342.257
- error map: ⟨0.000 -17.441 -44.056 +57.946]
- POTE: ~2 = 1200.000, ~6/5 = 336.381
- error map: ⟨0.000 -29.193 -49.933 +40.316]
Optimal ET sequence: 3d, 4, 7
Badness (Smith): 0.019935
11-limit
Subgroup: 2.3.5.7.11
Comma list: 15/14, 22/21, 25/24
Mapping: [⟨1 1 2 2 2], ⟨0 2 1 3 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~6/5 = 345.596
- POTE: ~2 = 1200.000, ~6/5 = 342.125
Optimal ET sequence: 3de, 4e, 7
Badness (Smith): 0.019854
Eudicot
Subgroup: 2.3.5.7.11
Comma list: 15/14, 25/24, 33/32
Mapping: [⟨1 1 2 2 4], ⟨0 2 1 3 -2]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~6/5 = 340.417
- POTE: ~2 = 1200.000, ~6/5 = 336.051
Optimal ET sequence: 3d, 4, 7, 18bc, 25bccd
Badness (Smith): 0.027114
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 15/14, 25/24, 33/32, 40/39
Mapping: [⟨1 1 2 2 4 4], ⟨0 2 1 3 -2 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~6/5 = 340.835
- POTE: ~2 = 1200.000, ~6/5 = 338.846
Badness (Smith): 0.023828
Flattie
This temperament used to be known as flat. Unlike septimal dicot where 7/6 is added to the neutral third, here 8/7 is added instead.
Subgroup: 2.3.5.7
Comma list: 21/20, 25/24
Mapping: [⟨1 1 2 3], ⟨0 2 1 -1]]
Wedgie: ⟨⟨ 2 1 -1 -3 -7 -5 ]]
- CTE: ~2 = 1200.000, ~6/5 = 346.438
- error map: ⟨0.000 -9.080 -39.876 -115.264]
- POTE: ~2 = 1200.000, ~6/5 = 331.916
- error map: ⟨0.000 -38.123 -54.398 -100.742]
Optimal ET sequence: 3, 4, 7d, 11cd, 18bcddd
Badness (Smith): 0.025381
11-limit
Subgroup: 2.3.5.7.11
Comma list: 21/20, 25/24, 33/32
Mapping: [⟨1 1 2 3 4], ⟨0 2 1 -1 -2]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~6/5 = 343.139
- POTE: ~2 = 1200.000, ~6/5 = 337.532
Badness (Smith): 0.024988
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 14/13, 21/20, 25/24, 33/32
Mapping: [⟨1 1 2 3 4 4], ⟨0 2 1 -1 -2 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~6/5 = 343.655
- POTE: ~2 = 1200.000, ~6/5 = 341.023
Badness (Smith): 0.023420
Sharpie
This temperament used to be known as sharp. This is where you find 7/6 at the major second and 7/4 at the major sixth.
Subgroup: 2.3.5.7
Comma list: 25/24, 28/27
Mapping: [⟨1 1 2 1], ⟨0 2 1 6]]
- CTE: ~2 = 1200.000, ~5/4 = 359.564
- error map: ⟨0.000 +17.173 -26.750 -11.442]
- POTE: ~2 = 1200.000, ~5/4 = 357.938
- error map: ⟨0.000 +13.921 -28.376 -21.198]
Wedgie: ⟨⟨ 2 1 6 -3 4 11 ]]
Optimal ET sequence: 3d, 7d, 10
Badness (Smith): 0.028942
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 28/27, 35/33
Mapping: [⟨1 1 2 1 2], ⟨0 2 1 6 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 357.261
- POTE: ~2 = 1200.000, ~5/4 = 356.106
Optimal ET sequence: 3de, 7d, 10, 17d
Badness (Smith): 0.022366
Dichotic
In dichotic, 7/4 is found at a stack of two perfect fourths.
Subgroup: 2.3.5.7
Comma list: 25/24, 64/63
Mapping: [⟨1 1 2 4], ⟨0 2 1 -4]]
Wedgie: ⟨⟨ 2 1 -4 -3 -12 -12 ]]
- CTE: ~2 = 1200.000, ~5/4 = 356.333
- error map: ⟨0.000 +10.710 -29.981 +5.844]
- POTE: ~2 = 1200.000, ~5/4 = 356.264
- error map: ⟨0.000 +10.573 -30.050 +6.119]
Optimal ET sequence: 3, 7, 10, 17, 27c
Badness (Smith): 0.037565
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 64/63
Mapping: [⟨1 1 2 4 2], ⟨0 2 1 -4 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 354.183
- POTE: ~2 = 1200.000, ~5/4 = 354.262
Optimal ET sequence: 7, 10, 17
Badness (Smith): 0.030680
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 40/39, 45/44, 64/63
Mapping: [⟨1 1 2 4 2 4], ⟨0 2 1 -4 5 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 354.247
- POTE: ~2 = 1200.000, ~5/4 = 354.365
Optimal ET sequence: 7, 10, 17, 27ce, 44cce
Badness (Smith): 0.021674
Dichotomic
Subgroup: 2.3.5.7.11
Comma list: 22/21, 25/24, 33/32
Mapping: [⟨1 1 2 4 4], ⟨0 2 1 -4 -2]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 353.751
- POTE: ~2 = 1200.000, ~5/4 = 354.073
Optimal ET sequence: 3, 7, 10e
Badness (Smith): 0.031719
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 22/21, 25/24, 33/32, 40/39
Mapping: [⟨1 1 2 4 4 4], ⟨0 2 1 -4 -2 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 353.850
- POTE: ~2 = 1200.000, ~5/4 = 354.313
Optimal ET sequence: 3, 7, 10e
Badness (Smith): 0.022741
Dichosis
Subgroup: 2.3.5.7.11
Comma list: 25/24, 35/33, 64/63
Mapping: [⟨1 1 2 4 5], ⟨0 2 1 -4 -5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 361.081
- POTE: ~2 = 1200.000, ~5/4 = 360.659
Optimal ET sequence: 3, 7e, 10
Badness (Smith): 0.041361
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 35/33, 40/39, 64/63
Mapping: [⟨1 1 2 4 5 4], ⟨0 2 1 -4 -5 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 361.061
- POTE: ~2 = 1200.000, ~5/4 = 360.646
Optimal ET sequence: 3, 7e, 10
Badness (Smith): 0.027938
Decimal
Subgroup: 2.3.5.7
Comma list: 25/24, 49/48
Mapping: [⟨2 0 3 4], ⟨0 2 1 1]]
- mapping generators: ~7/5, ~7/4
Wedgie: ⟨⟨ 4 2 2 -6 -8 -1 ]]
- CTE: ~7/5 = 600.000, ~7/4 = 955.608 (~8/7 = 244.392)
- error map: ⟨0.000 +9.260 -30.706 -13.218]
- POTE: ~7/5 = 600.000, ~7/4 = 948.443 (~7/6 = 251.557)
- error map: ⟨0.000 -5.069 -37.871 -20.383]
Optimal ET sequence: 4, 10, 14c, 24c, 38ccd
Badness (Smith): 0.028334
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 49/48
Mapping: [⟨2 0 3 4 -1], ⟨0 2 1 1 5]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~7/4 = 952.812 (~8/7 = 247.188)
- POTE: ~7/5 = 600.000, ~7/4 = 946.507 (~7/6 = 253.493)
Optimal ET sequence: 4e, 10, 14c, 24c
Badness (Smith): 0.026712
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 45/44, 49/48, 91/90
Mapping: [⟨2 0 3 4 -1 1], ⟨0 2 1 1 5 4]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~7/4 = 954.469 (~8/7 = 245.531)
- POTE: ~7/5 = 600.000, ~7/4 = 947.955 (~7/6 = 252.045)
Optimal ET sequence: 4ef, 10, 14cf, 24cf
Badness (Smith): 0.021326
Decimated
Subgroup: 2.3.5.7.11
Comma list: 25/24, 33/32, 49/48
Mapping: [⟨2 0 3 4 10], ⟨0 2 1 1 -2]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~7/4 = 950.940 (~7/6 = 249.060)
- POTE: ~7/5 = 600.000, ~7/4 = 944.934 (~7/6 = 255.066)
Optimal ET sequence: 4, 10e, 14c
Badness (Smith): 0.031456
Decibel
Subgroup: 2.3.5.7.11
Comma list: 25/24, 35/33, 49/48
Mapping: [⟨2 0 3 4 7], ⟨0 2 1 1 0]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~7/4 = 955.608 (~8/7 = 244.392)
- POTE: ~7/5 = 600.000, ~7/4 = 956.507 (~8/7 = 243.493)
Badness (Smith): 0.032385
Sidi
Subgroup: 2.3.5.7
Comma list: 25/24, 245/243
Mapping: [⟨1 3 3 6], ⟨0 -4 -2 -9]]
- mapping generators: ~2, ~9/7
Wedgie: ⟨⟨ 4 2 9 -12 3 15 ]]
- CTE: ~2 = 1200.000, ~9/7 = 424.452
- error map: ⟨0.000 +0.238 -35.217 +11.108]
- POTE: ~2 = 1200.000, ~9/7 = 427.208
- error map: ⟨0.000 -10.789 -40.731 -13.702]
Optimal ET sequence: 3d, …, 11cd, 14c
Badness (Smith): 0.056586
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 99/98
Mapping: [⟨1 3 3 6 7], ⟨0 -4 -2 -9 -10]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~9/7 = 424.587
- POTE: ~2 = 1200.000, ~9/7 = 427.273
Optimal ET sequence: 3de, …, 11cdee, 14c
Badness (Smith): 0.032957