User:CompactStar/Meantone family

From Xenharmonic Wiki
Jump to navigation Jump to search

THIS IS A TESTING PAGE FOR TEMPLATES

The 5-limit parent comma of the meantone family is the syntonic comma, 81/80. This is the one they all temper out. The period is an octave, the generator is a fifth, and four fifths go to make up a 5/1 interval.

Meantone

Subgroup: 2.3.5

Comma list: 81/80

Mapping: [⟨1 1 0], ⟨0 1 4]]

mapping generators: ~2/1, ~3/2

Optimal tuning (POTE): ~2/1 = 1\1, ~3/2 = 696.2387

Overview to extensions

The second comma of the normal comma list defines which 7-limit family member we are looking at.

  • Septimal meantone adds [-13 10 0 -1, finding the ~7/4 at the augmented sixth,
  • Flattone adds [-17 9 0 1, finding the ~7/4 at the diminished seventh,
  • Dominant adds [6 -2 0 -1, finding the ~7/4 at the minor seventh,
  • Sharptone adds [2 -3 0 1, finding the ~7/4 at the major sixth,

Those all have a fifth as generator.

  • Injera adds [-7 8 0 -2 with a half-octave period.
  • Mohajira adds [-23 11 0 2 and splits the fifth in two.
  • Godzilla adds [-4 -1 0 2 with an ~8/7 generator, two of which give the fourth.
  • Mothra adds [-10 1 0 3 with an ~8/7 generator, three of which give the fifth.
  • Liese adds [-9 11 0 -3 with a ~10/7 generator, three of which give the twelfth.
  • Squares adds [-3 9 0 -4 with a ~9/7 generator, four of which give the eleventh.
  • Jerome adds [3 7 0 -5 and slices the fifth in five.

Temperaments discussed elsewhere include

The rest are considered below.

Dequarter

Subgroup: 2.3.5.11

Comma list: 33/32, 55/54

Mapping: [⟨1 1 0 4], ⟨0 1 4 -1]]

mapping generators: ~2/1, ~3/2

Optimal tuning (POTE): ~2/1 = 1\1, ~3/2 = 692.0796

Septimal meantone

Deutsch
English Wikipedia has an article on:

The 7/4 in septimal meantone is the augmented sixth (C-A#), and other septimal intervals are 7/6, the augmented second (C-D#), 7/5, the augmented fourth (C-F#), and 21/16, the augmented third (C-E#). Septimal meantone tempers out the common 7-limit commas 126/125 and 225/224 and in fact can be defined as the 7-limit temperament that tempers out any two of 81/80, 126/125 and 225/224.

Subgroup: 2.3.5.7

Comma list: 81/80, 126/125

Mapping: [⟨1 1 0 -3], ⟨0 1 4 10]]

mapping generators: ~2/1, ~3/2

Optimal tuning (POTE): ~2/1 = 1\1, ~3/2 = 696.4949

Undecimal meantone aka huygens

Undecimal meantone maps the 11/8 to the double augmented third (C-Ex), and tridecimal meantone maps the 13/8 to the double augmented fifth (C-Gx). Note 13/11 is conflated with 6/5, represented by the minor third. Note also 11/10~13/12 is the double augmented unison; 12/11, double diminished third; and 14/13, minor second.

Subgroup: 2.3.5.7.11

Comma list: 81/80, 99/98, 126/125

Mapping: [⟨1 1 0 -3 -7], ⟨0 1 4 10 18]]

mapping generators: ~2/1, ~3/2

Optimal tuning (POTE): ~2/1 = 1\1, ~3/2 = 696.9687

Music

Tridecimal meantone

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 81/80, 99/98, 105/104

Mapping: [⟨1 1 0 -3 -7 -5], ⟨0 1 4 10 18 15]]

mapping generators: ~2/1, ~3/2

Optimal tuning (POTE): ~2/1 = 1\1, ~3/2 = 696.6424

Meantonic

Dubbed meantonic here, this extension maps the 17/16 to the triple augmented seventh (C-Bx#) octave reduced, and 19/16 to the quadruple augmented unison (C-Cxx). The major second is now 19/17, and 17/16 is conflated with 19/18, as do all the other extensions discussed below. 31edo also conflates 17/16~19/18 with 16/15 whereas 50edo conflates all of 17/16, 18/17, 19/18, and 20/19, so a good tuning would be somewhere in this range.

Subgroup: 2.3.5.7.11.13.17

Comma list: 66/65, 81/80, 99/98, 105/104, 121/119

Mapping: [⟨1 1 0 -3 -7 -5 -11], ⟨0 1 4 10 18 15 26]]

mapping generators: ~2/1, ~3/2

Optimal tuning (POTE): ~2/1 = 1\1, ~3/2 = 696.3771

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 66/65, 77/76, 81/80, 99/98, 105/104, 121/119

Mapping: [⟨1 1 0 -3 -7 -5 -11 -12], ⟨0 1 4 10 18 15 26 28]]

mapping generators: ~2/1, ~3/2

Optimal tuning (POTE): ~2/1 = 1\1, ~3/2 = 696.2733

Meantoid

Dubbed meantoid here, this extension maps 17/16~19/18 to the augmented unison (C-C#) and 19/16 to the augmented second (C-D#). For any tuning flatter than 12edo, the sizes of 17/16 (augmented unison) and 18/17 (minor second) are inverse, so genuine septendecimal and undevicesimal harmony cannot be expected.

Subgroup: 2.3.5.7.11.13.17

Comma list: 51/50, 66/65, 81/80, 85/84, 99/98

Mapping: [1 0 -4 -13 -25 -20 -7], 0 1 4 10 18 15 7]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.0360

Optimal ET sequence12f, 19eg, 31g

Badness: 0.019433

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 51/50, 57/56, 66/65, 81/80, 85/84, 99/98

Mapping: [1 0 -4 -13 -25 -20 -7 -10], 0 1 4 10 18 15 7 9]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.2161

Optimal ET sequence12f, 19egh, 31gh

Badness: 0.017437

Huygens

Dubbed huygens here, this extension is perhaps the most practical, as it maps 17/16 to the minor second (C-Db), and 19/16 to the minor third (C-Eb), suitable for a system generated by a mildly tempered fifth.

Subgroup: 2.3.5.7.11.13.17

Comma list: 66/65, 81/80, 99/98, 105/104, 120/119

Mapping: [1 0 -4 -13 -25 -20 12], 0 1 4 10 18 15 -5]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.9080

Optimal ET sequence12f, 31

Badness: 0.019982

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 66/65, 81/80, 96/95, 99/98, 105/104, 120/119

Mapping: [1 0 -4 -13 -25 -20 12 9], 0 1 4 10 18 15 -5 -3]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.9308

Optimal ET sequence12f, 31

Badness: 0.018047

Grosstone

Grosstone maps 13/8 to the double diminished seventh (C-Bbbb).

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 99/98, 126/125, 144/143

Mapping: [1 0 -4 -13 -25 29], 0 1 4 10 18 -16]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.2582

Minimax tuning:

  • 13- and 15-odd-limit: ~3/2 = [8/13 0 0 1/26 0 -1/26
eigenmonzo basis (unchanged-interval basis): 2.13/7

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = [696.774, 697.674] (18\31 to 25\43)
  • 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)

Optimal ET sequence12, 31, 43, 74

Badness: 0.025899

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 99/98, 120/119, 126/125, 144/143

Mapping: [1 0 -4 -13 -25 29 12], 0 1 4 10 18 -16 -5]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.2996

Optimal ET sequence12, 31, 43, 74g

Badness: 0.020889

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 96/95, 99/98, 120/119, 126/125, 144/143

Mapping: [1 0 -4 -13 -25 29 12 9], 0 1 4 10 18 -16 -5 -3]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.3271

Optimal ET sequence12, 31, 43, 74gh

Badness: 0.017611

Meridetone

Meridetone maps the 13/8 to the quadruple augmented fourth (C-Fxx).

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 81/80, 99/98, 126/125

Mapping: [1 0 -4 -13 -25 -39], 0 1 4 10 18 27]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.5155

Minimax tuning:

  • 13- and 15-odd-limit: ~3/2 = [14/25 -2/25 0 0 0 1/25
eigenmonzo (unchanged-interval) basis: 2.13/9

Optimal ET sequence12f, 31f, 43

Badness: 0.026421

Meridetonic

Subgroup: 2.3.5.7.11.13.17

Comma list: 78/77, 81/80, 99/98, 126/125, 273/272

Mapping: [1 0 -4 -13 -25 -39 -56], 0 1 4 10 18 27 38]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.5076

Optimal ET sequence12fg, 31fg, 43

Badness: 0.027706

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 78/77, 81/80, 99/98, 126/125, 153/152, 273/272

Mapping: [1 0 -4 -13 -25 -39 -56 -59], 0 1 4 10 18 27 38 40]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.4848

Optimal ET sequence12fghh, 31fgh, 43

Badness: 0.025315

Meridetoid

Subgroup: 2.3.5.7.11.13.17

Comma list: 51/50, 78/77, 81/80, 85/84, 99/98

Mapping: [1 0 -4 -13 -25 -39 -7], 0 1 4 10 18 27 7]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.6098

Optimal ET sequence12f, 31fg, 43g

Badness: 0.027518

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 51/50, 57/56, 78/77, 81/80, 85/84, 99/98

Mapping: [1 0 -4 -13 -25 -39 -7 -10], 0 1 4 10 18 27 7 9]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.7012

Optimal ET sequence12f, 19effgh, 31fgh, 43gh

Badness: 0.023613

Sauveuric

Subgroup: 2.3.5.7.11.13.17

Comma list: 78/77, 81/80, 99/98, 120/119, 126/125

Mapping: [1 0 -4 -13 -25 -39 12], 0 1 4 10 18 27 -5]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.5384

Optimal ET sequence12f, 43

Badness: 0.023881

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 78/77, 81/80, 96/95, 99/98, 120/119, 126/125

Mapping: [1 0 -4 -13 -25 -39 12 9], 0 1 4 10 18 27 -5 -3]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.5550

Optimal ET sequence12f, 43

Badness: 0.020540

Hemimeantone

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 99/98, 126/125, 169/168

Mapping: [1 0 -4 -13 -25 -5], 0 2 8 20 36 11]]

mapping generators: ~2, ~26/15

Optimal tuning (CTE): ~2 = 1\1, ~26/15 = 948.6109

Optimal ET sequence19e, 43, 62

Badness: 0.031433

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 99/98, 126/125, 169/168, 221/220

Mapping: [1 0 -4 -13 -25 -5 -22], 0 2 8 20 36 11 33]]

Optimal tuning (CTE): ~2 = 1\1, ~26/15 = 948.6173

Optimal ET sequence19eg, 43, 62

Badness: 0.023380

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 99/98, 126/125, 153/152, 169/168, 221/220

Mapping: [1 0 -4 -13 -25 -5 -22 -25], 0 2 8 20 36 11 33 37]]

Optimal tuning (CTE): ~2 = 1\1, ~19/11 = 948.6088

Optimal ET sequence19egh, 43, 62

Badness: 0.018952

Semimeantone

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 99/98, 126/125, 847/845

Mapping: [2 0 -8 -26 -50 -59], 0 1 4 10 18 21]]

mapping generators: ~55/39, ~3

Optimal tuning (CTE): ~55/39 = 1\2, ~3/2 = 697.1678

Optimal ET sequence12f, 38deefff, 50eff, 62, 136b

Badness: 0.040668

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 99/98, 126/125, 221/220, 289/288

Mapping: [2 0 -8 -26 -50 -59 5], 0 1 4 10 18 21 1]]

Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 697.1740

Optimal ET sequence12f, 50eff, 62, 136bg

Badness: 0.031491

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 99/98, 126/125, 153/152, 209/208, 221/220

Mapping: [2 0 -8 -26 -50 -59 5 -1], 0 1 4 10 18 21 1 3]]

Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 697.1871

Optimal ET sequence12f, 50eff, 62

Badness: 0.024206

Meanpop

Meanpop maps the 11/8 to the double diminished fifth (C-Gbb), and tridecimal meanpop still maps the 13/8 to the double augmented fifth (C-Gx). Note also 11/10 is the double diminished third; 12/11~13/12, double augmented unison; and 14/13, minor second.

Subgroup: 2.3.5.7.11

Comma list: 81/80, 126/125, 385/384

Mapping: [1 0 -4 -13 24], 0 1 4 10 -13]]

mapping generator: ~2, ~3

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.5311

Minimax tuning:

  • 11-odd-limit: ~3/2 = [0 0 1/4
[[1 0 0 0 0, [1 0 1/4 0 0, [0 0 1 0 0, [-3 0 5/2 0 0, [11 0 -13/4 0 0]
eigenmonzo (unchanged-interval) basis: 2.5

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [694.737, 696.774] (11\19 to 18\31)
  • 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)

Algebraic generator: Cybozem; or else Radieubiz, the real root of 3x3 + 6x - 19. Unlike Cybozem, the recurrence for Radieubiz does not converge.

Optimal ET sequence12e, 19, 31, 81, 112b

Badness: 0.021543

Music

Tridecimal meanpop

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 105/104, 126/125, 144/143

Mapping: [1 0 -4 -13 24 -20], 0 1 4 10 -13 15]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.3563

Minimax tuning:

  • 13- and 15-odd-limit: ~3/2 = [4/7 0 0 0 -1/28 1/28
eigenmonzo (unchanged-interval) basis: 2.13/11

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = [694.737, 696.774] (11\19 to 18\31)
  • 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)

Optimal ET sequence19, 31, 50, 81

Badness: 0.020883

Meanpoppic

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 105/104, 126/125, 144/143, 273/272

Mapping: [1 0 -4 -13 24 -20 -37], 0 1 4 10 -13 15 26]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.3508

Optimal ET sequence19g, 31, 50, 81, 131bd

Badness: 0.019953

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 105/104, 126/125, 144/143, 153/152, 273/272

Mapping: [1 0 -4 -13 24 -20 -37 -40], 0 1 4 10 -13 15 26 28]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.3471

Optimal ET sequence19gh, 31, 50, 81

Badness: 0.017791

Meanpoid

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 105/104, 120/119, 126/125, 144/143

Mapping: [1 0 -4 -13 24 -20 12], 0 1 4 10 -13 15 -5]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.4388

Optimal ET sequence19, 31

Badness: 0.022870

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 77/76, 81/80, 96/95, 105/104, 120/119, 126/125

Mapping: [1 0 -4 -13 24 -20 12 9], 0 1 4 10 -13 15 -5 -3]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.4838

Optimal ET sequence12ef, 19, 31

Badness: 0.020488

Meanplop

Subgroup: 2.3.5.7.11.13

Comma list: 65/64, 78/77, 81/80, 91/90

Mapping: [1 0 -4 -13 24 10], 0 1 4 10 -13 -4]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.2827

Minimax tuning:

  • 13- and 15-odd-limit: ~3/2 = [11/13 0 0 0 -1/13
Eigenmonzo (unchanged-interval) basis: 2.11

Optimal ET sequence12e, 19, 31f

Badness: 0.027666

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 52/51, 65/64, 78/77, 81/80, 91/90

Mapping: [1 0 -4 -13 24 10 12], 0 1 4 10 -13 -4 -5]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.4069

Optimal ET sequence12e, 19

Badness: 0.026836

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 39/38, 52/51, 65/64, 77/76, 81/80, 91/90

Mapping: [1 0 -4 -13 24 10 12 9], 0 1 4 10 -13 -4 -5 -3]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.4731

Optimal ET sequence12e, 19

Badness: 0.023540

Meanploid

Subgroup: 2.3.5.7.11.13.17

Comma list: 51/50, 65/64, 78/77, 81/80, 85/84

Mapping: [1 0 -4 -13 24 10 -7], 0 1 4 10 -13 -4 7]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.6614

Optimal ET sequence12e, 19g, 31fg

Badness: 0.026094

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 51/50, 57/56, 65/64, 76/75, 78/77, 81/80

Mapping: [1 0 -4 -13 24 10 -7 -10], 0 1 4 10 -13 -4 7 9]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 697.0160

Optimal ET sequence12e, 19gh, 31fgh

Badness: 0.023104

Meanenneadecal

Meanenneadecal maps the 11/8 to the augmented fourth (C-F#), and tridecimal meanenneadecal still maps the 13/8 to the double augmented fifth (C-Gx). Note also 11/10 is the major second; 12/11~14/13, minor second; and 13/12, double augmented unison.

Subgroup: 2.3.5.7.11

Comma list: 45/44, 56/55, 81/80

Mapping: [1 0 -4 -13 -6], 0 1 4 10 6]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.1527

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [694.737, 700.000] (11\19 to 7\12)
  • 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 704.377]

Optimal ET sequence7d, 12, 19, 31e

Badness: 0.021423

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 56/55, 78/77, 81/80

Mapping: [1 0 -4 -13 -6 -20], 0 1 4 10 6 15]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.0983

Optimal ET sequence7df, 12f, 19, 31e

Badness: 0.021182

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 45/44, 56/55, 78/77, 81/80, 120/119

Mapping: [1 0 -4 -13 -6 -20 12], 0 1 4 10 6 15 -5]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.2161

Optimal ET sequence12f, 19, 31e

Badness: 0.022980

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 45/44, 56/55, 78/77, 81/80, 96/95, 120/119

Mapping: [1 0 -4 -13 -6 -20 12 9], 0 1 4 10 6 15 -5 -3]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.2774

Optimal ET sequence12f, 19, 31e

Badness: 0.020293

Meanenneadecoid

Subgroup: 2.3.5.7.11.13.17

Comma list: 34/33, 45/44, 51/50, 56/55, 78/77

Mapping: [1 0 -4 -13 -6 -20 -7], 0 1 4 10 6 15 7]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.4501

Optimal ET sequence7dfg, 12f, 19g

Badness: 0.020171

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 34/33, 45/44, 51/50, 56/55, 57/55, 78/77

Mapping: [1 0 -4 -13 -6 -20 -7 -10], 0 1 4 10 6 15 7 9]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.7925

Optimal ET sequence7dfgh, 12f, 19gh

Badness: 0.018045

Vincenzo

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 56/55, 65/64, 81/80

Mapping: [1 0 -4 -13 -6 10], 0 1 4 10 6 -4]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 695.7897

Optimal ET sequence7d, 12, 19

Badness: 0.024763

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 45/44, 52/51, 56/55, 65/64, 81/80

Mapping: [1 0 -4 -13 -6 10 12], 0 1 4 10 6 -4 -5]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.0114

Optimal ET sequence12, 19

Badness: 0.025535

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 81/80

Mapping: [1 0 -4 -13 -6 10 12 9], 0 1 4 10 6 -4 -5 -3]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.1196

Optimal ET sequence12, 19

Badness: 0.022302

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 69/68, 81/80

Mapping: [1 0 -4 -13 -6 10 12 9 14], 0 1 4 10 6 -4 -5 -3 -6]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.0585

Optimal ET sequence12, 19

Badness: 0.020139

29-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29

Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 81/80

Mapping: [1 0 -4 -13 -6 10 12 9 14 8], 0 1 4 10 6 -4 -5 -3 -6 -2]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 695.9824

Optimal ET sequence12, 19

Badness: 0.018168

31-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29.31

Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 81/80, 93/92

Mapping: [1 0 -4 -13 -6 10 12 9 14 8 16], 0 1 4 10 6 -4 -5 -3 -6 -2 -7]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 695.7980

Optimal ET sequence12, 19

Badness: 0.017069

37-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37

Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 93/92

Mapping: [1 0 -4 -13 -6 10 12 9 14 8 16 -9], 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 695.6746

Optimal ET sequence12, 19

Badness: 0.016129

41-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41

Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 93/92, 124/123

Mapping: [1 0 -4 -13 -6 10 12 9 14 8 16 -9 18], 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 695.7239

Optimal ET sequence12, 19

Badness: 0.015356

43-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41.43

Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 86/85, 93/92, 124/123

Mapping: [1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 7], 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 -1]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 695.7160

Optimal ET sequence12, 19

Badness: 0.013906

47-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41.43.47

Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 86/85, 93/92, 95/94, 124/123

Mapping: [1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 7 4], 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 -1 1]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 695.6849

Optimal ET sequence12, 19

Badness: 0.013818

Vincenzoid

Subgroup: 2.3.5.7.11.13.17

Comma list: 34/33, 45/44, 51/50, 56/55, 65/64

Mapping: [1 0 -4 -13 -6 10 -7], 0 1 4 10 6 -4 7]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.4125

Optimal ET sequence7dg, 12, 19g

Badness: 0.022099

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 34/33, 45/44, 51/50, 56/55, 57/55, 65/64

Mapping: [1 0 -4 -13 -6 10 -7 -10], 0 1 4 10 6 -4 7 9]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.9500

Optimal ET sequence7dgh, 12, 19gh

Badness: 0.019904

Meanundec

Subgroup: 2.3.5.7.11.13

Comma list: 27/26, 40/39, 45/44, 56/55

Mapping: [1 0 -4 -13 -6 -1], 0 1 4 10 6 3]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 695.6202

Optimal ET sequence7d, 12f, 19f

Badness: 0.024243

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 27/26, 34/33, 40/39, 45/44, 56/55

Mapping: [1 0 -4 -13 -6 -1 -7], 0 1 4 10 6 3 7]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.2789

Optimal ET sequence7dg, 12f

Badness: 0.021400

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 27/26, 34/33, 40/39, 45/44, 56/55, 57/55

Mapping: [1 0 -4 -13 -6 -1 -7 -10], 0 1 4 10 6 3 7 9]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.8486

Optimal ET sequence7dgh, 12f

Badness: 0.018996

Meanundeci

Meanundeci is a low-complexity low-accuracy entry that maps the 11/8 to the perfect fourth (C-F), and tridecimal meanundeci maps the 13/8 to the minor sixth (C-Ab).

Subgroup: 2.3.5.7.11

Comma list: 33/32, 55/54, 77/75

Mapping: [1 0 -4 -13 5], 0 1 4 10 -1]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.7022

Optimal ET sequence7d, 12e, 19e

Badness: 0.031539

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 33/32, 55/54, 65/64, 77/75

Mapping: [1 0 -4 -13 5 10], 0 1 4 10 -1 -4]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 696.2408

Optimal ET sequence7d, 12e, 19e

Badness: 0.026288

Bimeantone

11/8 is mapped to half octave minus the meantone diesis.

Subgroup: 2.3.5.7.11

Comma list: 81/80, 126/125, 245/242

Mapping: [2 0 -8 -26 -31], 0 1 4 10 12]]

mapping generators: ~63/44, ~3

Optimal tuning (CTE): ~63/44 = 1\2, ~3/2 = 696.5199

Optimal ET sequence12, 26de, 38d, 50

Badness: 0.038122

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 105/104, 126/125, 245/242

Mapping: [2 0 -8 -26 -31 -40], 0 1 4 10 12 15]]

Optimal tuning (CTE): ~55/39 = 1\2, ~3/2 = 696.3410

Optimal ET sequence12f, 26deff, 38df, 50

Badness: 0.028817

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 105/104, 126/125, 189/187, 221/220

Mapping: [2 0 -8 -26 -31 -40 5], 0 1 4 10 12 15 1]]

Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 696.3526

Optimal ET sequence12f, 38df, 50

Badness: 0.022666

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 105/104, 126/125, 153/152, 189/187, 221/220

Mapping: [2 0 -8 -26 -31 -40 5 -1], 0 1 4 10 12 15 1 3]]

Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 696.3837

Optimal ET sequence12f, 26deff, 38df, 50

Badness: 0.017785

Trimean

Subgroup: 2.3.5.7.11

Comma list: 81/80, 126/125, 1344/1331

Mapping: [1 2 4 7 5], 0 -3 -12 -30 -11]]

mapping generators: ~2, ~11/10

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 167.7074

Optimal ET sequence7d, 36d, 43, 50, 93

Badness: 0.050729

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 126/125, 144/143, 364/363

Mapping: [1 2 4 7 5 3], 0 -3 -12 -30 -11 5]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 167.7121

Optimal ET sequence7d, 43, 50, 93

Badness: 0.035445

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 126/125, 144/143, 189/187, 221/220

Mapping: [1 2 4 7 5 3 8], 0 -3 -12 -30 -11 5 -28]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 167.7047

Optimal ET sequence7dg, 43, 50, 93

Badness: 0.025221

Flattone

In flattone, 9 generator steps of 4/3 get to the interval class for 7, meaning that 7/4 is a diminished seventh interval (C-Bbb). Other intervals are 7/6, a diminished third (C-Ebb), and 7/5, a doubly diminshed fifth (C-Gbb). In general, most septimal subminor intervals are diminished and most septimal supermajor intervals are augmented, which makes it quite easy to learn flattone notation. Good tunings for flattone are 26edo, 45edo and 64edo.

Subgroup: 2.3.5.7

Comma list: 81/80, 525/512

Mapping[1 0 -4 17], 0 1 4 -9]]

Wedgie⟨⟨ 1 4 -9 4 -17 -32 ]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 693.779

Minimax tuning:

[[1 0 0 0, [21/13 0 1/13 -1/13, [32/13 0 4/13 -4/13, [32/13 0 -9/13 9/13]
eigenmonzo (unchanged-interval) basis: 2.7/5
[[1 0 0 0, [17/11 2/11 0 -1/11, [24/11 8/11 0 -4/11, [34/11 -18/11 0 9/11]
eigenmonzo (unchanged-interval) basis: 2.9/7

Tuning ranges:

  • 7- and 9-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
  • 7-odd-limit diamond tradeoff: ~3/2 = [692.353, 701.955]
  • 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955]

Algebraic generator: Squarto, the positive root of 8x2 - 4x - 9, at 506.3239 cents, equal to (1 + sqrt (19))/4.

Optimal ET sequence7, 19, 26, 45

Badness: 0.038553

Scales: flattone12

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 81/80, 385/384

Mapping: [1 0 -4 17 -6], 0 1 4 -9 6]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 693.126

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
  • 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]

Optimal ET sequence7, 19, 26, 45, 71bc, 116bcde

Badness: 0.033839

Scales: flattone12

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 65/64, 78/77, 81/80

Mapping: [1 0 -4 17 -6 10], 0 1 4 -9 6 -4]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 693.058

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
  • 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]

Optimal ET sequence7, 19, 26, 45f, 71bcf, 116bcdef

Badness: 0.022260

Scales: flattone12

Dominant

The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh. The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is 12edo, but it also works well with the Pythagorean tuning of pure 3/2 fifths, and with 29edo, 41edo, or 53edo.

Subgroup: 2.3.5.7

Comma list: 36/35, 64/63

Mapping[1 0 -4 6], 0 1 4 -2]]

Wedgie⟨⟨ 1 4 -2 4 -6 -16 ]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 701.573

Tuning ranges:

Optimal ET sequence5, 7, 12, 41cd, 53cdd, 65ccddd

Badness: 0.020690

11-limit

Subgroup: 2.3.5.7.11

Comma list: 36/35, 56/55, 64/63

Mapping: [1 0 -4 6 13], 0 1 4 -2 -6]]

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [700.000, 705.882] (7\12 to 10\17)
  • 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 703.254

Optimal ET sequence5, 12, 17c, 29cde

Badness: 0.024180

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 56/55, 64/63, 66/65

Mapping: [1 0 -4 6 13 18], 0 1 4 -2 -6 -9]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 703.636

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = 705.882 (10\17)
  • 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]

Optimal ET sequence12f, 17c, 29cdef

Badness: 0.024108

Dominion

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 36/35, 56/55, 64/63

Mapping: [1 0 -4 6 13 -9], 0 1 4 -2 -6 8]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.905

Optimal ET sequence5, 12, 17c, 46cde

Badness: 0.027295

Domineering

Subgroup: 2.3.5.7.11

Comma list: 36/35, 45/44, 64/63

Mapping: [1 0 -4 6 -6], 0 1 4 -2 6]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 698.776

Optimal ET sequence5e, 7, 12, 19d, 43de

Badness: 0.021978

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 45/44, 52/49, 64/63

Mapping: [1 0 -4 6 -6 10], 0 1 4 -2 6 -4]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 695.762

Optimal ET sequence5ef, 7, 12, 19d, 31def

Badness: 0.027039

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 36/35, 45/44, 51/49, 52/49, 64/63

Mapping: [1 0 -4 6 -6 10 12], 0 1 4 -2 6 -4 -5]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 696.115

Optimal ET sequence5ef, 7, 12, 19d, 31def

Badness: 0.024539

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 36/35, 39/38, 45/44, 51/49, 52/49, 57/56

Mapping: [1 0 -4 6 -6 10 12 9], 0 1 4 -2 6 -4 -5 -3]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 696.217

Optimal ET sequence5ef, 7, 12, 19d, 31def

Badness: 0.020398

Dominatrix

Subgroup: 2.3.5.7.11.13

Comma list: 27/26, 36/35, 45/44, 64/63

Mapping: [1 0 -4 6 -6 -1], 0 1 4 -2 6 3]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 698.544

Optimal ET sequence5e, 7, 12f, 19df

Badness: 0.018289

Domination

Subgroup: 2.3.5.7.11

Comma list: 36/35, 64/63, 77/75

Mapping: [1 0 -4 6 -14], 0 1 4 -2 11]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 705.004

Optimal ET sequence5e, 12e, 17c, 46cd

Badness: 0.036562

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 36/35, 64/63, 66/65

Mapping: [1 0 -4 6 -14 -9], 0 1 4 -2 11 8]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 705.496

Optimal ET sequence5e, 12e, 17c

Badness: 0.027435

Arnold

Subgroup: 2.3.5.7.11

Comma list: 22/21, 33/32, 36/35

Mapping: [1 0 -4 6 5], 0 1 4 -2 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 698.491

Optimal ET sequence5, 7, 12e

Badness: 0.026141

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 22/21, 27/26, 33/32, 36/35

Mapping: [1 0 -4 6 5 -1], 0 1 4 -2 -1 3]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 696.743

Optimal ET sequence5, 7, 12ef, 19def

Badness: 0.023300

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 22/21, 27/26, 33/32, 36/35, 51/49

Mapping: [1 0 -4 6 5 -1 12], 0 1 4 -2 -1 3 -5]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 696.978

Optimal ET sequence5, 7, 12ef, 19def

Badness: 0.024535

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 22/21, 27/26, 33/32, 36/35, 51/49, 57/56

Mapping: [1 0 -4 6 5 -1 12 9], 0 1 4 -2 -1 3 -5 -3]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 697.068

Optimal ET sequence5, 7, 12ef, 19def

Badness: 0.021098

Sharptone

Sharptone is a low-accuracy temperament tempering out 21/20 and 28/27. In sharptone, 7/4 is a major sixth, 7/6 a whole tone, and 7/5 a fourth. Genuinely septimal sounding harmony therefore cannot be expected, but it can be used to translate, more or less, 7-limit JI into 5-limit meantone. 12edo tuning does sharptone about as well as such a thing can be done, of course not in its patent val.

Subgroup: 2.3.5.7

Comma list: 21/20, 28/27

Mapping[1 0 -4 -2], 0 1 4 3]]

Wedgie⟨⟨ 1 4 3 4 2 -4 ]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 700.140

Optimal ET sequence5, 7d, 12d

Badness: 0.024848

Meanertone

Subgroup: 2.3.5.7.11

Comma list: 21/20, 28/27, 33/32

Mapping: [1 0 -4 -2 5], 0 1 4 3 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 696.615

Optimal ET sequence5, 7d, 12de

Badness: 0.025167

Supermean

Subgroup: 2.3.5.7

Comma list: 81/80, 672/625

Mapping[1 0 -4 -21], 0 1 4 15]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.889

Optimal ET sequence5d, 12d, 17c, 29c

Badness: 0.134204

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 81/80, 132/125

Mapping: [1 0 -4 -21 -14], 0 1 4 15 11]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 705.096

Optimal ET sequence5de, 12de, 17c, 29c

Badness: 0.063262

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 56/55, 66/65, 81/80

Mapping: [1 0 -4 -21 -14 -9], 0 1 4 15 11 8]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 705.094

Optimal ET sequence5de, 12de, 17c, 29c

Badness: 0.040324

Mohajira

Mohajira can be viewed as derived from mohaha which maps the interval one quarter tone flat of 16/9 to 7/4, although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the porwell comma. 31edo makes for an excellent (7-limit) mohajira tuning, with generator 9/31.

Subgroup: 2.3.5.7

Comma list: 81/80, 6144/6125

Mapping: [1 1 0 6], 0 2 8 -11]]

mapping generators: ~2, ~128/105

Wedgie⟨⟨ 2 8 -11 8 -23 -48 ]]

Optimal tuning (POTE): ~2 = 1\1, ~128/105 = 348.415

Minimax tuning:

[[1 0 0 0, [1 0 1/4 0, [0 0 1 0, [6 0 -11/8 0]
Eigenmonzo (unchanged-interval) basis: 2.5

Tuning ranges:

  • 7- and 9-odd-limit diamond monotone: ~128/105 = [347.368, 350.000] (11\38 to 7\24)
  • 7-odd-limit diamond tradeoff: ~128/105 = [347.393, 350.978]
  • 9-odd-limit diamond tradeoff: ~128/105 = [345.601, 350.978]

Algebraic generator: Mohabis, real root of 3x3 - 3x2 - 1, 348.6067 cents. Corresponding recurrence converges quickly.

Optimal ET sequence7, 24, 31

Badness: 0.055714

Scales: mohaha7, mohaha10

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 121/120, 176/175

Mapping: [1 1 0 6 2], 0 2 8 -11 5]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.477

Minimax tuning:

  • 11-odd-limit: ~11/9 = [0 0 1/8
[[1 0 0 0 0, [1 0 1/4 0 0, [0 0 1 0 0, [6 0 -11/8 0 0, [2 0 5/8 0 0]
Eigenmonzo (unchanged-interval) basis: 2.5

Tuning ranges:

  • 11-odd-limit diamond monotone: ~11/9 = [348.387, 350.000] (9\31 to 7\24)
  • 11-odd-limit diamond tradeoff: ~11/9 = [344.999, 350.978]

Optimal ET sequence7, 24, 31

Badness: 0.026064

Scales: mohaha7, mohaha10

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 81/80, 105/104, 121/120

Mapping: [1 1 0 6 2 4], 0 2 8 -11 5 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.558

Optimal ET sequence7, 24, 31

Badness: 0.023388

Scales: mohaha7, mohaha10

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 66/65, 81/80, 105/104, 121/120, 154/153

Mapping: [1 1 0 6 2 4 7], 0 2 8 -11 5 -1 -10]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.736

Optimal ET sequence7, 24, 31, 86ef

Badness: 0.020576

Scales: mohaha7, mohaha10

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 66/65, 77/76, 81/80, 96/95, 105/104, 153/152

Mapping: [1 1 0 6 2 4 7 6], 0 2 8 -11 5 -1 -10 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.810

Optimal ET sequence7, 24, 31, 55, 86efh

Badness: 0.017302

Scales: mohaha7, mohaha10

Mohamaq

Subgroup: 2.3.5.7

Comma list: 81/80, 392/375

Mapping: [1 1 0 -1], 0 2 8 13]]

mapping generators: ~2, ~25/21

Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 350.586

Optimal ET sequence7d, 17c, 24, 65cc, 89ccd

Badness: 0.077734

Scales: mohaha7, mohaha10

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 77/75, 243/242

Mapping: [1 1 0 -1 2], 0 2 8 13 5]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 350.565

Optimal ET sequence7d, 17c, 24, 65cc, 89ccd

Badness: 0.036207

Scales: mohaha7, mohaha10

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 66/65, 77/75, 243/242

Mapping: [1 1 0 -1 2 4], 0 2 8 13 5 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 350.745

Optimal ET sequence7d, 17c, 24, 41c, 65cc

Badness: 0.028738

Scales: mohaha7, mohaha10

Liese

Deutsch

Liese splits the twelfth interval of 3/1 into three generators of 10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. 74edo makes for a good liese tuning, though 19edo can be used. The tuning is well-supplied with MOS: 7, 9, 11, 13, 15, 17, 19, 36, 55.

Subgroup: 2.3.5.7

Comma list: 81/80, 686/675

Mapping: [1 0 -4 -3], 0 3 12 11]]

mapping generators: ~2, ~10/7

Wedgie⟨⟨ 3 12 11 12 9 -8 ]]

Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 632.406

Minimax tuning:

[[1 0 0 0, [1 0 1/4 0, [0 0 1 0, [2/3 0 11/12 0]
Eigenmonzo (unchanged-interval) basis: 2.5

Algebraic generator: Radix, the real root of x5 - 2x4 + 2x3 - 2x2 + 2x - 2, also a root of x6 - x5 - 2. The recurrence converges.

Optimal ET sequence17c, 19, 55, 74d

Badness: 0.046706

Liesel

Subgroup: 2.3.5.7.11

Comma list: 56/55, 81/80, 540/539

Mapping: [1 0 -4 -3 4], 0 3 12 11 -1]]

Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 633.073

Optimal ET sequence17c, 19, 36, 91cee

Badness: 0.040721

13-limit

Liesel is a very natural 13-limit tuning, given the generator is so near 13/9.

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 78/77, 81/80, 91/90

Mapping: [1 0 -4 -3 4 0], 0 3 12 11 -1 7]]

Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 633.042

Optimal ET sequence17c, 19, 36, 91ceef

Badness: 0.027304

Elisa

Subgroup: 2.3.5.7.11

Comma list: 77/75, 81/80, 99/98

Mapping: [1 0 -4 -3 -5], 0 3 12 11 16]]

Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 633.061

Optimal ET sequence17c, 19e, 36e

Badness: 0.041592

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 77/75, 81/80, 99/98

Mapping: [1 0 -4 -3 -5 0], 0 3 12 11 16 7]]

Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 632.991

Optimal ET sequence17c, 19e, 36e

Badness: 0.026922

Lisa

Subgroup: 2.3.5.7.11

Comma list: 45/44, 81/80, 343/330

Mapping: [1 0 -4 -3 -6], 0 3 12 11 18]]

Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 631.370

Optimal ET sequence17cee, 19

Badness: 0.054829

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 81/80, 91/88, 147/143

Mapping: [1 0 -4 -3 -6 0], 0 3 12 11 18 7]]

Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 631.221

Optimal ET sequence17cee, 19

Badness: 0.036144

Lithium

Lithium is named after the 3rd element for being period-3, and also for lithium's molar mass of 6.9 g/mol since 69edo supports it. It supports a 3L 6s scale and thus intuitively can be thought of as "tcherepnin meantone" in that context.

Subgroup: 2.3.5.7

Comma list: 81/80, 3125/3087

Mapping: [3 0 -12 -20], 0 1 4 6]]

mapping generators: ~56/45, ~3

Optimal tuning (CTE): ~56/45 = 1\3, ~3/2 = 695.827

Optimal ET sequence12, 33cd, 45, 57

Badness: 0.0692

Squares

Squares splits the interval of an eleventh, or 8/3, into four supermajor third (9/7) intervals, and uses it for a generator. 31edo, with a generator of 11/31, makes for a good squares tuning, with 8, 11, and 14 note MOS available. Squares tempers out 2401/2400, the breedsma, as well as 2430/2401.

Subgroup: 2.3.5.7

Comma list: 81/80, 2401/2400

Mapping: [1 3 8 6], 0 -4 -16 -9]]

mapping generators: ~2, ~9/7

Wedgie⟨⟨ 4 16 9 16 3 -24 ]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 425.942

Minimax tuning:

[[1 0 0 0, [1 0 1/4 0, [0 0 1 0, [3/2 0 9/16 0]
Eigenmonzo (unchanged-interval) basis: 2.5

Algebraic generator: Sceptre2, the positive root of 9x2 + x - 16, or (sqrt (577) - 1)/18, which is 425.9311 cents.

Optimal ET sequence14c, 17c, 31

Badness: 0.045993

Scales: skwares8, skwares11, skwares14

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 99/98, 121/120

Mapping: [1 3 8 6 7], 0 -4 -16 -9 -10]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 425.957

Optimal ET sequence14c, 17c, 31

Badness: 0.021636

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 81/80, 99/98, 121/120

Mapping: [1 3 8 6 7 3], 0 -4 -16 -9 -10 2]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 425.550

Optimal ET sequence14c, 17c, 31, 79cf

Badness: 0.025514

Squad

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 81/80, 91/90, 99/98

Mapping: [1 3 8 6 7 9], 0 -4 -16 -9 -10 -15]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 425.7516

Optimal ET sequence14cf, 17c, 31f

Badness: 0.026877

Agora

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 99/98, 105/104, 121/120

Mapping: [1 3 8 6 7 14], 0 -4 -16 -9 -10 -29]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 426.276

Optimal ET sequence14cf, 31, 45ef, 76e

Badness: 0.024522

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 99/98, 105/104, 120/119, 121/119

Mapping: [1 3 8 6 7 14 8], 0 -4 -16 -9 -10 -29 -11]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 426.187

Optimal ET sequence14cf, 31, 76e

Badness: 0.022573

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 77/76, 81/80, 99/98, 105/104, 120/119, 121/119

Mapping: [1 3 8 6 7 14 8 11], 0 -4 -16 -9 -10 -29 -11 -19]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 426.225

Optimal ET sequence14cf, 31, 76e

Badness: 0.018839

Cuboctahedra

Subgroup: 2.3.5.7.11

Comma list: 81/80, 385/384, 1375/1372

Mapping: [1 3 8 6 -4], 0 -4 -16 -9 21]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 425.993

Optimal ET sequence14ce, 17ce, 31, 107b, 138b, 169be, 200be

Badness: 0.056826

Jerome

Jerome is related to Hieronymus' tuning; the Hieronymus generator is 51/20, or 139.316 cents. While the generator represents both 13/12 and 12/11, the POTE and Hieronymus generators are close to 13/12 in size.

Subgroup: 2.3.5.7

Comma list: 81/80, 17280/16807

Mapping: [1 1 0 2], 0 5 20 7]]

mapping generators: ~2, ~54/49

Wedgie⟨⟨ 5 20 7 20 -3 -40 ]]

Optimal tuning (POTE): ~2 = 1\1, ~54/49 = 139.343

Optimal ET sequence17c, 26, 43, 69, 112bd

Badness: 0.108656

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 99/98, 864/847

Mapping: [1 1 0 2 3], 0 5 20 7 4]]

Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 139.428

Optimal ET sequence17c, 26, 43, 69

Badness: 0.047914

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 81/80, 99/98, 144/143

Mapping: [1 1 0 2 3 3], 0 5 20 7 4 6]]

Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 139.387

Optimal ET sequence17c, 26, 43, 69

Badness: 0.029285

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 78/77, 81/80, 99/98, 144/143, 189/187

Mapping: [1 1 0 2 3 3 2], 0 5 20 7 4 6 18]]

Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 139.362

Optimal ET sequence17cg, 26, 43, 69

Badness: 0.020878

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 78/77, 81/80, 99/98, 120/119, 135/133, 144/143

Mapping: [1 1 0 2 3 3 2 1], 0 5 20 7 4 6 18 28]]

Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 139.313

Optimal ET sequence17cgh, 26, 43, 69

Badness: 0.018229

Meantritone

The meantritone temperament tempers out the mirkwai comma (16875/16807) and trimyna comma (50421/50000) in the 7-limit. In this temperament, three septimal tritones equals ~30/11 (an octave plus 15/11-wide super-fourth) and five of them equals ~16/3 (double-compound fourth). The name "meantritone" is a portmanteau of meantone and tritone, the latter is a generator of this temperament.

Subgroup: 2.3.5.7

Comma list: 81/80, 16875/16807

Mapping: [1 4 12 12], 0 -5 -20 -19]]

Wedgie⟨⟨ 5 20 19 20 16 -12 ]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 580.766

Optimal ET sequence2cd, 29cd, 31

Badness: 0.082239

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 99/98, 2541/2500

Mapping: [1 4 12 12 17], 0 -5 -20 -19 -28]]

Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 580.647

Optimal ET sequence2cde, 29cde, 31

Badness: 0.042869

Injera

Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a 15/14 semitone difference between a half-octave and a perfect fifth. Injera tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. 38EDO, which is two parallel 19edos, is an excellent tuning for injera.

Origin of the name

Subgroup: 2.3.5.7

Comma list: 50/49, 81/80

Mapping: [2 0 -8 -7], 0 1 4 4]]

mapping generators: ~7/5, ~3

Wedgie⟨⟨ 2 8 8 8 7 -4 ]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 694.375

Tuning ranges:

  • 7- and 9-odd-limit diamond monotone: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
  • 7-odd-limit diamond tradeoff: ~3/2 = [688.957, 701.955]
  • 9-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]

Optimal ET sequence12, 26, 38, 102bcd, 140bccd, 178bbccdd

Badness: 0.031130

Music

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 81/80

Mapping: [2 0 -8 -7 -12], 0 1 4 4 6]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 692.840

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
  • 11-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]

Optimal ET sequence12, 14c, 26, 90bce, 116bcce

Badness: 0.023124

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 81/80

Mapping: [2 0 -8 -7 -12 -21], 0 1 4 4 6 9]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 692.673

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = 692.308 (15\26)
  • 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]

Optimal ET sequence12f, 14cf, 26, 38e

Badness: 0.021565

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 45/44, 50/49, 78/77, 81/80, 85/84

Mapping: [2 0 -8 -7 -12 -21 5], 0 1 4 4 6 9 1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 692.487

Optimal ET sequence12f, 14cf, 26

Badness: 0.018358

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 45/44, 50/49, 57/56, 78/77, 81/80, 85/84

Mapping: [2 0 -8 -7 -12 -21 5 -1], 0 1 4 4 6 9 1 3]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 692.299

Optimal ET sequence12f, 14cf, 26

Badness: 0.015118

Enjera

Subgroup: 2.3.5.7.11.13

Comma list: 27/26, 40/39, 45/44, 50/49

Mapping: [2 0 -8 -7 -12 -2], 0 1 4 4 6 3]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 694.121

Optimal ET sequence12f, 14c, 26f, 38eff

Badness: 0.026542

Injerous

Subgroup: 2.3.5.7.11

Comma list: 33/32, 50/49, 55/54

Mapping: [2 0 -8 -7 10], 0 1 4 4 -1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 690.548

Optimal ET sequence12e, 14c, 26e, 40cee

Badness: 0.038577

Lahoh

Subgroup: 2.3.5.7.11

Comma list: 50/49, 56/55, 81/77

Mapping: [2 0 -8 -7 7], 0 1 4 4 0]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 699.001

Optimal ET sequence2cd, 10cd, 12

Badness: 0.043062

Teff

Teff (found by Mason Green) is to injera what mohajira is to meantone; it splits the generator in half in order to accommodate higher limit intervals, creating a half-octave quarter-tone temperament.

Subgroup: 2.3.5.7.11

Comma list: 50/49, 81/80, 864/847

Mapping: [2 1 -4 -3 8], 0 2 8 8 -1]]

mapping generators: ~7/5, ~16/11

Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 552.5303

Optimal ET sequence24d, 26, 50d

Badness: 0.070689

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 78/77, 81/80, 144/143

Mapping: [2 1 -4 -3 8 2], 0 2 8 8 -1 5]]

Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 552.5324

Optimal ET sequence24d, 26, 50d

Badness: 0.040047

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 50/49, 78/77, 81/80, 85/84, 144/143

Mapping: [2 1 -4 -3 8 2 6], 0 2 8 8 -1 5 2]]

Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 552.6558

Optimal ET sequence24d, 26

Badness: 0.029499

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 50/49, 57/56, 78/77, 81/80, 85/84, 144/143

Mapping: [2 1 -4 -3 8 2 6 2], 0 2 8 8 -1 5 2 6]]

Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 552.6382

Optimal ET sequence24d, 26

Badness: 0.023133

Pombe

Pombe (named after the African millet beer) is a variant of #Teff by Kaiveran Lugheidh that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall.

Subgroup: 2.3.5.7

Comma list: 81/80, 300125/294912

Mapping: [2 1 -4 11], 0 2 8 -5]]

mapping generators: ~735/512, ~35/24

Wedgie⟨⟨ 4 16 -10 16 -27 -68 ]]

Optimal tuning (POTE): ~735/512 = 1\2, ~48/35 = 552.2206

Optimal ET sequence24, 26, 50, 126bcd, 176bcdd, 226bbcdd

Badness: 0.116104

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 245/242, 385/384

Mapping: [2 1 -4 11 8], 0 2 8 -5 -1]]

Optimal tuning (POTE): ~99/70 = 1\2, ~11/8 = 552.0929

Optimal ET sequence24, 26, 50

Badness: 0.052099

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 105/104, 144/143, 245/242

Mapping: [2 1 -4 11 8 2], 0 2 8 -5 -1 5]]

Optimal tuning (POTE): ~99/70 = 1\2, ~11/8 = 552.1498

Optimal ET sequence24, 26, 50

Badness: 0.031039

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 81/80, 105/104, 144/143, 245/242, 273/272

Mapping: [2 1 -4 11 8 2 6], 0 2 8 -5 -1 5 2]]

Optimal tuning (POTE): ~17/12 = 1\2, ~11/8 = 552.1579

Optimal ET sequence24, 26, 50

Badness: 0.021260

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 81/80, 105/104, 133/132, 144/143, 171/170, 210/209

Mapping: [2 1 -4 11 8 2 6 2], 0 2 8 -5 -1 5 2 6]]

Optimal tuning (POTE): ~17/12 = 1\2, ~11/8 = 552.1196

Optimal ET sequence24, 26, 50

Badness: 0.016548

Orphic

Subgroup: 2.3.5.7

Comma list: 81/80, 5898240/5764801

Mapping: [2 5 12 7], 0 -4 -16 -3]]

Mapping generators: ~2401/1728, ~7/6

Wedgie⟨⟨ 8 32 6 32 -13 -76 ]]

Optimal tuning (POTE): ~2401/1728 = 1\2, ~7/6 = 275.794

Optimal ET sequence26, 48c, 74, 174bd, 248bbd

Badness: 0.258825

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 99/98, 73728/73205

Mapping: [2 5 12 7 6], 0 -4 -16 -3 2]]

Optimal tuning (POTE): ~363/256 = 1\2, ~7/6 = 275.762

Optimal ET sequence26, 48c, 74, 248bbd, 322bbdd

Badness: 0.101499

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 99/98, 144/143, 2200/2197

Mapping: [2 5 12 7 6 12], 0 -4 -16 -3 2 -10]]

Optimal tuning (POTE): ~55/39 = 1\2, ~7/6 = 275.774

Optimal ET sequence26, 48c, 74, 174bd, 248bbd, 322bbdd

Badness: 0.053482

Cloudtone

The cloudtone temperament (5&50) tempers out the cloudy comma, 16807/16384 and the syntonic comma, 81/80 in the 7-limit. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order.

Subgroup: 2.3.5.7

Comma list: 81/80, 16807/16384

Mapping: [5 0 -20 14], 0 1 4 0]]

mapping generators: ~8/7, ~3

Wedgie⟨⟨ 5 20 0 20 -14 -56 ]]

Optimal tuning (POTE): ~8/7 = 1\5, ~3/2 = 695.720

Optimal ET sequence5, 45, 50

Badness: 0.102256

11-limit

Subgroup: 2.3.5.7.11

Comma list: 81/80, 385/384, 2401/2376

Mapping: [5 0 -20 14 41], 0 1 4 0 -3]]

Optimal tuning (POTE): ~8/7 = 1\5, ~3/2 = 696.536

Optimal ET sequence5, 45, 50, 155bdd, 205bddd

Badness: 0.070378

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 81/80, 105/104, 144/143, 2401/2376

Mapping: [5 0 -20 14 41 -21], 0 1 4 0 -3 5]]

Optimal tuning (POTE): ~8/7 = 1\5, ~3/2 = 696.162

Optimal ET sequence5, 45f, 50

Badness: 0.048829