10L 1s: Difference between revisions
Jump to navigation
Jump to search
+infobox |
added name "secoric" |
||
(11 intermediate revisions by 7 users not shown) | |||
Line 5: | Line 5: | ||
| nSmallSteps = 1 | | nSmallSteps = 1 | ||
| Equalized = 1 | | Equalized = 1 | ||
| | | Collapsed = 1 | ||
| Pattern = LLLLLLLLLLs | | Pattern = LLLLLLLLLLs | ||
}} | }} | ||
{{MOS intro}} | |||
This MOS functions as the superdiatonic scale{{Clarify}} of [[Miracle]] temperament. Its generator range spans the interval range of [[secor]]s, and therefore the name '''secoric''' has been proposed for this MOS pattern independently by [[Praveen Venkataramana]] and [[User:Lériendil|Lériendil]]. | |||
== Modes == | |||
{{MOS modes}} | |||
== Intervals == | |||
{{MOS intervals}} | |||
== Scale tree == | |||
{{MOS tuning spectrum | |||
| 7/2 = [[Miracle]] | |||
| 2/1 = Simplest tuning for miracle | |||
}} | |||
[[Category:11-tone scales]] | |||
Latest revision as of 11:12, 10 March 2025
← 9L 1s | 10L 1s | 11L 1s → |
↙ 9L 2s | ↓ 10L 2s | 11L 2s ↘ |
┌╥╥╥╥╥╥╥╥╥╥┬┐ │║║║║║║║║║║││ │││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLLLLLLLLLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
10L 1s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 10 large steps and 1 small step, repeating every octave. 10L 1s is a child scale of 1L 9s, expanding it by 1 tones. Generators that produce this scale range from 109.1 ¢ to 120 ¢, or from 1080 ¢ to 1090.9 ¢. Scales of this form are always proper because there is only one small step. This MOS functions as the superdiatonic scale[clarification needed] of Miracle temperament. Its generator range spans the interval range of secors, and therefore the name secoric has been proposed for this MOS pattern independently by Praveen Venkataramana and Lériendil.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
10|0 | 1 | LLLLLLLLLLs |
9|1 | 2 | LLLLLLLLLsL |
8|2 | 3 | LLLLLLLLsLL |
7|3 | 4 | LLLLLLLsLLL |
6|4 | 5 | LLLLLLsLLLL |
5|5 | 6 | LLLLLsLLLLL |
4|6 | 7 | LLLLsLLLLLL |
3|7 | 8 | LLLsLLLLLLL |
2|8 | 9 | LLsLLLLLLLL |
1|9 | 10 | LsLLLLLLLLL |
0|10 | 11 | sLLLLLLLLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Diminished 1-mosstep | d1ms | s | 0.0 ¢ to 109.1 ¢ |
Perfect 1-mosstep | P1ms | L | 109.1 ¢ to 120.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 120.0 ¢ to 218.2 ¢ |
Major 2-mosstep | M2ms | 2L | 218.2 ¢ to 240.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 240.0 ¢ to 327.3 ¢ |
Major 3-mosstep | M3ms | 3L | 327.3 ¢ to 360.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 360.0 ¢ to 436.4 ¢ |
Major 4-mosstep | M4ms | 4L | 436.4 ¢ to 480.0 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 4L + s | 480.0 ¢ to 545.5 ¢ |
Major 5-mosstep | M5ms | 5L | 545.5 ¢ to 600.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 5L + s | 600.0 ¢ to 654.5 ¢ |
Major 6-mosstep | M6ms | 6L | 654.5 ¢ to 720.0 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 6L + s | 720.0 ¢ to 763.6 ¢ |
Major 7-mosstep | M7ms | 7L | 763.6 ¢ to 840.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 7L + s | 840.0 ¢ to 872.7 ¢ |
Major 8-mosstep | M8ms | 8L | 872.7 ¢ to 960.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 8L + s | 960.0 ¢ to 981.8 ¢ |
Major 9-mosstep | M9ms | 9L | 981.8 ¢ to 1080.0 ¢ | |
10-mosstep | Perfect 10-mosstep | P10ms | 9L + s | 1080.0 ¢ to 1090.9 ¢ |
Augmented 10-mosstep | A10ms | 10L | 1090.9 ¢ to 1200.0 ¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | 10L + s | 1200.0 ¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\11 | 109.091 | 1090.909 | 1:1 | 1.000 | Equalized 10L 1s | |||||
6\65 | 110.769 | 1089.231 | 6:5 | 1.200 | ||||||
5\54 | 111.111 | 1088.889 | 5:4 | 1.250 | ||||||
9\97 | 111.340 | 1088.660 | 9:7 | 1.286 | ||||||
4\43 | 111.628 | 1088.372 | 4:3 | 1.333 | Supersoft 10L 1s | |||||
11\118 | 111.864 | 1088.136 | 11:8 | 1.375 | ||||||
7\75 | 112.000 | 1088.000 | 7:5 | 1.400 | ||||||
10\107 | 112.150 | 1087.850 | 10:7 | 1.429 | ||||||
3\32 | 112.500 | 1087.500 | 3:2 | 1.500 | Soft 10L 1s | |||||
11\117 | 112.821 | 1087.179 | 11:7 | 1.571 | ||||||
8\85 | 112.941 | 1087.059 | 8:5 | 1.600 | ||||||
13\138 | 113.043 | 1086.957 | 13:8 | 1.625 | ||||||
5\53 | 113.208 | 1086.792 | 5:3 | 1.667 | Semisoft 10L 1s | |||||
12\127 | 113.386 | 1086.614 | 12:7 | 1.714 | ||||||
7\74 | 113.514 | 1086.486 | 7:4 | 1.750 | ||||||
9\95 | 113.684 | 1086.316 | 9:5 | 1.800 | ||||||
2\21 | 114.286 | 1085.714 | 2:1 | 2.000 | Basic 10L 1s Simplest tuning for miracle | |||||
9\94 | 114.894 | 1085.106 | 9:4 | 2.250 | ||||||
7\73 | 115.068 | 1084.932 | 7:3 | 2.333 | ||||||
12\125 | 115.200 | 1084.800 | 12:5 | 2.400 | ||||||
5\52 | 115.385 | 1084.615 | 5:2 | 2.500 | Semihard 10L 1s | |||||
13\135 | 115.556 | 1084.444 | 13:5 | 2.600 | ||||||
8\83 | 115.663 | 1084.337 | 8:3 | 2.667 | ||||||
11\114 | 115.789 | 1084.211 | 11:4 | 2.750 | ||||||
3\31 | 116.129 | 1083.871 | 3:1 | 3.000 | Hard 10L 1s | |||||
10\103 | 116.505 | 1083.495 | 10:3 | 3.333 | ||||||
7\72 | 116.667 | 1083.333 | 7:2 | 3.500 | Miracle | |||||
11\113 | 116.814 | 1083.186 | 11:3 | 3.667 | ||||||
4\41 | 117.073 | 1082.927 | 4:1 | 4.000 | Superhard 10L 1s | |||||
9\92 | 117.391 | 1082.609 | 9:2 | 4.500 | ||||||
5\51 | 117.647 | 1082.353 | 5:1 | 5.000 | ||||||
6\61 | 118.033 | 1081.967 | 6:1 | 6.000 | ||||||
1\10 | 120.000 | 1080.000 | 1:0 | → ∞ | Collapsed 10L 1s |