7L 13s
↖ 6L 12s | ↑ 7L 12s | 8L 12s ↗ |
← 6L 13s | 7L 13s | 8L 13s → |
↙ 6L 14s | ↓ 7L 14s | 8L 14s ↘ |
┌╥┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬┐ │║│║││║││║││║││║││║│││ ││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
ssLssLssLssLssLssLsL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
7L 13s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 13 small steps, repeating every octave. 7L 13s is a grandchild scale of 6L 1s, expanding it by 13 tones. Generators that produce this scale range from 1020 ¢ to 1028.6 ¢, or from 171.4 ¢ to 180 ¢.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
![]() |
MOS data is deprecated. Please use the following templates individually: MOS intervals, MOS genchain, and MOS mode degrees |
Tuning spectrum
Tetracot / enipucrop range. See also 7L 6s, 7L 13s, and 13L 7s.
Generator(edo) | Cents | Step ratio | Comments | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | ||||||||
17\20 | 1020.000 | 180.000 | 1:1 | 1.000 | Equalized 7L 13s | ||||||
108\127 | 1020.472 | 179.528 | 7:6 | 1.167 | |||||||
91\107 | 1020.561 | 179.439 | 6:5 | 1.200 | |||||||
165\194 | 1020.619 | 179.381 | 11:9 | 1.222 | |||||||
74\87 | 1020.690 | 179.310 | 5:4 | 1.250 | |||||||
205\241 | 1020.747 | 179.253 | 14:11 | 1.273 | |||||||
131\154 | 1020.779 | 179.221 | 9:7 | 1.286 | |||||||
188\221 | 1020.814 | 179.186 | 13:10 | 1.300 | |||||||
57\67 | 1020.896 | 179.104 | 4:3 | 1.333 | Supersoft 7L 13s | ||||||
211\248 | 1020.968 | 179.032 | 15:11 | 1.364 | |||||||
154\181 | 1020.994 | 179.006 | 11:8 | 1.375 | |||||||
251\295 | 1021.017 | 178.983 | 18:13 | 1.385 | |||||||
97\114 | 1021.053 | 178.947 | 7:5 | 1.400 | |||||||
234\275 | 1021.091 | 178.909 | 17:12 | 1.417 | |||||||
137\161 | 1021.118 | 178.882 | 10:7 | 1.429 | |||||||
177\208 | 1021.154 | 178.846 | 13:9 | 1.444 | |||||||
40\47 | 1021.277 | 178.723 | 3:2 | 1.500 | Soft 7L 13s | ||||||
183\215 | 1021.395 | 178.605 | 14:9 | 1.556 | |||||||
143\168 | 1021.429 | 178.571 | 11:7 | 1.571 | |||||||
246\289 | 1021.453 | 178.547 | 19:12 | 1.583 | |||||||
103\121 | 1021.488 | 178.512 | 8:5 | 1.600 | |||||||
269\316 | 1021.519 | 178.481 | 21:13 | 1.615 | |||||||
166\195 | 1021.538 | 178.462 | 13:8 | 1.625 | |||||||
229\269 | 1021.561 | 178.439 | 18:11 | 1.636 | |||||||
63\74 | 1021.622 | 178.378 | 5:3 | 1.667 | Semisoft 7L 13s | ||||||
212\249 | 1021.687 | 178.313 | 17:10 | 1.700 | |||||||
149\175 | 1021.714 | 178.286 | 12:7 | 1.714 | |||||||
235\276 | 1021.739 | 178.261 | 19:11 | 1.727 | |||||||
86\101 | 1021.782 | 178.218 | 7:4 | 1.750 | |||||||
195\229 | 1021.834 | 178.166 | 16:9 | 1.778 | |||||||
109\128 | 1021.875 | 178.125 | 9:5 | 1.800 | |||||||
132\155 | 1021.935 | 178.065 | 11:6 | 1.833 | |||||||
23\27 | 1022.222 | 177.778 | 2:1 | 2.000 | Basic 7L 13s Scales with tunings softer than this are proper | ||||||
121\142 | 1022.535 | 177.465 | 11:5 | 2.200 | |||||||
98\115 | 1022.609 | 177.391 | 9:4 | 2.250 | Wollemia | ||||||
173\203 | 1022.660 | 177.340 | 16:7 | 2.286 | |||||||
75\88 | 1022.727 | 177.273 | 7:3 | 2.333 | Ponens | ||||||
202\237 | 1022.785 | 177.215 | 19:8 | 2.375 | |||||||
127\149 | 1022.819 | 177.181 | 12:5 | 2.400 | |||||||
179\210 | 1022.857 | 177.143 | 17:7 | 2.429 | |||||||
52\61 | 1022.951 | 177.049 | 5:2 | 2.500 | Semihard 7L 13s | ||||||
185\217 | 1023.041 | 176.959 | 18:7 | 2.571 | |||||||
133\156 | 1023.077 | 176.923 | 13:5 | 2.600 | |||||||
214\251 | 1023.108 | 176.892 | 21:8 | 2.625 | |||||||
81\95 | 1023.158 | 176.842 | 8:3 | 2.667 | Modus | ||||||
191\224 | 1023.214 | 176.786 | 19:7 | 2.714 | |||||||
110\129 | 1023.256 | 176.744 | 11:4 | 2.750 | |||||||
139\163 | 1023.313 | 176.687 | 14:5 | 2.800 | |||||||
29\34 | 1023.529 | 176.471 | 3:1 | 3.000 | Hard 7L 13s | ||||||
122\143 | 1023.776 | 176.224 | 13:4 | 3.250 | |||||||
93\109 | 1023.853 | 176.147 | 10:3 | 3.333 | Tetracot | ||||||
157\184 | 1023.913 | 176.087 | 17:5 | 3.400 | |||||||
64\75 | 1024.000 | 176.000 | 7:2 | 3.500 | |||||||
163\191 | 1024.084 | 175.916 | 18:5 | 3.600 | |||||||
99\116 | 1024.138 | 175.862 | 11:3 | 3.667 | Bunya | ||||||
134\157 | 1024.204 | 175.796 | 15:4 | 3.750 | |||||||
35\41 | 1024.390 | 175.610 | 4:1 | 4.000 | Superhard 7L 13s Monkey | ||||||
111\130 | 1024.615 | 175.385 | 13:3 | 4.333 | |||||||
76\89 | 1024.719 | 175.281 | 9:2 | 4.500 | Sesquiquartififths | ||||||
117\137 | 1024.818 | 175.182 | 14:3 | 4.667 | |||||||
41\48 | 1025.000 | 175.000 | 5:1 | 5.000 | |||||||
88\103 | 1025.243 | 174.757 | 11:2 | 5.500 | |||||||
47\55 | 1025.455 | 174.545 | 6:1 | 6.000 | |||||||
53\62 | 1025.806 | 174.194 | 7:1 | 7.000 | Enipucrop ↓ | ||||||
6\7 | 1028.571 | 171.429 | 1:0 | → ∞ | Collapsed 7L 13s |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |