Friesachisma

From Xenharmonic Wiki
Jump to navigation Jump to search
Interval information
Ratio 9361/9360
Factorization 2-4 × 3-2 × 5-1 × 11 × 13-1 × 23 × 37
Monzo [-4 -2 -1 0 1 -1 0 0 1 0 0 1
Size in cents 0.184951¢
Name friesachisma
Color name 37o23o3u1og2
thisotwethothulogu 2nd
FJS name [math]\text{m}{-2}^{11,23,37}_{5,13}[/math]
Special properties superparticular,
reduced
Tenney height (log2 nd) 26.3847
Weil height (log2 max(n, d)) 26.3849
Wilson height (sopfr(nd)) 103
Harmonic entropy
(Shannon, [math]\sqrt{nd}[/math])
~1.19854 bits
Comma size unnoticeable
open this interval in xen-calc

9361/9360, the friesachisma, is a 37-limit superparticular comma of about 0.18 cents.

Commatic relationships

This comma is the difference between the following superparticular pairs:

It can be factored into the following superparticular intervals:

Temperaments

Tempering out this comma leads to the rank-11 temperament friesachismic. Using the 2.3.5.11.13.23.37 subgroup leads to the rank-6 temperament friesachic.

Friesachismic

Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37

Comma list: 9361/9360

Mapping:

[⟨ 1 1 2 2 3 3 4 4 4 4 4 4 ],
0 1 0 0 0 0 0 0 0 0 0 2 ],
0 0 1 0 0 0 0 0 0 0 0 1 ],
0 0 0 1 0 0 0 0 0 0 0 0 ],
0 0 0 0 1 0 0 0 0 0 0 -1 ],
0 0 0 0 0 1 0 0 0 0 0 1 ],
0 0 0 0 0 0 1 0 0 0 0 0 ],
0 0 0 0 0 0 0 1 0 0 0 0 ],
0 0 0 0 0 0 0 0 1 0 0 -1 ],
0 0 0 0 0 0 0 0 0 1 0 0 ],
0 0 0 0 0 0 0 0 0 0 1 0 ]]

Optimal tuning (CTE): ~2=1\1, ~3/2 = 701.965, ~5/4 = 386.325, ~7/4 = 968.826, ~11/8 = 551.293, ~13/8 = 840.556, ~17/16 = 104.955, ~19/16 = 297.513, ~23/16 = 628.232, ~29/16 = 1029.577, ~31/16 = 1145.036

Optimal ET sequence5cfik, 5egj, 5eghj, 6fhijl, 7dfghijjk, 8di, 9gijk, 10jk, 10k, 10, 10h, 12l, 12fk, 12fjk, 14cfjjkkl, 14cfjjl, 15gkl, 16j, 17cgk, 17cghk, 19egh, 21, 22i, 22fh, 24, 26ik, 29gjk, 29gk, 31fghjk, 31l, 34dhk, 38dfij, 39dfgijkl, 46, 50jk, 50k, 53, 53j, 58hik, 62, 65d, 68jl, 72hijk, 72ijk, 80, 80k, 94, 99efk, 103hl, 125f, 130j, 145jkl, 149, 152fgj, 159k, 181, 183k, 183, 198gl, 212ghj, 212gh, 217, 224, 239, 243e, 248h, 270, 311k, 311, 422l, 487, 525, 566gjl, 571, 597ik, 631, 639hj, 692ik, 718, 764j, 764hj, 814k, 814, 863efgjk, 882, 908, 1012, 1106, 1164fi, …

Friesachic

Subgroup: 2.3.5.11.13.23.37

Comma list: 9361/9360

Mapping:

[⟨ 1 1 2 3 3 4 4 ],
0 1 0 0 0 0 2 ],
0 0 1 0 0 0 1 ],
0 0 0 1 0 0 -1 ],
0 0 0 0 1 0 1 ],
0 0 0 0 0 1 -1 ]]

Optimal tuning (CTE): ~2=1\1, ~3/2 = 701.965, ~5/4 = 386.325, ~11/8 = 551.293, ~13/8 = 840.556, ~23/16 = 628.232

Optimal ET sequence5e, 7fi, 7, 8i, 10, 12l, 12f, 14cfl, 15l, 19e, 22i, 22f, 24, 29, 34, 46, 50, 53, 65, 79l, 80, 87, 96, 118, 125f, 130, 152f, 159, 183, 224, 277, 357, 407, 684, 764, 988, 1012, 1171, 1448, 1696, 1855l, 2000, 2277, 2684, 5144, 6132, 7828l, 8816il, 9828il, 10512eil

Etymology

The friesachisma was named by Francium in 2024, referencing the postal code of Friesach, Austria.

See also