Pentacircle clan
The pentacircle clan of rank-3 temperaments tempers out the pentacircle comma, 896/891. This has the effect of identifying 14/11 at the Pythagorean major third.
For the rank-4 pentacircle temperament, see Rank-4 temperament #Pentacircle (896/891).
Parapythic
Parapyth, by the original definition, is the 2.3.7.11.13 subgroup temperament tempering out 352/351 and 364/363. We begin by looking at the 2.3.7.11 restriction thereof.
Subgroup: 2.3.7.11
Comma list: 896/891
Mapping: [⟨1 0 0 7], ⟨0 1 0 -4], ⟨0 0 1 1]]
- sval mapping generators: ~2, ~3, ~7
- CTE: ~2 = 1200.000, ~3/2 = 703.576, ~7/4 = 967.554
- error map: ⟨0.000 +1.621 -1.272 +1.937]
- POTE: ~2 = 1200.000, ~3/2 = 703.834, ~7/4 = 969.872
- error map: ⟨0.000 +1.879 +1.046 +3.216]
Optimal ET sequence: 12, 17, 36, 41, 58, 63, 104, 225e, 266e, 370bee, 699bbdeee
Badness: 0.0205 × 10-3
Overview to extensions
Subgroup extensions
By tempering out 896/891, we have mapped 14/11 to the major third, suggesting a slightly sharp fifth. This makes the minor third very close to the flat-of-Pythagorean 13/11, and extending the temperament to include harmonic 13 this way implies we temper out 352/351. In fact, 896/891 = (352/351)(364/363), so it is a very natural interpretation, giving rise to the 2.3.7.11.13 subgroup temperament shown below.
Full 11-limit extensions
The second comma in the comma list determines how we extend parapyth to include the harmonic 5.
Pele adds 441/440 and finds the harmonic 5 by equating the syntonic comma (81/80) with the septimal comma (64/63). Together with the slightly sharp fifth this extension makes for one of the most natural interpretations. Sensamagic adds 245/243 or 385/384, a traditional RTT favorite. Apollo adds 100/99 or 225/224, and is even simpler than sensamagic. Pentafrost adds 245/242. Uni adds 540/539. Melpomene adds 56/55 or 81/80. Terrapyth adds 585640/583443, a complex entry that finds the harmonic 5 at the triple augmented unison (AAA1). These all have the same lattice structure as parapyth.
Julius aka varda adds 176/175, splitting the octave into two. Parahemif adds 243/242, splitting the perfect fifth into two. Kujuku adds 14700/14641, splitting the perfect twelfth into two. Tolerant adds 2200/2187, splitting the ~33/32 into two. Finally, canta adds 472392/471625, splitting the ~14/9 into three.
Temperaments discussed elsewhere are:
- Melpomene → Didymus rank-3 family
- Apollo → Marvel family
- Sensamagic → Sensamagic family
- Pele → Hemifamity family
- Uni → Hemimage family
- Julius or varda → Diaschismic rank-3 family
- Parahemif → Rastmic rank-3 clan
- Canta → Canou family
Considered below are tolerant, kujuku, and terrapyth.
Parapyth
Subgroup: 2.3.7.11.13
Comma list: 352/351, 364/363
Sval mapping: [⟨1 0 0 7 12], ⟨0 1 0 -4 -7], ⟨0 0 1 1 1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~3/2 = 703.786, ~7/4 = 967.665
- POTE: ~2 = 1200.000, ~3/2 = 703.856, ~7/4 = 969.907
Optimal ET sequence: 12f, 17, 41, 46, 58, 87, 104, 266ef, 329bef, 370beef, 474beef, 595bdeeeff, 699bbdeeeff
Badness: 0.101 × 10-3
Etypyth
Subgroup: 2.3.7.11.13.17
Comma list: 352/351, 364/363, 442/441
Sval mapping: [⟨1 0 0 7 12 -13], ⟨0 1 0 -4 -7 9], ⟨0 0 1 1 1 1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~3/2 = 703.978, ~7/4 = 968.399
- POTE: ~2 = 1200.000, ~3/2 = 704.032, ~7/4 = 970.605
Optimal ET sequence: 12f, 17g, 29g, 41g, 46, 58, 75e, 104, 121, 225e
Badness: 0.325 × 10-3
Terrapyth
Terrapyth tempers out the leapday comma, and can be described as 29 & 46 & 121.
Subgroup: 2.3.5.7.11
Comma list: 896/891, 585640/583443
Mapping: [⟨1 0 -31 0 7], ⟨0 1 21 0 -4], ⟨0 0 0 1 1]]
- mapping generators: ~2, ~3, ~7
- CTE: ~2 = 1200.000, ~3/2 = 704.102, ~7/4 = 968.390
- error map: ⟨0.000 +2.147 -0.163 -0.436 +0.662]
- POTE: ~2 = 1200.000, ~3/2 = 704.181, ~7/4 = 970.622
- error map: ⟨0.000 +2.226 +1.496 +1.796 +2.578]
Optimal ET sequence: 17c, 29, 46, 92de, 121, 167, 288be
Badness: 5.35 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 364/363, 9295/9261
Mapping: [⟨1 0 -31 0 7 12], ⟨0 1 0 21 0 4 -7], ⟨0 0 0 1 1 1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~3/2 = 704.099, ~7/4 = 968.601
- POTE: ~2 = 1200.000, ~3/2 = 704.169, ~7/4 = 970.843
Optimal ET sequence: 17c, 29, 46, 75e, 92def, 121, 167, 288be
Badness: 2.48 × 10-3
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 352/351, 364/363, 442/441, 715/714
Mapping: [⟨1 0 -31 0 7 12 -13], ⟨0 1 0 21 0 4 -7 9], ⟨0 0 0 1 1 1 1 1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~3/2 = 704.096, ~7/4 = 968.504
- POTE: ~2 = 1200.000, ~3/2 = 704.163, ~7/4 = 970.662
Optimal ET sequence: 17cg, 29g, 46, 75e, 92defg, 121, 167, 288beg
Badness: 1.52 × 10-3
Pentafrost
Pentafrost tempers out the frostma in addition to 896/891 which also means that the schisma is tempered out, mapping prime 5 to 8 perfect fourths and -1 octaves.
Subgroup: 2.3.5.7.11
Mapping: [⟨1 0 15 0 7], ⟨0 1 -8 0 -4], ⟨0 0 0 1 1]]
- mapping generators: ~2, ~3, ~7
- CTE: ~2 = 1200.000, ~3/2 = 701.883, ~7/4 = 964.864
- error map: ⟨0.000 -0.072 -1.375 -3.962 +6.016]
- CWE: ~2 = 1200.000, ~3/2 = 701.903, ~7/4 = 964.614
- error map: ⟨0.000 -0.052 -1.541 -4.212 +5.683]
- CE: ~2 = 1200.000, ~3/2 = 702.006, ~7/4 = 964.085
- error map: ⟨0.000 +0.051 -2.364 -4.741 +4.741]
Optimal ET sequence: 12, 24, 29, 36, 41, 106d
Badness: 1.58 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 245/242, 352/351
Mapping: [⟨1 0 15 0 7 12], ⟨0 1 -8 0 -4 -7], ⟨0 0 0 1 1 1]]
- mapping generators: ~2, ~3, ~7
Optimal tunings:
- CTE: ~2 = 1200.000, ~3/2 = 702.106, ~7/4 = 962.655
- CWE: ~2 = 1200.000, ~3/2 = 702.145, ~7/4 = 962.175
- CE: ~2 = 1200.000, ~3/2 = 702.360, ~7/4 = 962.210
Optimal ET sequence: 12f, 24, 29, 41
Badness: 1.59 × 10-3
Permafrost
Subgroup: 2.3.5.7.11.13
Comma list: 144/143, 245/242, 896/891
Mapping: [⟨1 0 15 0 7 -3], ⟨0 1 -8 0 -4 6], ⟨0 0 0 1 1 -1]]
- mapping generators: ~2, ~3, ~7
Optimal tunings:
- CTE: 2 = 1200.000, ~3/2 = 701.783, ~7/4 = 966.113
- CWE: 2 = 1200.000, ~3/2 = 701.753, ~7/4 = 966.445
- CE: 2 = 1200.000, ~3/2 = 701.770, ~7/4 = 965.771
Optimal ET sequence: 12, 17, 24, 36, 41, 77e
Badness: 2.62 × 10-3
Tolerant
7-limit
Subgroup: 2.3.5.7
Comma list: 179200/177147
Mapping: [⟨1 0 0 -10], ⟨0 1 0 11], ⟨0 0 1 -2]]
- mapping generators: ~2, ~3, ~5
- CTE: ~2 = 1200.000, ~3/2 = 703.608, ~5/4 = 385.669
- error map: ⟨0.000 +1.653 -0.645 -0.472]
- POTE: ~2 = 1200.000, ~3/2 = 703.957, ~5/4 = 386.886
- error map: ⟨0.000 +2.002 +0.573 +0.930]
Optimal ET sequence: 34d, 39d, 41, 80, 87, 121, 167, 208, 329b, 375b, 496bd
Badness: 0.165 × 10-3
11-limit
Subgroup: 2.3.5.7.11
Comma list: 896/891, 2200/2187
Mapping: [⟨1 0 0 -10 -3], ⟨0 1 0 11 7], ⟨0 0 1 -2 -2]]
- CTE: ~2 = 1200.000, ~3/2 = 703.642, ~5/4 = 386.223
- error map: ⟨0.000 +1.687 -0.091 -1.207 +1.732]
- POTE: ~2 = 1200.000, ~3/2 = 704.041, ~5/4 = 387.293
- error map: ⟨0.000 +2.086 +0.979 +1.042 +2.385]
Optimal ET sequence: 34d, 39d, 41, 80, 87, 121, 167, 208, 288be, 375be
Badness: 1.039 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 352/351, 364/363
Mapping: [⟨1 0 0 -10 -3 2], ⟨0 1 0 11 7 4], ⟨0 0 1 -2 -2 -2]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~3/2 = 703.705, ~5/4 = 386.616
- POTE: ~2 = 1200.000, ~3/2 = 703.961, ~5/4 = 386.983
Optimal ET sequence: 34d, 41, 46, 75e, 80, 87, 121, 167, 208, 375be
Badness: 1.02 × 10-3
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 256/255, 325/324, 352/351, 364/363
Mapping: [⟨1 0 0 -10 -3 2 8], ⟨0 1 0 11 7 4 -1], ⟨0 0 1 -2 -2 -2 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~3/2 = 703.891, ~5/4 = 387.424
- POTE: ~2 = 1200.000, ~3/2 = 704.083, ~5/4 = 387.327
Optimal ET sequence: 34d, 41, 46, 75e, 80, 87, 121, 167, 288beg, 496bdeefggg
Badness: 0.982 × 10-3
Kujuku
Kujuku splits the perfect twelfth into two. Scott Dakota has aliased this temperament SQPP (for semiquartal parapyth).
Subgroup: 2.3.5.7.11
Comma list: 896/891, 14700/14641
Mapping: [⟨1 0 0 -13 -6], ⟨0 2 0 17 9], ⟨0 0 1 1 1]]
- mapping generators: ~2, ~121/70, ~5
- CTE: ~2 = 1200.000, ~121/70 = 951.837, ~5/4 = 386.405
- error map: ⟨0.000 +1.718 +0.091 -1.198 +1.617]
- CWE: ~2 = 1200.000, ~121/70 = 951.871, ~5/4 = 387.243
- error map: ⟨0.000 +1.787 +0.930 +0.220 +2.762]
Optimal ET sequence: 24, 29, 34d, 53d, 58, 87, 121, 145, 179e, 208, 266e
Badness: 2.26 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 364/363, 676/675
Mapping: [⟨1 0 0 -13 -6 -1], ⟨0 2 0 17 9 3], ⟨0 0 1 1 1 1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~26/15 = 951.852, ~5/4 = 386.089
- CWE: ~2 = 1200.000, ~26/15 = 951.881, ~5/4 = 387.104
Optimal ET sequence: 24, 29, 34d, 53d, 58, 87, 121, 179ef, 208, 266ef, 474beef
Badness: 1.06 × 10-3
Complexity spectrum: 15/13, 4/3, 13/10, 9/8, 13/11, 15/11, 12/11, 11/9, 11/8, 14/11, 16/13, 16/15, 11/10, 13/12, 9/7, 5/4, 18/13, 7/6, 6/5, 8/7, 10/9, 14/13, 15/14, 7/5
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 256/255, 352/351, 364/363, 676/675
Mapping: [⟨1 0 0 -13 -6 -1 8], ⟨0 2 0 17 9 3 -2], ⟨0 0 1 1 1 1 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~26/15 = 951.802, ~5/4 = 386.991
- CWE: ~2 = 1200.000, ~26/15 = 951.879, ~5/4 = 387.723
Optimal ET sequence: 24, 34d, 58, 87, 121, 179ef, 208g, 266efg
Badness: 1.24 × 10-3
Trienparapyth
Trienparapyth can be described as the no-17's 23-limit 80 & 87 & 109 temperament. It splits the ~4/3 generator of parapythic into three ~11/10's by tempering out 4000/3993 = S10/S11 in the 11-limit and it interprets (11/10)2 accurately as 23/19 in its full subgroup, tempering out 2300/2299 = S20/S22, or optionally less accurately as ~17/14, though because this mapping only really makes much sense in 80edo it is not included here; however, its connection to parapyth structure comes from later in the generator chain; specifically, from (11/10)7 onwards. We may simplify (11/10)7 as (4/3)2(11/10) = 88/45, the octave-complement of 45/44. Notice that parapythic wants a slightly flat ~4/3 corresponding to an 11/10 being tuned anywhere from around just (in an extremely sharp-for-parapyth tuning) to a little less than 1-cent sharp, a very narrow tuning range; therefore 88/45 is flattened so that 2/(11/10)7~45/44 is sharpened so that we can equate it with 40/39, tempering out (40/39)/(45/44) = 352/351, and because we know we want prime 19 later on, we equate this with 39/38 by tempering out the pinkanberry, 1521/1520 = S39. Next, for eight generator steps, observe that (11/10)9/(11/10)/2 = (4/3)3/(11/10)/2 = (32/27)/(11/10) = 320/297 is sharp of 15/14 by 896/891, which is reasonable to equate it with because in an optimal tuning 11/10 will be very slightly sharp so that the interval of eight generator steps is eight times as sharp. Thus, tempering out 896/891 and 4000/3993 defines trienparapyth in the 11-limit, which also tempers out 3388/3375, the 13-limit adds 352/351, the no-17's 19-limit equates 40/39 with 39/38 and the no-17's 23-limit equates 23/19 with (11/10)2 as already mentioned.
Structurally, trienparapyth is three copies of parapyth with the independent generator of 7 connected to an equivalent independent generator for 5 through the ~15/7 reached at (11/10)8 so that ~20/7 is reached at (11/10)11, and this is how the last generator can be either 5 or 7.
Subgroup: 2.3.5.7.11
Comma list: 896/891, 3388/3375
Mapping: [⟨1 2 0 2 1], ⟨0 -3 0 -11 1], ⟨0 0 1 1 1]]
- mapping generators: ~2, ~11/10, ~5
- CTE: ~2 = 1200.000, ~11/10 = 165.413, ~5/4 = 386.887
- error map: ⟨0.000 +1.805 +0.574 -1.486 +0.983]
- CWE: ~2 = 1200.000, ~11/10 = 165.359, ~5/4 = 387.809
- error map: ⟨0.000 +1.967 +1.496 +0.031 +1.851]
Optimal ET sequence: 7d, 14e, 15d, 22, 51, 58, 80, 87, 145, 167, 312ce, 479bce
Badness: 1.26 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 364/363, 1001/1000
Mapping: [⟨1 2 0 2 1 0], ⟨0 -3 0 -11 1 10], ⟨0 0 1 1 1 1]]
- mapping generators: ~2, ~11/10, ~5
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 165.398, ~5/4 = 386.791
- CWE: ~2 = 1200.000, ~11/10 = 165.380, ~5/4 = 387.876
Optimal ET sequence: 7d, 22, 29, 51f, 51cde, 58, 80, 87, 145, 167, 225ce, 254, 312ce
Badness: 1.23 × 10-3
2.3.5.7.11.13.19 subgroup
Note 109edo is a good patent val tuning not listed in the optimal ET sequence here.
Subgroup: 2.3.5.7.11.13.19
Comma list: 286/285, 352/351, 364/363, 400/399
Mapping: [⟨1 2 0 2 1 0 0], ⟨0 -3 0 -11 1 10 14], ⟨0 0 1 1 1 1 1]]
- mapping generators: ~2, ~11/10, ~5
Optimal tunings:
- CTE: ~2 = 1200.000, ~11/10 = 165.299, ~5/4 = 386.315
- CWE: ~2 = 1200.000, ~11/10 = 165.298, ~5/4 = 387.745
Optimal ET sequence: 7d, 22, 29, 51fh, 51cde, 58h, 80, 87, 138cdeh, 167h
Badness: 1.22 × 10-3
2.3.5.7.11.13.19.23 subgroup
Subgroup: 2.3.5.7.11.13.19.23
Comma list: 208/207, 286/285, 352/351, 364/363, 400/399
Mapping: [⟨1 2 0 2 1 0 0 0], ⟨0 -3 0 -11 1 10 14 16], ⟨0 0 1 1 1 1 1 1]]
- mapping generators: ~2, ~11/10, ~5
Optimal tunings
- CTE: ~2 = 1200.000, ~11/10 = 165.258, ~5/4 = 386.145
- CWE: ~2 = 1200.000, ~11/10 = 165.268, ~5/4 = 387.724
Optimal ET sequence: 22i, 29, 51fhi, 51cde, 58hi, 80, 87, 109, 138cdehi, 167hi
Badness: 1.04 × 10-3