Equalizer subgroup
Disclaimer from the author
Note that everything written on this page is the author’s personal opinion based on how they subjectively experience harmony and will not be psychoacoustically true for everyone, and may not even be true for most people.
Nothing on this page is science. It's just one of many possible frameworks for looking at things, and it's not even a very well-tested one. So take it all with a grain of salt.
This article or section contains multiple idiosyncratic terms. Such terms are used by only a few people and are not regularly used within the community. |
An equalizer subgroup is a just intonation subgroup which contains two or three structural harmonics, no assertive harmonics, and at least three ethereal harmonics.
Structural vs assertive vs ethereal
Structural harmonics means harmonics 2, 3, 4 and 5. These harmonics provide a solid sense of scale structure and tonal gravity, they also provide a warm, soothing bath of consonance that envelops the whole scale.
Assertive harmonics means harmonics 5 through 12, inclusive. These harmonics have very strong personalities, tending to define and shape the overall flavor of the scale.
Ethereal harmonics means harmonics 13, 14, 15, 16, 17 and so on. These harmonics usually tend to fade into the background, but they subtly wield their influence, adding consonances and dissonances undetectable on their own, but influential together.
5/1 can act as either a structural or an assertive harmonic depending on context.
Aim of equalizer subgroups
The reason for using an equalizer subgroup is to benefit from the stability, structure and powerful consonance of structural harmonics, but to keep the strong personalities of the assertive harmonics out of the way so that the subtler, more shy ethereal harmonics can shine through.
The hope is that there might be subtle harmonies and consonances involving ethereal harmonics that can allow for novel new sounds to be discovered, if we give them the space to show themselves.
The reason for the name is that when music producers or listeners use an equalizer, they often turn down the middle pitches, while boosting the low and high end, which is visually similar to an equalizer subgroup. (These are very much not the same thing though, don’t read too deep into the analogy.)
The sections of this article will showcase temperaments and scales from different equalizer subgroups. Feel free to add more.
2.3.5.n subgroups
2.3.5.13.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.5.13.14.17
- 2.3.5.13.14.17.19
- 2.3.5.13.17.21
Temperaments
Fifigeist
Subgroup: 2.3.5.13.17.19
Comma list: 153/152, 170/169, 250/247, 289/288, 324/323, 325/323, 325/324, 729/722
Mapping: [⟨2 2 3 6 7 5], ⟨0 5 7 6 5 15]]
Optimal tuning (TE): ~1\2 = 600.1848, ~13/12 = 140.2424
Recommended EDOs: 10, 18, 26, 34, 60, 94
TE mistunings (cents): ⟨0.370, -0.373, -4.062, 2.036, -2.450, 7.048]
Adjusted error (cents): 4.477868
Complexity: 2.503140
Related temperaments: fifive
Fifigeist (+23)
Subgroup: 2.3.5.13.17.19.23
Comma list: 115/114, 153/152, 300/299, 391/390, 1105/1104, 8075/8073
Mapping: [⟨2 2 3 6 7 5 6], ⟨0 5 7 6 5 15 13]]
Optimal tuning (TE): ~1\2 = 600.1820, ~13/12 = 140.3019
Recommended EDOs: 10, 18, 26, 34, 60, 94
TE mistunings (cents): ⟨0.364, -0.082, -3.655, 2.375, -2.172, 7.925, -3.258]
Adjusted error (cents): 4.621471
Complexity: 2.381333
Related temperaments: fifive
Phantadecimal
Subgroup: 2.3.5.13.17.19
Comma list: 96/95, 136/135, 153/152, 170/169, 256/255, 289/285, 289/288, 324/323
Mapping: [⟨2 4 3 7 9 11], ⟨0 -2 4 1 -2 -6]]
Optimal tuning (TE): ~1\2 = 599.2530, ~15/13 = 247.6643
Recommended EDOs: 10, 14, 24, 34, 58, 92
TE mistunings (cents): ⟨-1.494, -0.272, 2.103, 1.908, -7.007, 8.284]
Adjusted error (cents): 5.508389
Complexity: 2.106437
Related temperaments: decimal
Phantadecimal (+23)
Subgroup: 2.3.5.13.17.19.23
Comma list: 96/95, 136/135, 153/152, 300/299, 391/390
Mapping: [⟨2 4 3 7 9 11 7], ⟨0 -2 4 1 -2 -6 5]]
Optimal tuning (TE): ~1\2 = 599.1763, ~15/13 = 247.4859
Recommended EDOs: 10, 14, 24, 34, 58, 92
TE mistunings (cents): ⟨-1.647, -0.222, 1.159, 1.192, -7.340, 8.511, 3.389]
Adjusted error (cents): 5.641385
Complexity: 2.152852
Related temperaments: decimal
Phantasrutal
Subgroup: 2.3.5.13.17.19
Comma list: 96/95, 136/135, 153/152, 256/255, 289/285, 289/288, 324/323, 325/323
Mapping: [⟨2 3 5 6 8 8], ⟨0 1 -2 8 1 3]]
Optimal tuning (TE): ~1\2 = 599.3195, ~17/16 = 105.1130
Recommended EDOs: 10, 12, 22, 34, 46, 80, 114
TE mistunings (cents): ⟨-1.361, 1.117, 0.058, -3.706, -5.286, 12.382]
Adjusted error (cents): 6.376950
Complexity: 1.825578
Related temperaments: srutal
Phantasrutal (+23)
Subgroup: 2.3.5.13.17.19.23
Comma list: 96/95, 115/114, 136/135, 153/152, 325/324, 442/437
Mapping: [⟨2 3 5 6 8 8], ⟨0 1 -2 8 1 3]]
Optimal tuning (TE): ~1\2 = 599.3413, ~17/16 = 105.2039
Recommended EDOs: 10, 12, 22, 34, 46, 80, 114
TE mistunings (cents): ⟨-1.317, 1.273, -0.015, -2.849, -5.021, 12.829, -2.320]
Adjusted error (cents): 6.366626
Complexity: 1.791017
Related temperaments: srutal
Shadecimal
Subgroup: 2.3.5.13.17.19
Comma list: 81/80, 153/152, 170/169, 171/169, 171/170, 289/288, 323/320, 324/323
Mapping: [⟨2 3 4 7 8 8], ⟨0 2 8 5 2 6]]
Optimal tuning (TE): ~1\2 = 600.7546, ~27/26 = 48.0949
Recommended EDOs: 24, 26, 28, 48, 50, 52, 74, 76
TE mistunings (cents): ⟨1.509, -3.502, 1.464, 5.229, -2.729, -2.907]
Adjusted error (cents): 5.610433
Complexity: 2.151739
Related temperaments: decimal
Shadecimal (+23)
Subgroup: 2.3.5.13.17.19.23
Comma list: 153/152, 171/170, 300/299, 391/390, 741/736, 1105/1104, 1311/1300, 9747/9568
Mapping: [⟨2 3 4 7 8 8 8], ⟨0 2 8 5 2 6 13]]
Optimal tuning (TE): ~1\2 = 600.7827, ~27/26 = 47.9997
Recommended EDOs: 24, 26, 28, 48, 50, 52, 74, 76
TE mistunings (cents): ⟨1.565, -3.608, 0.815, 4.950, -2.695, -3.253, 1.983]
Adjusted error (cents): 5.607494
Complexity: 2.266610
Related temperaments: decimal
Scales
2.3.5.14.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.5.14.17.19
- 2.3.5.14.17.19.21
- 2.3.5.14.19.23
Temperaments
Scales
2.3.5.17.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.5.17.19.21
- 2.3.5.17.19.21.22
- 2.3.5.17.21.26
Temperaments
Ectophotia
Subgroup: 2.3.5.17.19.23
Comma list: 171/170, 256/255, 324/323, 361/360, 460/459, 513/512, 576/575, 874/867
Mapping: [⟨1 2 -1 7 3 12], ⟨0 -1 8 -7 3 -18]]
Optimal tuning (TE): ~2/1 = 1199.8084, ~4/3 = 498.3709
Recommended EDOs: 24, 26, 28, 48, 50, 52, 74, 76
TE mistunings (cents): ⟨-0.192, -0.709, 0.845, 5.107, -2.975, -1.249]
Adjusted error (cents): 2.918377
Complexity: 2.264161
Related temperaments: photia
Scales
2.3.5.19.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.5.19.21.22
- 2.3.5.19.21.22.23
- 2.3.5.19.22.26
Temperaments
Scales
2.3.5.21.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.5.21.22.23
- 2.3.5.21.22.23.26
- 2.3.5.21.23.28
Temperaments
Scales
2.3.5.22.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.5.22.23.26
- 2.3.5.22.23.26.28
- 2.3.5.22.26.29
Temperaments
Scales
2.3.5.23.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.5.23.26.28
- 2.3.5.23.26.28.29
- 2.3.5.23.28.31
Temperaments
Scales
Higher subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.5.31.33.35
- 2.3.5.37.41.43
- 2.3.5.31.39.42.70
Temperaments
Scales
2.3.n subgroups
2.3.13.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.13.14.17
- 2.3.13.14.17.19
- 2.3.13.17.21
Temperaments
Lieerie
Subgroup: 2.3.13.17.19
Comma list: 324/323, 513/512, 2187/2176, 2197/2176, 2197/2187, 6144/6137
Mapping: [⟨1 3 7 14 0], ⟨0 -3 -7 -21 9]]
Optimal tuning (TE): ~2/1 = 1200.3681, ~18/13 = 566.5519
Recommended EDOs: 17, 19, 36, 53
TE mistunings (cents): ⟨0.368, -0.506, -3.814, 2.609, 1.454]
Adjusted error (cents): 2.565939
Complexity: 2.398767
Related temperaments: liese
Lieerie (+23)
Subgroup: 2.3.13.17.19.23
Comma list: 208/207, 324/323, 513/512, 741/736, 2187/2176, 2197/2176, 2197/2187, 3159/3128
Mapping: [⟨1 3 7 14 0 5], ⟨0 -3 -7 -21 9 -1]]
Optimal tuning (TE): ~2/1 = 1200.0516, ~18/13 = 566.3531
Recommended EDOs: 17, 19, 36, 53
TE mistunings (cents): ⟨0.052, -0.860, -4.638, 2.351, -0.335, 5.630]
Adjusted error (cents): 3.578280
Complexity: 2.231135
Related temperaments: liese
Poltercompton
Subgroup: 2.3.13.17.19
Comma list: 153/152, 289/288, 324/323, 513/512, 729/722, 1088/1083
Mapping: [⟨12 19 45 49 51], ⟨0 0 -1 0 0]]
Optimal tuning (TE): ~1\12 = 100.0387, ~27/26 = 61.2152
Recommended EDOs: 12, 24, 36, 48, 60, 72, 84, 96
TE mistunings (cents): ⟨0.465, -1.219, 0.000, -3.058, 4.462]
Adjusted error (cents): 2.986065
Complexity: 1.296641
Related temperaments: compton
Poltercompton (+23)
Subgroup: 2.3.13.17.19.23
Comma list: 153/152, 208/207, 289/288, 324/323, 442/437, 513/512, 729/722, 741/736
Mapping: [⟨12 19 45 49 51 54], ⟨0 0 -1 0 0 1]]
Optimal tuning (TE): ~1\12 = 100.0323, ~27/26 = 34.0630
Recommended EDOs: 12, 24, 36, 48, 60, 72, 84, 96
TE mistunings (cents): ⟨0.388, -1.341, -5.042, -3.371, 4.136, 7.535]
Adjusted error (cents): 4.929473
Complexity: 1.399563
Related temperaments: compton
Semiamulet
Subgroup: 2.3.13.17.19
Comma list: 324/323, 512/507, 1088/1083, 2888/2873, 4624/4617, 6912/6859
Mapping: [⟨3 5 11 13 13], ⟨0 -2 1 -6 -2]]
Optimal tuning (TE): ~1\3 = 399.6037, ? = 48.1611
Recommended EDOs: 9, 12, 15, 18, 21, 24, 27, 51, 75, 99
TE mistunings (cents): ⟨-1.189, -0.259, 3.274, 0.926, 1.013]
Adjusted error (cents): 2.900547
Complexity: 0.682815
Related temperaments: semiaug
Semiamulet (+23)
Subgroup: 2.3.13.17.19.23
Comma list: 208/207, 324/323, 512/507, 1088/1083, 2208/2197, 2888/2873, 4624/4617, 4693/4692
Mapping: [⟨3 5 11 13 13 13], ⟨0 -2 1 -6 -2 5]]
Optimal tuning (TE): ~1\3 = 399.4637, ? = 47.6560
Recommended EDOs: 9, 12, 15, 18, 21, 24, 27, 51, 75, 99
TE mistunings (cents): ⟨-1.609, 0.052, 1.229, 2.137, 0.203, 3.034]
Adjusted error (cents): 3.417836
Complexity: 2.661109
Related temperaments: semiaug
Shrutarnatural
Subgroup: 2.3.13.17.19
Comma list: 289/288, 513/512, 2888/2873, 4624/4617, 6137/6084, 16473/16384
Mapping: [⟨2 3 8 8 9], ⟨0 2 -7 2 -6]]
Optimal tuning (TE): ~1\2 = 600.1004, ? = 51.1066
Recommended EDOs: 22, 24, 26, 46, 48, 70, 72, 94, 118
TE mistunings (cents): ⟨0.201, 0.560, 2.530, -1.939, -3.248]
Adjusted error (cents): 2.281355
Complexity: 2.352952
Related temperaments: shrutar
Shrutarnatural (+23)
Subgroup: 2.3.13.17.19.23
Comma list: 208/207, 289/288, 513/512, 741/736, 2888/2873, 3211/3174, 3757/3726, 4624/4617
Mapping: [⟨2 3 8 8 9 10], ⟨0 2 -7 2 -6 -11]]
Optimal tuning (TE): ~1\2 = 600.0341, ? = 51.4873
Recommended EDOs: 22, 24, 26, 46, 48, 70, 72, 94, 118
TE mistunings (cents): ⟨0.068, 1.122, -0.666, -1.708, -6.130, 5.706]
Adjusted error (cents): 3.867737
Complexity: 2.667192
Related temperaments: shrutar
Spectrephore
Subgroup: 2.3.13.17.19
Comma list: 324/323, 513/512, 2187/2176, 2888/2873, 6144/6137, 13718/13689
Mapping: [⟨1 2 1 7 3], ⟨0 -2 13 -14 6]]
Optimal tuning (TE): ~2/1 = 1199.8867, ~? = 249.4160
Recommended EDOs: 9, 14, 19, 24, 29, 53, 82, 111
TE mistunings (cents): ⟨-0.113, -1.014, 1.767, 2.427, -1.357]
Adjusted error (cents): 1.996594
Complexity: 2.351780
Related temperaments: semaphore
Spectrephore (+23)
Subgroup: 2.3.13.17.19.23
Comma list: 324/323, 513/512, 2187/2176, 2208/2197, 2888/2873, 4693/4692, 6144/6137, 6656/6647
Mapping: [⟨1 2 1 7 3 -4], ⟨0 -2 13 -14 6 41]]
Optimal tuning (TE): ~2/1 = 1199.9040, ~? = 249.4504
Recommended EDOs: 9, 14, 19, 24, 29, 53, 82, 111
TE mistunings (cents): ⟨-0.096, -1.048, 2.231, 2.068, -1.099, -0.426]
Adjusted error (cents): 1.972909
Complexity: 3.987557
Related temperaments: semaphore
Scales
2.3.14.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.14.17.19
- 2.3.14.17.19.21
- 2.3.14.19.23
Temperaments
Scales
2.3.15.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.15.17.19
- 2.3.15.17.19.21
- 2.3.15.19.23
Temperaments
Scales
2.3.17.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.17.19.21
- 2.3.17.19.21.22
- 2.3.17.21.26
Temperaments
Werecatler
Subgroup: 2.3.17.19.23
Comma list: 153/152, 289/288, 324/323, 513/512, 729/722, 1088/1083
Mapping: [⟨12 19 49 51 54], ⟨0 0 0 0 0]]
Optimal tuning (TE): ~1\12 = 100.0387, ~? = 26.1830
Recommended EDOs: 12, 24, 36, 48, 60, 72, 84, 96
TE mistunings (cents): ⟨0.465, -1.219, -3.058, 4.462, -0.000]
Adjusted error (cents): 3.179821
Complexity: 1.060700
Related temperaments: catler
Scales
2.3.19.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.19.21.22
- 2.3.19.21.22.23
- 2.3.19.22.26
Temperaments
Scales
2.3.20.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.20.21.22
- 2.3.20.21.22.23
- 2.3.20.22.26
Temperaments
Scales
2.3.21.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.21.22.23
- 2.3.21.22.23.26
- 2.3.21.23.28
Temperaments
Scales
2.3.22.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.22.23.26
- 2.3.22.23.26.28
- 2.3.22.26.29
Temperaments
Scales
2.3.23.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.23.26.28
- 2.3.23.26.28.29
- 2.3.23.28.31
Temperaments
Scales
Higher subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.3.25.29.31
- 2.3.31.37.41
- 2.3.25.37.42.70
Temperaments
Scales
2.5.n subgroups
Temperaments
Examples of valid equalizer subgroups in this category (not exhaustive):
- 2.5.13.14.15
- 2.5.13.17.19.21
- 2.5.17.30.38
Scales
3.5.n subgroups
Temperaments
Examples of valid equalizer subgroups in this category (not exhaustive):
- 3.5.13.14.16
- 3.5.13.17.19.21
- 3.5.17.30.38
Scales
3.4.5.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 3.4.5.13.14.16
- 3.4.5.13.17.19.21
- 3.4.5.17.30.38
Temperaments
Scales
3.4.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 3.4.13.14.15
- 3.4.13.17.19.21
- 3.4.17.30.38
Temperaments
Scales
4.5.n subgroups
Examples of valid equalizer subgroups in this category (not exhaustive):
- 4.5.13.14.15
- 4.5.13.17.19.21
- 4.5.17.30.38
Temperaments
Scales
Related concepts
- Subgroup temperaments
- Substitute harmonics
- Dual-fifth temperaments
- Sooty fox scales: many of these tunings are especially great at approximating equalizer subgroups