Diaschismic family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Tags: Mobile edit Mobile web edit
m Units
Line 15: Line 15:
: mapping generators: ~45/32, ~3
: mapping generators: ~45/32, ~3


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~3/2 = 704.898
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~3/2 = 704.898{{c}}


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 49: Line 49:
Comma list: 136/135, 256/255
Comma list: 136/135, 256/255


Sval mapping: {{mapping| 2 0 11 5 | 0 1 -2 1 }}
Subgroup-val mapping: {{mapping| 2 0 11 5 | 0 1 -2 1 }}


: mapping generators: ~17/12, ~3
: mapping generators: ~17/12, ~3


Optimal tuning (CTE): ~17/12 = 600.000, ~3/2 = 705.1272
Optimal tuning (CTE): ~17/12 = 600.0000{{c}}, ~3/2 = 705.1272{{c}}


{{Optimal ET sequence|legend=0| 10, 12, 22, 34, 80, 114, 194bc }}
{{Optimal ET sequence|legend=0| 10, 12, 22, 34, 80, 114, 194bc }}
Line 73: Line 73:
{{Mapping|legend=1| 2 0 11 31 | 0 1 -2 -8 }}
{{Mapping|legend=1| 2 0 11 31 | 0 1 -2 -8 }}


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~3/2 = 703.681
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~3/2 = 703.681{{c}}


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 90: Line 90:
Mapping: {{mapping| 2 0 11 31 45 | 0 1 -2 -8 -12 }}
Mapping: {{mapping| 2 0 11 31 45 | 0 1 -2 -8 -12 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~3/2 = 703.714
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~3/2 = 703.714{{c}}


Tuning ranges:  
Tuning ranges:  
Line 107: Line 107:
Mapping: {{mapping| 2 0 11 31 45 55 | 0 1 -2 -8 -12 -15 }}
Mapping: {{mapping| 2 0 11 31 45 55 | 0 1 -2 -8 -12 -15 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~3/2 = 703.704
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~3/2 = 703.704{{c}}


Tuning ranges:  
Tuning ranges:  
Line 125: Line 125:
Mapping: {{mapping| 2 0 11 31 45 55 5 | 0 1 -2 -8 -12 -15 1 }}
Mapping: {{mapping| 2 0 11 31 45 55 5 | 0 1 -2 -8 -12 -15 1 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~3/2 = 703.812
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~3/2 = 703.812{{c}}


Tuning ranges:  
Tuning ranges:  
Line 144: Line 144:
Sval mapping: {{mapping| 2 0 11 31 45 55 5 63 | 0 1 -2 -8 -12 -15 1 -17 }}
Sval mapping: {{mapping| 2 0 11 31 45 55 5 63 | 0 1 -2 -8 -12 -15 1 -17 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~3/2 = 703.870
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~3/2 = 703.870{{c}}


{{Optimal ET sequence|legend=0| 46, 58i, 104ci }}
{{Optimal ET sequence|legend=0| 46, 58i, 104ci }}
Line 161: Line 161:
{{Mapping|legend=1| 2 0 11 12 | 0 1 -2 -2 }}
{{Mapping|legend=1| 2 0 11 12 | 0 1 -2 -2 }}


[[Optimal tuning]] ([[POTE]]): ~7/5 = 600.000, ~3/2 = 707.048
[[Optimal tuning]] ([[POTE]]): ~7/5 = 600.000{{c}}, ~3/2 = 707.048{{c}}


[[Tuning ranges]]:
[[Tuning ranges]]:
Line 178: Line 178:
Mapping: {{mapping| 2 0 11 12 26 | 0 1 -2 -2 -6 }}
Mapping: {{mapping| 2 0 11 12 26 | 0 1 -2 -2 -6 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 706.885
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 706.885{{c}}


Tuning ranges:
Tuning ranges:
Line 195: Line 195:
Mapping: {{mapping| 2 0 11 12 26 1 | 0 1 -2 -2 -6 2 }}
Mapping: {{mapping| 2 0 11 12 26 1 | 0 1 -2 -2 -6 2 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 708.919
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 708.919{{c}}


{{Optimal ET sequence|legend=0| 10e, 12, 22 }}
{{Optimal ET sequence|legend=0| 10e, 12, 22 }}
Line 208: Line 208:
Mapping: {{mapping| 2 0 11 12 26 1 5 | 0 1 -2 -2 -6 2 1 }}
Mapping: {{mapping| 2 0 11 12 26 1 5 | 0 1 -2 -2 -6 2 1 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 708.806
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 708.806{{c}}


{{Optimal ET sequence|legend=0| 10e, 12, 22 }}
{{Optimal ET sequence|legend=0| 10e, 12, 22 }}
Line 221: Line 221:
Mapping: {{mapping| 2 0 11 12 26 36 | 0 1 -2 -2 -6 -9 }}
Mapping: {{mapping| 2 0 11 12 26 36 | 0 1 -2 -2 -6 -9 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 706.133
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 706.133{{c}}


{{Optimal ET sequence|legend=0| 12f, 22, 34d }}
{{Optimal ET sequence|legend=0| 12f, 22, 34d }}
Line 234: Line 234:
Mapping: {{mapping| 2 0 11 12 26 36 5 | 0 1 -2 -2 -6 -9 1 }}
Mapping: {{mapping| 2 0 11 12 26 36 5 | 0 1 -2 -2 -6 -9 1 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 706.410
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 706.410{{c}}


{{Optimal ET sequence|legend=0| 12f, 22, 34d }}
{{Optimal ET sequence|legend=0| 12f, 22, 34d }}
Line 247: Line 247:
Mapping: {{mapping| 2 0 11 12 26 17 | 0 1 -2 -2 -6 -3 }}
Mapping: {{mapping| 2 0 11 12 26 17 | 0 1 -2 -2 -6 -3 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 707.450
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 707.450{{c}}


{{Optimal ET sequence|legend=0| 10e, 12f, 22f }}
{{Optimal ET sequence|legend=0| 10e, 12f, 22f }}
Line 260: Line 260:
Mapping: {{mapping| 2 0 11 12 26 17 5 | 0 1 -2 -2 -6 -3 1 }}
Mapping: {{mapping| 2 0 11 12 26 17 5 | 0 1 -2 -2 -6 -3 1 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 707.947
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 707.947{{c}}


{{Optimal ET sequence|legend=0| 10e, 12f, 22f }}
{{Optimal ET sequence|legend=0| 10e, 12f, 22f }}
Line 273: Line 273:
Mapping: {{mapping| 2 0 11 12 -9 | 0 1 -2 -2 5 }}
Mapping: {{mapping| 2 0 11 12 -9 | 0 1 -2 -2 5 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 709.578
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 709.578{{c}}


Tuning ranges:
Tuning ranges:
Line 290: Line 290:
Mapping: {{mapping| 2 0 11 12 -9 1 | 0 1 -2 -2 5 2 }}
Mapping: {{mapping| 2 0 11 12 -9 1 | 0 1 -2 -2 5 2 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 710.240
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 710.240{{c}}


{{Optimal ET sequence|legend=0| 10, 22, 54f, 76bdff }}
{{Optimal ET sequence|legend=0| 10, 22, 54f, 76bdff }}
Line 303: Line 303:
Mapping: {{mapping| 2 0 11 12 -9 1 5 | 0 1 -2 -2 5 2 1 }}
Mapping: {{mapping| 2 0 11 12 -9 1 5 | 0 1 -2 -2 5 2 1 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 710.221
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 710.221{{c}}


{{Optimal ET sequence|legend=0| 10, 22, 54f, 76bdff }}
{{Optimal ET sequence|legend=0| 10, 22, 54f, 76bdff }}
Line 316: Line 316:
Mapping: {{mapping| 2 0 11 12 -9 17 | 0 1 -2 -2 5 -3 }}
Mapping: {{mapping| 2 0 11 12 -9 17 | 0 1 -2 -2 5 -3 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 710.818
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 710.818{{c}}


{{Optimal ET sequence|legend=0| 10, 22f, 32f, 54ff }}
{{Optimal ET sequence|legend=0| 10, 22f, 32f, 54ff }}
Line 329: Line 329:
Mapping: {{mapping| 2 0 11 12 -9 17 5 | 0 1 -2 -2 5 -3 1 }}
Mapping: {{mapping| 2 0 11 12 -9 17 5 | 0 1 -2 -2 5 -3 1 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 710.866
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 710.866{{c}}


{{Optimal ET sequence|legend=0| 10, 22f, 32f, 54ff }}
{{Optimal ET sequence|legend=0| 10, 22f, 32f, 54ff }}
Line 342: Line 342:
Mapping: {{mapping| 2 0 11 12 7 | 0 1 -2 -2 0 }}
Mapping: {{mapping| 2 0 11 12 7 | 0 1 -2 -2 0 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 705.524
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 705.524{{c}}


{{Optimal ET sequence|legend=0| 10, 12, 22e, 34dee }}
{{Optimal ET sequence|legend=0| 10, 12, 22e, 34dee }}
Line 355: Line 355:
Mapping: {{mapping| 2 0 11 12 7 17 | 0 1 -2 -2 0 -3 }}
Mapping: {{mapping| 2 0 11 12 7 17 | 0 1 -2 -2 0 -3 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 707.442
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 707.442{{c}}


{{Optimal ET sequence|legend=0| 10, 12f, 22ef }}
{{Optimal ET sequence|legend=0| 10, 12f, 22ef }}
Line 368: Line 368:
Mapping: {{mapping| 2 0 11 12 7 17 5 | 0 1 -2 -2 0 -3 1 }}
Mapping: {{mapping| 2 0 11 12 7 17 5 | 0 1 -2 -2 0 -3 1 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 708.544
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~3/2 = 708.544{{c}}


{{Optimal ET sequence|legend=0| 10, 12f, 22ef }}
{{Optimal ET sequence|legend=0| 10, 12f, 22ef }}
Line 381: Line 381:
Mapping: {{mapping| 2 1 9 10 8 | 0 2 -4 -4 -1 }}
Mapping: {{mapping| 2 1 9 10 8 | 0 2 -4 -4 -1 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~11/8 = 546.383
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~11/8 = 546.383{{c}}


{{Optimal ET sequence|legend=0| 20, 22, 68d, 90d }}
{{Optimal ET sequence|legend=0| 20, 22, 68d, 90d }}
Line 394: Line 394:
Mapping: {{mapping| 2 0 11 12 -1 | 0 2 -4 -4 5 }}
Mapping: {{mapping| 2 0 11 12 -1 | 0 2 -4 -4 5 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~55/32 = 953.093
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~55/32 = 953.093{{c}}


{{Optimal ET sequence|legend=0| 10, 24d, 34d }}
{{Optimal ET sequence|legend=0| 10, 24d, 34d }}
Line 407: Line 407:
Mapping: {{mapping| 2 0 11 12 -1 9 | 0 2 -4 -4 5 -1 }}
Mapping: {{mapping| 2 0 11 12 -1 9 | 0 2 -4 -4 5 -1 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~26/15 = 953.074
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~26/15 = 953.074{{c}}


{{Optimal ET sequence|legend=0| 10, 24d, 34d }}
{{Optimal ET sequence|legend=0| 10, 24d, 34d }}
Line 420: Line 420:
Mapping: {{mapping| 2 0 11 12 -1 9 5 | 0 2 -4 -4 5 -1 2 }}
Mapping: {{mapping| 2 0 11 12 -1 9 5 | 0 2 -4 -4 5 -1 2 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~26/15 = 953.210
Optimal tuning (POTE): ~7/5 = 600.000{{c}}, ~26/15 = 953.210{{c}}


{{Optimal ET sequence|legend=0| 10, 24d, 34d }}
{{Optimal ET sequence|legend=0| 10, 24d, 34d }}
Line 437: Line 437:
{{Mapping|legend=1| 2 0 11 -42 | 0 1 -2 15 }}
{{Mapping|legend=1| 2 0 11 -42 | 0 1 -2 15 }}


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~3/2 = 704.814
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~3/2 = 704.814{{c}}


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 454: Line 454:
Mapping: {{mapping| 2 0 11 -42 -28 | 0 1 -2 15 11 }}
Mapping: {{mapping| 2 0 11 -42 -28 | 0 1 -2 15 11 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~3/2 = 704.856
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~3/2 = 704.856{{c}}


Tuning ranges:  
Tuning ranges:  
Line 471: Line 471:
Mapping: {{mapping| 2 0 11 -42 -28 -18 | 0 1 -2 15 11 8 }}
Mapping: {{mapping| 2 0 11 -42 -28 -18 | 0 1 -2 15 11 8 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~3/2 = 704.881
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~3/2 = 704.881{{c}}


Tuning ranges:  
Tuning ranges:  
Line 489: Line 489:
Mapping: {{mapping| 2 0 11 -42 -28 -18 5 | 0 1 -2 15 11 8 1 }}
Mapping: {{mapping| 2 0 11 -42 -28 -18 5 | 0 1 -2 15 11 8 1 }}


Optimal tuning (POTE): ~17/12 = 1\2, ~3/2 = 704.840
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~3/2 = 704.840{{c}}


Tuning ranges:  
Tuning ranges:  
Line 506: Line 506:
Mapping: {{mapping| 2 0 11 -42 -28 -18 5 -55 | 0 1 -2 15 11 8 1 20 }}
Mapping: {{mapping| 2 0 11 -42 -28 -18 5 -55 | 0 1 -2 15 11 8 1 20 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~3/2 = 704.905
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~3/2 = 704.905{{c}}


{{Optimal ET sequence|legend=0| 34dh, 46, 80, 206cd }}
{{Optimal ET sequence|legend=0| 34dh, 46, 80, 206cd }}
Line 521: Line 521:
Mapping: {{mapping| 2 0 11 -42 -28 -18 5 -55 -10 | 0 1 -2 15 11 8 1 20 6 }}
Mapping: {{mapping| 2 0 11 -42 -28 -18 5 -55 -10 | 0 1 -2 15 11 8 1 20 6 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~3/2 = 704.899
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~3/2 = 704.899{{c}}


{{Optimal ET sequence|legend=0| 34dh, 46, 80, 206cd }}
{{Optimal ET sequence|legend=0| 34dh, 46, 80, 206cd }}
Line 534: Line 534:
Mapping: {{mapping| 2 0 11 -42 -28 -18 5 -55 -10 -76 | 0 1 -2 15 11 8 1 20 6 27 }}
Mapping: {{mapping| 2 0 11 -42 -28 -18 5 -55 -10 -76 | 0 1 -2 15 11 8 1 20 6 27 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~3/2 = 704.906
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~3/2 = 704.906{{c}}


{{Optimal ET sequence|legend=0| 34dhj, 46, 80, 206cd }}
{{Optimal ET sequence|legend=0| 34dhj, 46, 80, 206cd }}
Line 547: Line 547:
Mapping: {{mapping| 2 0 11 -42 -28 -18 5 -55 -10 -76 48 | 0 1 -2 15 11 8 1 20 6 27 -12 }}
Mapping: {{mapping| 2 0 11 -42 -28 -18 5 -55 -10 -76 48 | 0 1 -2 15 11 8 1 20 6 27 -12 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~3/2 = 704.817
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~3/2 = 704.817{{c}}


{{Optimal ET sequence|legend=0| 46, 80, 126 }}
{{Optimal ET sequence|legend=0| 46, 80, 126 }}
Line 562: Line 562:
{{Mapping|legend=1| 2 0 11 -23 | 0 1 -2 9 }}
{{Mapping|legend=1| 2 0 11 -23 | 0 1 -2 9 }}


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~3/2 = 707.571
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~3/2 = 707.571{{c}}


{{Optimal ET sequence|legend=1| 22, 56, 78, 134b, 212b, 290bb }}
{{Optimal ET sequence|legend=1| 22, 56, 78, 134b, 212b, 290bb }}
Line 575: Line 575:
Mapping: {{mapping| 2 0 11 -23 26 | 0 1 -2 9 -6 }}
Mapping: {{mapping| 2 0 11 -23 26 | 0 1 -2 9 -6 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~3/2 = 707.609
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~3/2 = 707.609{{c}}


{{Optimal ET sequence|legend=0| 22, 56, 78, 212be, 290bbe }}
{{Optimal ET sequence|legend=0| 22, 56, 78, 212be, 290bbe }}
Line 588: Line 588:
Mapping: {{mapping| 2 0 11 -23 26 -18 | 0 1 -2 9 -6 8 }}
Mapping: {{mapping| 2 0 11 -23 26 -18 | 0 1 -2 9 -6 8 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~3/2 = 707.167
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~3/2 = 707.167{{c}}


{{Optimal ET sequence|legend=0| 22f, 34, 56f }}
{{Optimal ET sequence|legend=0| 22f, 34, 56f }}
Line 601: Line 601:
Mapping: {{mapping| 2 0 11 -23 26 -18 5 | 0 1 -2 9 -6 8 1}}
Mapping: {{mapping| 2 0 11 -23 26 -18 5 | 0 1 -2 9 -6 8 1}}


Optimal tuning (POTE): ~17/12 = 600.000, ~3/2 = 707.155
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~3/2 = 707.155{{c}}


{{Optimal ET sequence|legend=0| 22f, 34, 56f }}
{{Optimal ET sequence|legend=0| 22f, 34, 56f }}
Line 614: Line 614:
Mapping: {{mapping| 2 0 11 -23 26 36 | 0 1 -2 9 -6 -9 }}
Mapping: {{mapping| 2 0 11 -23 26 36 | 0 1 -2 9 -6 -9 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~3/2 = 707.257
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~3/2 = 707.257{{c}}


{{Optimal ET sequence|legend=0| 22, 34, 56 }}
{{Optimal ET sequence|legend=0| 22, 34, 56 }}
Line 627: Line 627:
Mapping: {{mapping| 2 0 11 -23 26 36 5 | 0 1 -2 9 -6 -9 1 }}
Mapping: {{mapping| 2 0 11 -23 26 36 5 | 0 1 -2 9 -6 -9 1 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~3/2 = 707.252
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~3/2 = 707.252{{c}}


{{Optimal ET sequence|legend=0| 22, 34, 56 }}
{{Optimal ET sequence|legend=0| 22, 34, 56 }}
Line 644: Line 644:
: mapping generators: ~25/21, ~3
: mapping generators: ~25/21, ~3


[[Optimal tuning]] ([[POTE]]): ~25/21 = 300.000, ~3/2 = 705.364
[[Optimal tuning]] ([[POTE]]): ~25/21 = 300.000{{c}}, ~3/2 = 705.364{{c}}


{{Optimal ET sequence|legend=1| 12, 56, 68, 80, 148d }}
{{Optimal ET sequence|legend=1| 12, 56, 68, 80, 148d }}
Line 657: Line 657:
Mapping: {{mapping| 4 0 22 43 71 | 0 1 -2 -5 -9 }}
Mapping: {{mapping| 4 0 22 43 71 | 0 1 -2 -5 -9 }}


Optimal tuning (POTE): ~25/21 = 300.000, ~3/2 = 705.087
Optimal tuning (POTE): ~25/21 = 300.000{{c}}, ~3/2 = 705.087{{c}}


{{Optimal ET sequence|legend=0| 12, 68, 80 }}
{{Optimal ET sequence|legend=0| 12, 68, 80 }}
Line 670: Line 670:
Mapping: {{mapping| 4 0 22 43 71 -36 | 0 1 -2 -5 -9 8 }}
Mapping: {{mapping| 4 0 22 43 71 -36 | 0 1 -2 -5 -9 8 }}


Optimal tuning (POTE): ~25/21 = 300.000, ~3/2 = 705.301
Optimal tuning (POTE): ~25/21 = 300.000{{c}}, ~3/2 = 705.301{{c}}


{{Optimal ET sequence|legend=0| 12, 68, 80, 148d, 228bcd, 376bbcddf }}
{{Optimal ET sequence|legend=0| 12, 68, 80, 148d, 228bcd, 376bbcddf }}
Line 683: Line 683:
Mapping: {{mapping| 4 0 22 43 71 -36 10 | 0 1 -2 -5 -9 8 1 }}
Mapping: {{mapping| 4 0 22 43 71 -36 10 | 0 1 -2 -5 -9 8 1 }}


Optimal tuning (POTE): ~25/21 = 300.000, ~3/2 = 705.334
Optimal tuning (POTE): ~25/21 = 300.000{{c}}, ~3/2 = 705.334{{c}}


{{Optimal ET sequence|legend=0| 12, 68, 80, 148d, 228bcd, 376bbcddf }}
{{Optimal ET sequence|legend=0| 12, 68, 80, 148d, 228bcd, 376bbcddf }}
Line 696: Line 696:
Mapping: {{mapping| 4 0 22 43 71 -36 10 17 | 0 1 -2 -5 -9 8 1 0 }}
Mapping: {{mapping| 4 0 22 43 71 -36 10 17 | 0 1 -2 -5 -9 8 1 0 }}


Optimal tuning (POTE): ~19/16 = 300.000, ~3/2 = 705.339
Optimal tuning (POTE): ~19/16 = 300.000{{c}}, ~3/2 = 705.339{{c}}


{{Optimal ET sequence|legend=0| 12, 68, 80, 148d, 376bbcddfh }}
{{Optimal ET sequence|legend=0| 12, 68, 80, 148d, 376bbcddfh }}
Line 710: Line 710:


Optimal tunings:
Optimal tunings:
* [[TE]]: ~19/16 = 299.797, ~3/2 = 704.860
* [[TE]]: ~19/16 = 299.797{{c}}, ~3/2 = 704.860{{c}}
* [[CWE]]: ~19/16 = 300.000, ~3/2 = 705.341  
* [[CWE]]: ~19/16 = 300.000{{c}}, ~3/2 = 705.341{{c}}
* [[POTE]]: ~19/16 = 300.000, ~3/2 = 705.337
* [[POTE]]: ~19/16 = 300.000{{c}}, ~3/2 = 705.337{{c}}


{{Optimal ET sequence|legend=0| 12, 68, 80, 148di }}
{{Optimal ET sequence|legend=0| 12, 68, 80, 148di }}
Line 735: Line 735:
: mapping generators: ~45/32, ~9/7
: mapping generators: ~45/32, ~9/7


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~9/7 = 434.856
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~9/7 = 434.856{{c}}


{{Optimal ET sequence|legend=1| 22, 58, 80, 138cd, 218cd }}
{{Optimal ET sequence|legend=1| 22, 58, 80, 138cd, 218cd }}
Line 749: Line 749:
Mapping: {{mapping| 2 1 9 2 12 | 0 3 -6 5 -7 }}
Mapping: {{mapping| 2 1 9 2 12 | 0 3 -6 5 -7 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~9/7 = 434.852
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~9/7 = 434.852{{c}}


Minimax tuning:  
Minimax tuning:  
Line 767: Line 767:
Mapping: {{mapping| 2 1 9 2 12 19 | 0 3 -6 5 -7 -16 }}
Mapping: {{mapping| 2 1 9 2 12 19 | 0 3 -6 5 -7 -16 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~9/7 = 434.756
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~9/7 = 434.756{{c}}


{{Optimal ET sequence|legend=0| 22, 58, 80, 138cde }}
{{Optimal ET sequence|legend=0| 22, 58, 80, 138cde }}
Line 780: Line 780:
Mapping: {{mapping| 2 1 9 2 12 19 6 | 0 3 -6 5 -7 -16 3 }}
Mapping: {{mapping| 2 1 9 2 12 19 6 | 0 3 -6 5 -7 -16 3 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~9/7 = 434.816
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~9/7 = 434.816{{c}}


{{Optimal ET sequence|legend=0| 22, 58, 80, 138cde }}
{{Optimal ET sequence|legend=0| 22, 58, 80, 138cde }}
Line 795: Line 795:
: mapping generators: ~45/32, ~8/7
: mapping generators: ~45/32, ~8/7


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~8/7 = 234.492
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~8/7 = 234.492{{c}}


{{Optimal ET sequence|legend=1| 10, 36, 46, 194bcd, 240bcd, 286bcd, 332bccdd }}
{{Optimal ET sequence|legend=1| 10, 36, 46, 194bcd, 240bcd, 286bcd, 332bccdd }}
Line 808: Line 808:
Mapping: {{mapping| 2 2 7 6 3 | 0 3 -6 -1 10 }}
Mapping: {{mapping| 2 2 7 6 3 | 0 3 -6 -1 10 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~8/7 = 235.096
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~8/7 = 235.096{{c}}


{{Optimal ET sequence|legend=0| 10, 36e, 46, 102, 148, 342bcdd }}
{{Optimal ET sequence|legend=0| 10, 36e, 46, 102, 148, 342bcdd }}
Line 821: Line 821:
Mapping: {{mapping| 2 2 7 6 3 7 | 0 3 -6 -1 10 1 }}
Mapping: {{mapping| 2 2 7 6 3 7 | 0 3 -6 -1 10 1 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~8/7 = 235.088
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~8/7 = 235.088{{c}}


{{Optimal ET sequence|legend=0| 10, 46, 102, 148f, 194bcdf }}
{{Optimal ET sequence|legend=0| 10, 46, 102, 148f, 194bcdf }}
Line 834: Line 834:
Mapping: {{mapping| 2 2 7 6 3 7 7 | 0 3 -6 -1 10 1 3 }}
Mapping: {{mapping| 2 2 7 6 3 7 7 | 0 3 -6 -1 10 1 3 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~8/7 = 235.088
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~8/7 = 235.088{{c}}


{{Optimal ET sequence|legend=0| 10, 46, 102, 148f, 194bcdf }}
{{Optimal ET sequence|legend=0| 10, 46, 102, 148f, 194bcdf }}
Line 857: Line 857:
: mapping generators: ~45/32, ~35/24
: mapping generators: ~45/32, ~35/24


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~35/24 = 652.811
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~35/24 = 652.811{{c}}


{{Optimal ET sequence|legend=1| 22, 46, 68, 182b, 250bc }}
{{Optimal ET sequence|legend=1| 22, 46, 68, 182b, 250bc }}
Line 870: Line 870:
Mapping: {{mapping| 2 1 9 -2 8 | 0 2 -4 7 -1 }}
Mapping: {{mapping| 2 1 9 -2 8 | 0 2 -4 7 -1 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~16/11 = 652.680
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~16/11 = 652.680{{c}}


{{Optimal ET sequence|legend=0| 22, 46, 68, 114, 296bce, 410bce }}
{{Optimal ET sequence|legend=0| 22, 46, 68, 114, 296bce, 410bce }}
Line 883: Line 883:
Mapping: {{mapping| 2 1 9 -2 8 -10 | 0 2 -4 7 -1 16 }}
Mapping: {{mapping| 2 1 9 -2 8 -10 | 0 2 -4 7 -1 16 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~16/11 = 652.654
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~16/11 = 652.654{{c}}


{{Optimal ET sequence|legend=0| 22f, 24f, 46, 68, 114 }}
{{Optimal ET sequence|legend=0| 22f, 24f, 46, 68, 114 }}
Line 896: Line 896:
Mapping: {{mapping| 2 1 9 -2 8 -10 6 | 0 2 -4 7 -1 16 2 }}
Mapping: {{mapping| 2 1 9 -2 8 -10 6 | 0 2 -4 7 -1 16 2 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~16/11 = 652.647
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~16/11 = 652.647{{c}}


{{Optimal ET sequence|legend=0| 22f, 24f, 46, 68, 114 }}
{{Optimal ET sequence|legend=0| 22f, 24f, 46, 68, 114 }}
Line 909: Line 909:
Mapping: {{mapping| 2 1 9 -2 8 -10 6 -10 | 0 2 -4 7 -1 16 2 17 }}
Mapping: {{mapping| 2 1 9 -2 8 -10 6 -10 | 0 2 -4 7 -1 16 2 17 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~16/11 = 652.730
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~16/11 = 652.730{{c}}


{{Optimal ET sequence|legend=0| 22fh, 24fh, 46, 68, 114, 182bef }}
{{Optimal ET sequence|legend=0| 22fh, 24fh, 46, 68, 114, 182bef }}
Line 922: Line 922:
Mapping: {{mapping| 2 1 9 -2 8 -10 6 -10 -4 | 0 2 -4 7 -1 16 2 17 12 }}
Mapping: {{mapping| 2 1 9 -2 8 -10 6 -10 -4 | 0 2 -4 7 -1 16 2 17 12 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~16/11 = 652.708
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~16/11 = 652.708{{c}}


{{Optimal ET sequence|legend=0| 22fh, 46, 68, 114 }}
{{Optimal ET sequence|legend=0| 22fh, 46, 68, 114 }}
Line 937: Line 937:
: mapping generators: ~45/32, ~140/81
: mapping generators: ~45/32, ~140/81


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~140/81 = 951.876
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~140/81 = 951.876{{c}}


{{Optimal ET sequence|legend=1| 24, 34d, 58, 150cd, 208ccdd, 266ccdd }}
{{Optimal ET sequence|legend=1| 24, 34d, 58, 150cd, 208ccdd, 266ccdd }}
Line 950: Line 950:
Mapping: {{mapping| 2 0 11 -15 -1 | 0 2 -4 13 5 }}
Mapping: {{mapping| 2 0 11 -15 -1 | 0 2 -4 13 5 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~121/70 = 951.863
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~121/70 = 951.863{{c}}


{{Optimal ET sequence|legend=0| 24, 34d, 58 }}
{{Optimal ET sequence|legend=0| 24, 34d, 58 }}
Line 963: Line 963:
Mapping: {{mapping| 2 0 11 -15 -1 9 | 0 2 -4 13 5 -1 }}
Mapping: {{mapping| 2 0 11 -15 -1 9 | 0 2 -4 13 5 -1 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~26/15 = 951.886
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~26/15 = 951.886{{c}}


{{Optimal ET sequence|legend=0| 24, 34d, 58, 150cdeef, 208ccddeeff }}
{{Optimal ET sequence|legend=0| 24, 34d, 58, 150cdeef, 208ccddeeff }}
Line 976: Line 976:
Mapping: {{mapping| 2 0 11 -15 -1 9 5 | 0 2 -4 13 5 -1 2 }}
Mapping: {{mapping| 2 0 11 -15 -1 9 5 | 0 2 -4 13 5 -1 2 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~26/15 = 951.857
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~26/15 = 951.857{{c}}


{{Optimal ET sequence|legend=0| 24, 34d, 58 }}
{{Optimal ET sequence|legend=0| 24, 34d, 58 }}
Line 991: Line 991:
: mapping generators: ~45/32, ~7/4
: mapping generators: ~45/32, ~7/4


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~7/4 = 953.021
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~7/4 = 953.021{{c}}


{{Optimal ET sequence|legend=1| 10, 24, 34 }}
{{Optimal ET sequence|legend=1| 10, 24, 34 }}
Line 1,004: Line 1,004:
Mapping: {{mapping| 2 0 11 4 -1 | 0 2 -4 1 5 }}
Mapping: {{mapping| 2 0 11 4 -1 | 0 2 -4 1 5 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~7/4 = 952.184
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~7/4 = 952.184{{c}}


{{Optimal ET sequence|legend=0| 10, 24, 34, 58d, 92de }}
{{Optimal ET sequence|legend=0| 10, 24, 34, 58d, 92de }}
Line 1,017: Line 1,017:
Mapping: {{mapping| 2 0 11 4 -1 9 | 0 2 -4 1 5 -1 }}
Mapping: {{mapping| 2 0 11 4 -1 9 | 0 2 -4 1 5 -1 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~7/4 = 952.309
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~7/4 = 952.309{{c}}


{{Optimal ET sequence|legend=0| 10, 24, 34, 58d, 92ddef }}
{{Optimal ET sequence|legend=0| 10, 24, 34, 58d, 92ddef }}
Line 1,030: Line 1,030:
Mapping: {{mapping| 2 0 11 4 -1 9 5 | 0 2 -4 1 5 -1 2 }}
Mapping: {{mapping| 2 0 11 4 -1 9 5 | 0 2 -4 1 5 -1 2 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~7/4 = 952.330
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~7/4 = 952.330{{c}}


{{Optimal ET sequence|legend=0| 10, 24, 34, 58d, 92ddef }}
{{Optimal ET sequence|legend=0| 10, 24, 34, 58d, 92ddef }}
Line 1,045: Line 1,045:
: mapping generators: ~45/32, ~10/7
: mapping generators: ~45/32, ~10/7


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~10/7 = 650.135
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~10/7 = 650.135{{c}}


{{Optimal ET sequence|legend=1| 2, 22d, 24 }}
{{Optimal ET sequence|legend=1| 2, 22d, 24 }}
Line 1,058: Line 1,058:
Mapping: {{mapping| 2 1 9 11 8 | 0 2 -4 -5 -1 }}
Mapping: {{mapping| 2 1 9 11 8 | 0 2 -4 -5 -1 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~10/7 = 650.130
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~10/7 = 650.130{{c}}


{{Optimal ET sequence|legend=0| 2, 22d, 24 }}
{{Optimal ET sequence|legend=0| 2, 22d, 24 }}
Line 1,071: Line 1,071:
Mapping: {{mapping| 2 1 9 11 8 15 | 0 2 -4 -5 -1 -7 }}
Mapping: {{mapping| 2 1 9 11 8 15 | 0 2 -4 -5 -1 -7 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~10/7 = 650.535
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~10/7 = 650.535{{c}}


{{Optimal ET sequence|legend=0| 22df, 24 }}
{{Optimal ET sequence|legend=0| 22df, 24 }}
Line 1,086: Line 1,086:
: mapping generators: ~45/32, ~21/16
: mapping generators: ~45/32, ~21/16


[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000, ~21/16 = 476.216
[[Optimal tuning]] ([[POTE]]): ~45/32 = 600.000{{c}}, ~21/16 = 476.216{{c}}


{{Optimal ET sequence|legend=1| 10, 38c, 48c, 58, 68, 126 }}
{{Optimal ET sequence|legend=1| 10, 38c, 48c, 58, 68, 126 }}
Line 1,099: Line 1,099:
Mapping: {{mapping| 2 0 11 8 22 | 0 4 -8 -3 -19 }}
Mapping: {{mapping| 2 0 11 8 22 | 0 4 -8 -3 -19 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~21/16 = 476.118
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~21/16 = 476.118{{c}}


{{Optimal ET sequence|legend=0| 58, 126, 184c, 310bccde }}
{{Optimal ET sequence|legend=0| 58, 126, 184c, 310bccde }}
Line 1,112: Line 1,112:
Mapping: {{mapping| 2 0 11 8 22 9 | 0 4 -8 -3 -19 -2 }}
Mapping: {{mapping| 2 0 11 8 22 9 | 0 4 -8 -3 -19 -2 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~21/16 = 476.099
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~21/16 = 476.099{{c}}


{{Optimal ET sequence|legend=0| 58, 126f, 184cff }}
{{Optimal ET sequence|legend=0| 58, 126f, 184cff }}
Line 1,125: Line 1,125:
Mapping: {{mapping| 2 0 11 8 22 9 5 | 0 4 -8 -3 -19 -2 4 }}
Mapping: {{mapping| 2 0 11 8 22 9 5 | 0 4 -8 -3 -19 -2 4 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~21/16 = 476.162
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~21/16 = 476.162{{c}}


{{Optimal ET sequence|legend=0| 58, 126f }}
{{Optimal ET sequence|legend=0| 58, 126f }}
Line 1,138: Line 1,138:
Mapping: {{mapping| 2 0 11 8 -1 | 0 4 -8 -3 10 }}
Mapping: {{mapping| 2 0 11 8 -1 | 0 4 -8 -3 10 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~21/16 = 476.017
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~21/16 = 476.017{{c}}


{{Optimal ET sequence|legend=0| 10, 38c, 48c, 58 }}
{{Optimal ET sequence|legend=0| 10, 38c, 48c, 58 }}
Line 1,151: Line 1,151:
Mapping: {{mapping| 2 0 11 8 -1 9 | 0 4 -8 -3 10 -2 }}
Mapping: {{mapping| 2 0 11 8 -1 9 | 0 4 -8 -3 10 -2 }}


Optimal tuning (POTE): ~45/32 = 600.000, ~21/16 = 476.028
Optimal tuning (POTE): ~45/32 = 600.000{{c}}, ~21/16 = 476.028{{c}}


{{Optimal ET sequence|legend=0| 10, 38c, 48c, 58 }}
{{Optimal ET sequence|legend=0| 10, 38c, 48c, 58 }}
Line 1,164: Line 1,164:
Mapping: {{mapping| 2 0 11 8 -1 9 5 | 0 4 -8 -3 10 -2 4 }}
Mapping: {{mapping| 2 0 11 8 -1 9 5 | 0 4 -8 -3 10 -2 4 }}


Optimal tuning (POTE): ~17/12 = 600.000, ~21/16 = 476.077
Optimal tuning (POTE): ~17/12 = 600.000{{c}}, ~21/16 = 476.077{{c}}


{{Optimal ET sequence|legend=0| 10, 38c, 48c, 58, 126eef, 184ceeff }}
{{Optimal ET sequence|legend=0| 10, 38c, 48c, 58, 126eef, 184ceeff }}

Revision as of 09:22, 28 August 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The 5-limit parent comma for the diaschismic family of temperaments is 2048/2025, the diaschisma. The period is half an octave, and the generator is a fifth. Three periods gives 1800 cents, and decreasing this by two fifths gives the major third. 34edo is a good tuning choice, with 46edo, 56edo, 58edo, or 80edo being other possibilities. Both 12edo and 22edo support it, and retuning them to a mos of diaschismic gives two scale possibilities.

Diaschismic

This temperament is also known as srutal in the 5-limit, but that name more strictly speaking refers to the 34d & 46 extension to the 7-limit that adds 4375/4374 to the comma list.

Subgroup: 2.3.5

Comma list: 2048/2025

Mapping[2 0 11], 0 1 -2]]

mapping generators: ~45/32, ~3

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 704.898 ¢

Tuning ranges:

Optimal ET sequence10, 12, 22, 34, 46, 80, 206c, 286bc

Badness (Smith): 0.019915

Overview to extensions

7-limit extensions

To get the 7-limit extensions, we add another comma:

  • Septimal diaschismic adds 126/125, the starling comma, to obtain 7-limit harmony by more complex methods than pajara, but with greater accuracy.
  • Pajara derives from 64/63 and is a popular and well-known choice.
  • Srutal adds 4375/4374, the ragisma, which is about as accurate as septimal diaschismic but has a much more complex mapping of 7.
  • Keen adds 875/864.
  • Bidia adds 3136/3125, the hemimean comma.
  • Echidna adds 1728/1715, the orwellisma.
  • Shrutar adds 245/243, the sensamagic comma.

Pajara, diaschismic, srutal and keen keep the same half-octave period and fifth generator, but shrutar has a generator of a quarter-tone (which can be taken as 36/35, the septimal quarter-tone) and echidna has a generator of 9/7. Bidia has a quarter-octave period and a fifth generator.

Subgroup extensions

Since the diaschisma factors into (256/255)2(289/288) in the 17-limit, it extends naturally to the 2.3.5.17 subgroup as srutal archagall, documented right below. The S-expression-based comma list of this temperament is {S16, S17}.

Srutal archagall

Subgroup: 2.3.5.17

Comma list: 136/135, 256/255

Subgroup-val mapping: [2 0 11 5], 0 1 -2 1]]

mapping generators: ~17/12, ~3

Optimal tuning (CTE): ~17/12 = 600.0000 ¢, ~3/2 = 705.1272 ¢

Optimal ET sequence: 10, 12, 22, 34, 80, 114, 194bc

Badness (Smith): 0.00575

Septimal diaschismic

A simpler characterization than the one given by the normal comma list is that diaschismic adds 126/125 or 5120/5103 to the set of commas, and it can also be called 46 & 58. However described, diaschismic has a 1/2-octave period and a sharp fifth generator like pajara, but not so sharp, giving a more accurate but more complex temperament. 58edo provides an excellent tuning, but an alternative is to make 7/4 just by making the fifth 703.897 cents, as opposed to 703.448 cents for 58edo.

Diaschismic extends naturally to the 17-limit, for which the same tunings may be used, making it one of the most important of the higher-limit rank-2 temperaments. Adding the 11-limit adds the commas 176/175, 896/891 and 441/440. The 13-limit yields 196/195, 351/350, and 364/363; the 17-limit adds 136/135, 221/220, and 442/441. If you want to explore higher-limit harmonies, diaschismic is certainly one excellent way to do it; mos of 34 notes and even more the 46-note mos will encompass very great deal of it. Of course 46 or 58 equal provide alternatives which in many ways are similar, particularly in the case of 58.

Subgroup: 2.3.5.7

Comma list: 126/125, 2048/2025

Mapping[2 0 11 31], 0 1 -2 -8]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 703.681 ¢

Tuning ranges:

Optimal ET sequence12, 46, 58, 104c, 162c

Badness (Smith): 0.037914

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 176/175, 896/891

Mapping: [2 0 11 31 45], 0 1 -2 -8 -12]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 703.714 ¢

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [700.000, 704.348] (7\12 to 27\46)
  • 11-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]

Optimal ET sequence: 12, 46, 58, 104c, 162ce

Badness (Smith): 0.025034

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 126/125, 176/175, 196/195, 364/363

Mapping: [2 0 11 31 45 55], 0 1 -2 -8 -12 -15]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 703.704 ¢

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = [703.448, 704.348] (34\58 to 27\46)
  • 13-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]
  • 15-odd-limit diamond tradeoff: ~3/2 = [701.955, 711.731]

Optimal ET sequence: 46, 58, 104c, 162cef

Badness (Smith): 0.018926

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 126/125, 136/135, 176/175, 196/195, 256/255

Mapping: [2 0 11 31 45 55 5], 0 1 -2 -8 -12 -15 1]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~3/2 = 703.812 ¢

Tuning ranges:

  • 17-odd-limit diamond monotone: ~3/2 = [703.448, 704.348] (34\58 to 27\46)
  • 17-odd-limit diamond tradeoff: ~3/2 = [698.955, 711.731]

Optimal ET sequence: 46, 58, 104c

Badness (Smith): 0.016425

2.3.5.7.11.13.17.23 subgroup (Na"Naa')

Na"Naa' is a remarkable subgroup temperament of 46 & 58 with a prime harmonic of 23. It is yet to be found why it got this strange name.

Subgroup: 2.3.5.7.11.13.17.23

Comma list: 126/125, 136/135, 176/175, 196/195, 231/230, 256/255

Sval mapping: [2 0 11 31 45 55 5 63], 0 1 -2 -8 -12 -15 1 -17]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~3/2 = 703.870 ¢

Optimal ET sequence: 46, 58i, 104ci

Pajara

Pajara is closely associated with 22edo (not to mention Paul Erlich) but other tunings are possible. The 1/2-octave period serves as both a 10/7 and a 7/5. Aside from 22edo, 34 with the val 34 54 79 96] and 56 with the val 56 89 130 158] are interesting alternatives, with more acceptable fifths, and a tetrad which is more clearly a dominant seventh. As such, they are closer to the tuning of 12edo and of common practice Western music in general, while retaining the distictiveness of a sharp fifth.

Pajara extends nicely to an 11-limit version, for which the 56edo tuning can be used, but a good alternative is to make the major thirds pure by setting the fifth to be 706.843 cents. Now 99/98, 100/99, 176/175 and 896/891 are being tempered out.

Subgroup: 2.3.5.7

Comma list: 50/49, 64/63

Mapping[2 0 11 12], 0 1 -2 -2]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 707.048 ¢

Tuning ranges:

Optimal ET sequence10, 12, 22, 34d, 56d

Badness (Smith): 0.020033

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 64/63, 99/98

Mapping: [2 0 11 12 26], 0 1 -2 -2 -6]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 706.885 ¢

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [700.000, 709.091] (7\12 to 13\22)
  • 11-odd-limit diamond tradeoff: ~3/2 = [701.955, 715.587]

Optimal ET sequence: 10e, 12, 22, 34d, 56d

Badness (Smith): 0.020343

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 64/63, 65/63, 99/98

Mapping: [2 0 11 12 26 1], 0 1 -2 -2 -6 2]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 708.919 ¢

Optimal ET sequence: 10e, 12, 22

Badness (Smith): 0.027642

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 50/49, 52/51, 64/63, 65/63, 99/98

Mapping: [2 0 11 12 26 1 5], 0 1 -2 -2 -6 2 1]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 708.806 ¢

Optimal ET sequence: 10e, 12, 22

Badness (Smith): 0.020899

Pajarina

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 64/63, 78/77, 99/98

Mapping: [2 0 11 12 26 36], 0 1 -2 -2 -6 -9]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 706.133 ¢

Optimal ET sequence: 12f, 22, 34d

Badness (Smith): 0.022327

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 50/49, 64/63, 78/77, 85/84, 99/98

Mapping: [2 0 11 12 26 36 5], 0 1 -2 -2 -6 -9 1]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 706.410 ¢

Optimal ET sequence: 12f, 22, 34d

Badness (Smith): 0.018375

Pajarita

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 50/49, 64/63, 66/65

Mapping: [2 0 11 12 26 17], 0 1 -2 -2 -6 -3]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 707.450 ¢

Optimal ET sequence: 10e, 12f, 22f

Badness (Smith): 0.022677

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 40/39, 50/49, 64/63, 66/65, 85/84

Mapping: [2 0 11 12 26 17 5], 0 1 -2 -2 -6 -3 1]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 707.947 ¢

Optimal ET sequence: 10e, 12f, 22f

Badness (Smith): 0.019007

Pajarous

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54, 64/63

Mapping: [2 0 11 12 -9], 0 1 -2 -2 5]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 709.578 ¢

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = 709.091 (13\22)
  • 11-odd-limit diamond tradeoff: ~3/2 = [701.955, 715.803]

Optimal ET sequence: 10, 12e, 22, 120bce, 142bce

Badness (Smith): 0.028349

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 64/63, 65/63

Mapping: [2 0 11 12 -9 1], 0 1 -2 -2 5 2]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 710.240 ¢

Optimal ET sequence: 10, 22, 54f, 76bdff

Badness (Smith): 0.025176

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 50/49, 52/51, 55/54, 64/63, 65/63

Mapping: [2 0 11 12 -9 1 5], 0 1 -2 -2 5 2 1]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 710.221 ¢

Optimal ET sequence: 10, 22, 54f, 76bdff

Badness (Smith): 0.018249

Pajaro

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 50/49, 55/54, 64/63

Mapping: [2 0 11 12 -9 17], 0 1 -2 -2 5 -3]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 710.818 ¢

Optimal ET sequence: 10, 22f, 32f, 54ff

Badness (Smith): 0.027355

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 40/39, 50/49, 55/54, 64/63, 85/84

Mapping: [2 0 11 12 -9 17 5], 0 1 -2 -2 5 -3 1]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 710.866 ¢

Optimal ET sequence: 10, 22f, 32f, 54ff

Badness (Smith): 0.019844

Pajaric

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 56/55

Mapping: [2 0 11 12 7], 0 1 -2 -2 0]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 705.524 ¢

Optimal ET sequence: 10, 12, 22e, 34dee

Badness (Smith): 0.023798

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 45/44, 50/49, 56/55

Mapping: [2 0 11 12 7 17], 0 1 -2 -2 0 -3]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 707.442 ¢

Optimal ET sequence: 10, 12f, 22ef

Badness (Smith): 0.020461

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 34/33, 40/39, 45/44, 50/49, 56/55

Mapping: [2 0 11 12 7 17 5], 0 1 -2 -2 0 -3 1]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~3/2 = 708.544 ¢

Optimal ET sequence: 10, 12f, 22ef

Badness (Smith): 0.017592

Hemipaj

Subgroup: 2.3.5.7.11

Comma list: 50/49, 64/63, 121/120

Mapping: [2 1 9 10 8], 0 2 -4 -4 -1]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~11/8 = 546.383 ¢

Optimal ET sequence: 20, 22, 68d, 90d

Badness (Smith): 0.038890

Hemifourths

Subgroup: 2.3.5.7.11

Comma list: 50/49, 64/63, 243/242

Mapping: [2 0 11 12 -1], 0 2 -4 -4 5]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~55/32 = 953.093 ¢

Optimal ET sequence: 10, 24d, 34d

Badness (Smith): 0.048885

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 64/63, 78/77, 144/143

Mapping: [2 0 11 12 -1 9], 0 2 -4 -4 5 -1]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~26/15 = 953.074 ¢

Optimal ET sequence: 10, 24d, 34d

Badness (Smith): 0.028755

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 50/49, 64/63, 78/77, 85/84, 144/143

Mapping: [2 0 11 12 -1 9 5], 0 2 -4 -4 5 -1 2]]

Optimal tuning (POTE): ~7/5 = 600.000 ¢, ~26/15 = 953.210 ¢

Optimal ET sequence: 10, 24d, 34d

Badness (Smith): 0.021790

Srutal

Srutal can be described as the 34d & 46 temperament, where 7/4 is located at 15 generator steps, or the double-augmented fifth (C–Gx). 80edo and 126edo are among the possible tunings. Srutal, shrutar and bidia have similar 19-limit properties, tempering out 190/189, related to rank-3 julius.

Subgroup: 2.3.5.7

Comma list: 2048/2025, 4375/4374

Mapping[2 0 11 -42], 0 1 -2 15]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 704.814 ¢

Tuning ranges:

Optimal ET sequence34d, 46, 80, 126, 206cd, 332bcd

Badness (Smith): 0.091504

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 896/891, 1331/1323

Mapping: [2 0 11 -42 -28], 0 1 -2 15 11]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 704.856 ¢

Tuning ranges:

  • 11-odd-limit diamond monotone: ~3/2 = [704.348, 705.882] (27\46 to 20\34)
  • 11-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]

Optimal ET sequence: 34d, 46, 80, 126, 206cd

Badness (Smith): 0.035315

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 176/175, 325/324, 364/363

Mapping: [2 0 11 -42 -28 -18], 0 1 -2 15 11 8]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 704.881 ¢

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~3/2 = [704.348, 705.882] (27\46 to 20\34)
  • 13-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]
  • 15-odd-limit diamond tradeoff: ~3/2 = [701.955, 711.731]

Optimal ET sequence: 34d, 46, 80, 206cd, 286bcde

Badness (Smith): 0.025286

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 136/135, 169/168, 176/175, 221/220, 256/255

Mapping: [2 0 11 -42 -28 -18 5], 0 1 -2 15 11 8 1]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~3/2 = 704.840 ¢

Tuning ranges:

  • 17-odd-limit diamond monotone: ~3/2 = [704.348, 705.882] (27\46 to 20\34)
  • 17-odd-limit diamond tradeoff: ~3/2 = [698.955, 711.731]

Optimal ET sequence: 34d, 46, 80, 126, 206cd

Badness (Smith): 0.018594

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 136/135, 169/168, 176/175, 190/189, 221/220, 256/255

Mapping: [2 0 11 -42 -28 -18 5 -55], 0 1 -2 15 11 8 1 20]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~3/2 = 704.905 ¢

Optimal ET sequence: 34dh, 46, 80, 206cd

Badness (Smith): 0.017063

Srutaloo

Srutaloo adds 576/575, 736/729 or 208/207, and rhymes with skidoo.

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 136/135, 169/168, 176/175, 190/189, 208/207, 221/220, 256/255

Mapping: [2 0 11 -42 -28 -18 5 -55 -10], 0 1 -2 15 11 8 1 20 6]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~3/2 = 704.899 ¢

Optimal ET sequence: 34dh, 46, 80, 206cd

Badness (Smith): 0.013555

29-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29

Comma list: 136/135, 169/168, 176/175, 190/189, 208/207, 221/220, 232/231, 256/255

Mapping: [2 0 11 -42 -28 -18 5 -55 -10 -76], 0 1 -2 15 11 8 1 20 6 27]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~3/2 = 704.906 ¢

Optimal ET sequence: 34dhj, 46, 80, 206cd

Badness (Smith): 0.013203

31-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29.31

Comma list: 136/135, 169/168, 176/175, 190/189, 208/207, 217/216, 221/220, 232/231, 256/255

Mapping: [2 0 11 -42 -28 -18 5 -55 -10 -76 48], 0 1 -2 15 11 8 1 20 6 27 -12]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~3/2 = 704.817 ¢

Optimal ET sequence: 46, 80, 126

Badness (Smith): 0.015073

Keen

Keen adds 875/864 as well as 2240/2187 to the set of commas. It may also be described as the 22 & 56 temperament. 78edo is a good tuning choice, and remains a good one in the 11-limit, where the temperament is really more interesting, adding 100/99 and 385/384 to the list of commas.

Subgroup: 2.3.5.7

Comma list: 875/864, 2048/2025

Mapping[2 0 11 -23], 0 1 -2 9]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 707.571 ¢

Optimal ET sequence22, 56, 78, 134b, 212b, 290bb

Badness (Smith): 0.083971

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 385/384, 1232/1215

Mapping: [2 0 11 -23 26], 0 1 -2 9 -6]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 707.609 ¢

Optimal ET sequence: 22, 56, 78, 212be, 290bbe

Badness (Smith): 0.045270

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 105/104, 144/143, 1078/1053

Mapping: [2 0 11 -23 26 -18], 0 1 -2 9 -6 8]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 707.167 ¢

Optimal ET sequence: 22f, 34, 56f

Badness (Smith): 0.044877

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 100/99, 105/104, 119/117, 144/143, 154/153

Mapping: [2 0 11 -23 26 -18 5], 0 1 -2 9 -6 8 1]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~3/2 = 707.155 ¢

Optimal ET sequence: 22f, 34, 56f

Badness (Smith): 0.030297

Keenic

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 100/99, 352/351, 385/384

Mapping: [2 0 11 -23 26 36], 0 1 -2 9 -6 -9]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~3/2 = 707.257 ¢

Optimal ET sequence: 22, 34, 56

Badness (Smith): 0.040351

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 91/90, 100/99, 136/135, 154/153, 256/255

Mapping: [2 0 11 -23 26 36 5], 0 1 -2 9 -6 -9 1]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~3/2 = 707.252 ¢

Optimal ET sequence: 22, 34, 56

Badness (Smith): 0.026917

Bidia

Bidia adds 3136/3125 to the commas, splitting the period into 1/4 octave. It may be called the 12 & 56 temperament.

Subgroup: 2.3.5.7

Comma list: 2048/2025, 3136/3125

Mapping[4 0 22 43], 0 1 -2 -5]]

mapping generators: ~25/21, ~3

Optimal tuning (POTE): ~25/21 = 300.000 ¢, ~3/2 = 705.364 ¢

Optimal ET sequence12, 56, 68, 80, 148d

Badness (Smith): 0.056474

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 896/891, 1375/1372

Mapping: [4 0 22 43 71], 0 1 -2 -5 -9]]

Optimal tuning (POTE): ~25/21 = 300.000 ¢, ~3/2 = 705.087 ¢

Optimal ET sequence: 12, 68, 80

Badness (Smith): 0.040191

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 325/324, 640/637, 896/891

Mapping: [4 0 22 43 71 -36], 0 1 -2 -5 -9 8]]

Optimal tuning (POTE): ~25/21 = 300.000 ¢, ~3/2 = 705.301 ¢

Optimal ET sequence: 12, 68, 80, 148d, 228bcd, 376bbcddf

Badness (Smith): 0.041137

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 136/135, 176/175, 256/255, 325/324, 640/637

Mapping: [4 0 22 43 71 -36 10], 0 1 -2 -5 -9 8 1]]

Optimal tuning (POTE): ~25/21 = 300.000 ¢, ~3/2 = 705.334 ¢

Optimal ET sequence: 12, 68, 80, 148d, 228bcd, 376bbcddf

Badness (Smith): 0.028631

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 136/135, 176/175, 190/189, 256/255, 325/324, 640/637

Mapping: [4 0 22 43 71 -36 10 17], 0 1 -2 -5 -9 8 1 0]]

Optimal tuning (POTE): ~19/16 = 300.000 ¢, ~3/2 = 705.339 ¢

Optimal ET sequence: 12, 68, 80, 148d, 376bbcddfh

Badness (Smith): 0.020590

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 136/135, 176/175, 190/189, 253/252, 256/255, 325/324, 640/637

Mapping: [4 0 22 43 71 -36 10 17 -20], 0 1 -2 -5 -9 8 1 0 6]]

Optimal tunings:

  • TE: ~19/16 = 299.797 ¢, ~3/2 = 704.860 ¢
  • CWE: ~19/16 = 300.000 ¢, ~3/2 = 705.341 ¢
  • POTE: ~19/16 = 300.000 ¢, ~3/2 = 705.337 ¢

Optimal ET sequence: 12, 68, 80, 148di

Badness (Smith): 0.017301

Echidna

Echidna adds 1728/1715 to the commas and takes 9/7 as a generator. It may be called the 22 & 58 temperament. 58edo or 80edo make for good tunings, or their vals can be added to 138 219 321 388] (138cde). In most of the tunings it has a significantly sharp 7/4 which some prefer.

Echidna becomes more interesting when extended to be an 11-limit temperament by adding 176/175, 540/539 or 896/891 to the commas, where the same tunings can be used as before. It then is able to represent the entire 11-odd-limit diamond to within about six cents of error, within a compass of 24 notes. The 22-note 2mos gives scope for this, and the 36-note mos much more. Better yet, it is related to three important 11-limit edos: 22edo, a trivial tuning, is the smallest consistent in the 11-odd-limit, corresponding to the merge of this temperament with hedgehog; 58edo is the smallest tuning that is distinctly consistent in the 11-odd-limit and 80edo is the third smallest distinctly consistent in the 11-odd-limit.

The generator can be interpreted as 11/10, the period complement of 9/7, as a stack of 11/10 and 9/7 makes 99/70 which is extremely close to 600 ¢ and is equal to it if we temper out S99. Three 11/10's then make a 4/3 (tempering out S10/S11 thus making 10/9 and 12/11 equidistant from 11/10), implying a flat tuning of 4/3.

Like most srutal extensions, the 13- and 17-limit interpretations are possible by observing that since we have tempered out 176/175, tempering out 351/350 and 352/351 which sum to 176/175 is very elegant. In the 17-limit we can equate the half-octave with 17/12 and 24/17 and we can take advantage of the sharp fifth by combining echidna with srutal archagall, leading to a particularly beautiful temperament (one that prefers a very slightly less sharp fifth than srutal archagall). This mapping of 13 and 17 is supported by the patent vals of the three main echidna edos of 22, 58 and 80, of which all except 22 are consistent in the 17-odd-limit.

Subgroup: 2.3.5.7

Comma list: 1728/1715, 2048/2025

Mapping[2 1 9 2], 0 3 -6 5]]

mapping generators: ~45/32, ~9/7

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~9/7 = 434.856 ¢

Optimal ET sequence22, 58, 80, 138cd, 218cd

Badness (Smith): 0.058033

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 540/539, 896/891

Mapping: [2 1 9 2 12], 0 3 -6 5 -7]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~9/7 = 434.852 ¢

Minimax tuning:

  • 11-odd-limit: ~9/7 = [5/12 0 0 1/12 -1/12
[[1 0 0 0 0, [7/4 0 0 1/4 -1/4, [2 0 0 -1/2 1/2, [37/12 0 0 5/12 -5/12, [37/12 0 0 -7/12 7/12]
unchanged-interval (eigenmonzo) basis: 2.11/7

Optimal ET sequence: 22, 58, 80, 138cde, 218cde

Badness (Smith): 0.025987

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 351/350, 364/363, 540/539

Mapping: [2 1 9 2 12 19], 0 3 -6 5 -7 -16]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~9/7 = 434.756 ¢

Optimal ET sequence: 22, 58, 80, 138cde

Badness (Smith): 0.023679

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 136/135, 176/175, 221/220, 256/255, 540/539

Mapping: [2 1 9 2 12 19 6], 0 3 -6 5 -7 -16 3]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~9/7 = 434.816 ¢

Optimal ET sequence: 22, 58, 80, 138cde

Badness (Smith): 0.020273

Echidnic

Subgroup: 2.3.5.7

Comma list: 686/675, 1029/1024

Mapping[2 2 7 6], 0 3 -6 -1]]

mapping generators: ~45/32, ~8/7

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~8/7 = 234.492 ¢

Optimal ET sequence10, 36, 46, 194bcd, 240bcd, 286bcd, 332bccdd

Badness (Smith): 0.072246

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 441/440, 686/675

Mapping: [2 2 7 6 3], 0 3 -6 -1 10]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~8/7 = 235.096 ¢

Optimal ET sequence: 10, 36e, 46, 102, 148, 342bcdd

Badness (Smith): 0.045127

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 169/168, 385/384, 441/440

Mapping: [2 2 7 6 3 7], 0 3 -6 -1 10 1]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~8/7 = 235.088 ¢

Optimal ET sequence: 10, 46, 102, 148f, 194bcdf

Badness (Smith): 0.028874

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 91/90, 136/135, 154/153, 169/168, 256/255

Mapping: [2 2 7 6 3 7 7], 0 3 -6 -1 10 1 3]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~8/7 = 235.088 ¢

Optimal ET sequence: 10, 46, 102, 148f, 194bcdf

Badness (Smith): 0.019304

Music

Shrutar

Shrutar adds 245/243 to the commas, and also tempers out 6144/6125. It can also be described as 22 & 46. Its generator can be taken as either 36/35 or 35/24; the latter is interesting since along with 15/14 and 21/20, it connects opposite sides of a hexany. 68edo makes for a good tuning, but another excellent choice is a generator of 14(1/7), making 7's just.

By adding 121/120 or 176/175 to the commas, shrutar can be extended to the 11-limit, which loses a bit of accuracy, but picks up low-complexity 11-limit harmony, making shrutar quite an interesting 11-limit system. 68, 114 or a 14(1/7) generator can again be used as tunings.

Subgroup: 2.3.5.7

Comma list: 245/243, 2048/2025

Mapping[2 1 9 -2], 0 2 -4 7]]

mapping generators: ~45/32, ~35/24

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~35/24 = 652.811 ¢

Optimal ET sequence22, 46, 68, 182b, 250bc

Badness (Smith): 0.189510

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 245/243

Mapping: [2 1 9 -2 8], 0 2 -4 7 -1]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~16/11 = 652.680 ¢

Optimal ET sequence: 22, 46, 68, 114, 296bce, 410bce

Badness (Smith): 0.084098

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 176/175, 196/195, 245/243

Mapping: [2 1 9 -2 8 -10], 0 2 -4 7 -1 16]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~16/11 = 652.654 ¢

Optimal ET sequence: 22f, 24f, 46, 68, 114

Badness (Smith): 0.079358

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 136/135, 154/153, 176/175, 196/195

Mapping: [2 1 9 -2 8 -10 6], 0 2 -4 7 -1 16 2]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~16/11 = 652.647 ¢

Optimal ET sequence: 22f, 24f, 46, 68, 114

Badness (Smith): 0.049392

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 121/120, 136/135, 154/153, 176/175, 196/195, 343/342

Mapping: [2 1 9 -2 8 -10 6 -10], 0 2 -4 7 -1 16 2 17]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~16/11 = 652.730 ¢

Optimal ET sequence: 22fh, 24fh, 46, 68, 114, 182bef

Badness (Smith): 0.044197

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 121/120, 136/135, 154/153, 176/175, 196/195, 253/252, 343/342

Mapping: [2 1 9 -2 8 -10 6 -10 -4], 0 2 -4 7 -1 16 2 17 12]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~16/11 = 652.708 ¢

Optimal ET sequence: 22fh, 46, 68, 114

Badness (Smith): 0.035137

Sruti

Subgroup: 2.3.5.7

Comma list: 2048/2025, 19683/19600

Mapping[2 0 11 -15], 0 2 -4 13]]

mapping generators: ~45/32, ~140/81

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~140/81 = 951.876 ¢

Optimal ET sequence24, 34d, 58, 150cd, 208ccdd, 266ccdd

Badness (Smith): 0.117358

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 243/242, 896/891

Mapping: [2 0 11 -15 -1], 0 2 -4 13 5]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~121/70 = 951.863 ¢

Optimal ET sequence: 24, 34d, 58

Badness (Smith): 0.041459

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 176/175, 351/350, 676/675

Mapping: [2 0 11 -15 -1 9], 0 2 -4 13 5 -1]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~26/15 = 951.886 ¢

Optimal ET sequence: 24, 34d, 58, 150cdeef, 208ccddeeff

Badness (Smith): 0.023791

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 136/135, 144/143, 170/169, 176/175, 221/220

Mapping: [2 0 11 -15 -1 9 5], 0 2 -4 13 5 -1 2]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~26/15 = 951.857 ¢

Optimal ET sequence: 24, 34d, 58

Badness (Smith): 0.020536

Anguirus

Subgroup: 2.3.5.7

Comma list: 49/48, 2048/2025

Mapping[2 0 11 4], 0 2 -4 1]]

mapping generators: ~45/32, ~7/4

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~7/4 = 953.021 ¢

Optimal ET sequence10, 24, 34

Badness (Smith): 0.077955

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 56/55, 243/242

Mapping: [2 0 11 4 -1], 0 2 -4 1 5]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~7/4 = 952.184 ¢

Optimal ET sequence: 10, 24, 34, 58d, 92de

Badness (Smith): 0.049253

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 56/55, 91/90, 243/242

Mapping: [2 0 11 4 -1 9], 0 2 -4 1 5 -1]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~7/4 = 952.309 ¢

Optimal ET sequence: 10, 24, 34, 58d, 92ddef

Badness (Smith): 0.030829

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 49/48, 56/55, 91/90, 119/117, 154/153

Mapping: [2 0 11 4 -1 9 5], 0 2 -4 1 5 -1 2]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~7/4 = 952.330 ¢

Optimal ET sequence: 10, 24, 34, 58d, 92ddef

Badness (Smith): 0.021796

Shru

Subgroup: 2.3.5.7

Comma list: 392/375, 1323/1280

Mapping[2 1 9 11], 0 2 -4 -5]]

mapping generators: ~45/32, ~10/7

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~10/7 = 650.135 ¢

Optimal ET sequence2, 22d, 24

Badness (Smith): 0.157619

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 77/75, 1323/1280

Mapping: [2 1 9 11 8], 0 2 -4 -5 -1]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~10/7 = 650.130 ¢

Optimal ET sequence: 2, 22d, 24

Badness (Smith): 0.063483

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 77/75, 105/104, 507/500

Mapping: [2 1 9 11 8 15], 0 2 -4 -5 -1 -7]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~10/7 = 650.535 ¢

Optimal ET sequence: 22df, 24

Badness (Smith): 0.045731

Quadrasruta

Subgroup: 2.3.5.7

Comma list: 2048/2025, 2401/2400

Mapping[2 0 11 8], 0 4 -8 -3]]

mapping generators: ~45/32, ~21/16

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~21/16 = 476.216 ¢

Optimal ET sequence10, 38c, 48c, 58, 68, 126

Badness (Smith): 0.073569

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 896/891, 2401/2400

Mapping: [2 0 11 8 22], 0 4 -8 -3 -19]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~21/16 = 476.118 ¢

Optimal ET sequence: 58, 126, 184c, 310bccde

Badness (Smith): 0.049018

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 196/195, 512/507, 676/675

Mapping: [2 0 11 8 22 9], 0 4 -8 -3 -19 -2]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~21/16 = 476.099 ¢

Optimal ET sequence: 58, 126f, 184cff

Badness (Smith): 0.028463

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 136/135, 170/169, 176/175, 196/195, 256/255

Mapping: [2 0 11 8 22 9 5], 0 4 -8 -3 -19 -2 4]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~21/16 = 476.162 ¢

Optimal ET sequence: 58, 126f

Badness (Smith): 0.023820

Quadrafourths

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 2048/2025

Mapping: [2 0 11 8 -1], 0 4 -8 -3 10]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~21/16 = 476.017 ¢

Optimal ET sequence: 10, 38c, 48c, 58

Badness (Smith): 0.049114

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 196/195, 243/242, 676/675

Mapping: [2 0 11 8 -1 9], 0 4 -8 -3 10 -2]]

Optimal tuning (POTE): ~45/32 = 600.000 ¢, ~21/16 = 476.028 ¢

Optimal ET sequence: 10, 38c, 48c, 58

Badness (Smith): 0.026743

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 136/135, 144/143, 170/169, 196/195, 221/220

Mapping: [2 0 11 8 -1 9 5], 0 4 -8 -3 10 -2 4]]

Optimal tuning (POTE): ~17/12 = 600.000 ¢, ~21/16 = 476.077 ¢

Optimal ET sequence: 10, 38c, 48c, 58, 126eef, 184ceeff

Badness (Smith): 0.022239