Sooty fox scale

From Xenharmonic Wiki
Jump to navigation Jump to search
This page presents a novelty topic. It features ideas which are less likely to find practical applications in xenharmonic music. It may contain numbers that are impractically large, exceedingly complex, or chosen arbitrarily. Novelty topics are often developed by a single person or a small group. As such, this page may also feature idiosyncratic terms, notations, or conceptual frameworks.

A sooty fox scale⁠ ⁠[idiosyncratic term] (ed343/338 or syfx⁠ ⁠[idiosyncratic term]) is an equal-step tuning in which 343/338 is justly tuned and is divided in a given number of equal steps.

This type of scale is named after the Aleutian sooty fox sparrow, taxa #343388 on iNaturalist.

Overview

A quick overview of the sooty fox scales:

  • 1syfx = An excellent tuning for the equalizer subgroup 2.3.31.37.41.43.47. Alternatively, an okay dual-7 17-limit tuning
  • 2syfx = An okay dual-11 tuning for the 5.7.11.13.17.19.23 subgroup
  • 3syfx = An okay dual-7 tuning for the 5.7.11.13.17 subgroup
  • 4syfx = An excellent tuning for the equalizer subgroup 2.3.17.19.23.29. Alternatively, an okay dual-5 29-limit tuning.
  • 5syfx = An excellent 5-limit tuning, also an excellent tuning for several different equalizer subgroups including 2.3.5.47.53.73.79.103.106.131.137
  • 6syfx = An excellent full 79-limit tuning
  • 7syfx = (poor JI approximation)
  • 8syfx = An okay dual-3 13-limit tuning
  • 9syfx = An okay full 13-limit tuning
  • 10syfx = An excellent no-31s 73-limit tuning
  • 11syfx = An excellent tuning for the equalizer subgroup 2.3.71.73.79.83. Alternatively, an okay full 41-limit tuning
  • 12syfx = An okay dual-2, dual-11 41-limit tuning


The first sooty fox scale

← 0ed343/338 1ed343/338 2ed343/338 →
Prime factorization n/a
Step size 25.4224¢ 
Octave 47\1ed343/338 (1194.85¢)
Twelfth 75\1ed343/338 (1906.68¢)
Consistency limit 3
Distinct consistency limit 1
Special properties

1ed343/338 or 1syfx for short.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 25.422
2 50.843 31/30
3 76.265
4 101.686 18/17
5 127.108 14/13
6 152.53 12/11, 23/21
7 177.951 10/9, 21/19, 31/28
8 203.373
9 228.794
10 254.216
11 279.637 20/17, 27/23
12 305.059 25/21, 31/26
13 330.481 17/14, 23/19, 29/24
14 355.902
15 381.324
16 406.745 19/15
17 432.167 9/7
18 457.589 13/10, 30/23
19 483.01 29/22
20 508.432
21 533.853 19/14
22 559.275 18/13
23 584.697 7/5
24 610.118 27/19
25 635.54 13/9
26 660.961 19/13
27 686.383
28 711.804
29 737.226 23/15, 26/17
30 762.648 14/9, 31/20
31 788.069 30/19
32 813.491
33 838.912
34 864.334 23/14, 28/17
35 889.756 5/3
36 915.177 17/10
37 940.599 31/18
38 966.02
39 991.442 23/13
40 1016.863 9/5
41 1042.285 31/17
42 1067.707 13/7
43 1093.128
44 1118.55
45 1143.971
46 1169.393
47 1194.815 2/1

Harmonics

Approximation of harmonics in 1syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -5.1 +4.7 +10.1 +12.4 -7.5 +8.4 +1.6 +12.4 +12.1 -7.8 +3.8
Relative (%) -20.2 +18.6 +39.9 +48.6 -29.4 +33.0 +6.2 +48.7 +47.7 -30.9 +15.0
Step 47 75 110 133 163 175 193 201 214 229 234
1syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.6 +2.8 -3.4 -4.8 -9.5 +8.3 +1.4 -8.5 -7.2 -4.4 +11.3
Relative (%) +10.1 +11.0 -13.3 -19.0 -37.2 +32.5 +5.5 -33.4 -28.3 -17.5 +44.6
Step 246 253 256 262 270 278 280 286 290 292 298


47edo, 75edt, 110ed5, 28edf for comparison:

Approximation of prime harmonics in 47edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0 -12.6 -3.3 +1.4 +10.4 +2.0 -2.8 +8.9 +10.0 -8.3 +3.9
Relative (%) +0.0 -49.3 -13.1 +5.4 +40.7 +7.9 -11.1 +34.7 +39.3 -32.5 +15.3
Steps
(reduced)
47
(0)
74
(27)
109
(15)
132
(38)
163
(22)
174
(33)
192
(4)
200
(12)
213
(25)
228
(40)
233
(45)
47edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +4.0 +5.0 -0.9 -1.7 -5.4 -12.4 +6.5 -2.7 -1.0 +2.0 -7.1
Relative (%) +15.6 +19.5 -3.4 -6.6 -21.2 -48.4 +25.5 -10.6 -3.8 +7.8 -27.8
Steps
(reduced)
245
(10)
252
(17)
255
(20)
261
(26)
269
(34)
276
(41)
279
(44)
285
(3)
289
(7)
291
(9)
296
(14)
Approximation of prime harmonics in 75edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -8.1 +0.0 +3.2 +4.0 +7.6 -2.6 -10.6 -0.3 -1.4 +3.1 -10.9
Relative (%) -32.0 +0.0 +12.7 +15.7 +30.1 -10.4 -41.8 -1.1 -5.4 +12.2 -43.1
Steps
(reduced)
47
(47)
75
(0)
110
(35)
133
(58)
164
(14)
175
(25)
193
(43)
201
(51)
214
(64)
230
(5)
234
(9)
75edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +12.4 +12.2 +5.8 +4.0 -1.1 -9.3 +9.1 -1.2 -0.1 +2.5 -7.4
Relative (%) +49.0 +48.2 +23.1 +15.8 -4.4 -36.5 +35.9 -4.6 -0.4 +9.9 -29.3
Steps
(reduced)
247
(22)
254
(29)
257
(32)
263
(38)
271
(46)
278
(53)
281
(56)
287
(62)
291
(66)
293
(68)
298
(73)
Approximation of prime harmonics in 110ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -9.5 -2.2 +0.0 +0.1 +2.8 -7.8 +9.1 -6.2 -7.6 -3.6 +7.5
Relative (%) -37.4 -8.7 +0.0 +0.3 +11.1 -30.6 +35.9 -24.3 -30.1 -14.4 +29.8
Steps
(reduced)
47
(47)
75
(75)
110
(0)
133
(23)
164
(54)
175
(65)
194
(84)
201
(91)
214
(104)
230
(10)
235
(15)
110ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +5.2 +4.8 -1.7 -3.7 -9.0 +7.9 +0.9 -9.6 -8.6 -6.1 +9.2
Relative (%) +20.5 +18.9 -6.6 -14.5 -35.7 +31.3 +3.5 -37.7 -34.1 -23.9 +36.2
Steps
(reduced)
247
(27)
254
(34)
257
(37)
263
(43)
271
(51)
279
(59)
281
(61)
287
(67)
291
(71)
293
(73)
299
(79)
Approximation of prime harmonics in 28edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +3.4 +3.4 -3.6 -9.5 +10.3 -3.2 +8.7 -8.3 +11.9 +11.7 -3.5
Relative (%) +13.4 +13.4 -14.2 -37.8 +41.0 -12.6 +34.8 -33.3 +47.4 +46.6 -13.9
Steps
(reduced)
48
(20)
76
(20)
111
(27)
134
(22)
166
(26)
177
(9)
196
(0)
203
(7)
217
(21)
233
(9)
237
(13)
28edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -9.0 -11.2 +6.6 +3.1 -4.4 +10.5 +2.9 -9.1 -9.2 -7.1 +6.5
Relative (%) -35.7 -44.6 +26.5 +12.2 -17.4 +42.0 +11.7 -36.1 -36.6 -28.4 +26.1
Steps
(reduced)
249
(25)
256
(4)
260
(8)
266
(14)
274
(22)
282
(2)
284
(4)
290
(10)
294
(14)
296
(16)
302
(22)


The second sooty fox scale

← 1ed343/338 2ed343/338 3ed343/338 →
Prime factorization 2 (prime)
Step size 12.7112¢ 
Octave 94\2ed343/338 (1194.85¢) (→47\1ed343/338)
Twelfth 150\2ed343/338 (1906.68¢) (→75\1ed343/338)
Consistency limit 2
Distinct consistency limit 1
Special properties

2ed343/338 or 2syfx for short.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 12.711
2 25.422
3 38.132 43/42
4 50.843 35/34, 36/35
5 63.554
6 76.265 23/22
7 88.976 39/37, 41/39
8 101.686
9 114.397 31/29
10 127.108 14/13
11 139.819 13/12, 38/35
12 152.53
13 165.24
14 177.951 41/37
15 190.662 19/17
16 203.373
17 216.083 17/15, 43/38
18 228.794
19 241.505
20 254.216 22/19
21 266.927 7/6
22 279.637
23 292.348
24 305.059 37/31, 43/36
25 317.77 6/5
26 330.481 23/19
27 343.191
28 355.902 43/35
29 368.613
30 381.324
31 394.035
32 406.745 19/15, 43/34
33 419.456 37/29
34 432.167
35 444.878 22/17
36 457.589 30/23
37 470.299
38 483.01 41/31
39 495.721
40 508.432
41 521.143 23/17
42 533.853 34/25
43 546.564
44 559.275 29/21
45 571.986
46 584.697 7/5
47 597.407 41/29
48 610.118
49 622.829 43/30
50 635.54
51 648.25
52 660.961 22/15
53 673.672 31/21
54 686.383
55 699.094
56 711.804
57 724.515 35/23, 38/25
58 737.226
59 749.937
60 762.648
61 775.358 36/23
62 788.069
63 800.78
64 813.491
65 826.202 29/18
66 838.912
67 851.623 18/11
68 864.334
69 877.045
70 889.756
71 902.466 37/22
72 915.177 39/23
73 927.888
74 940.599 31/18, 43/25
75 953.31
76 966.02
77 978.731 37/21
78 991.442 39/22
79 1004.153 25/14
80 1016.863
81 1029.574
82 1042.285 31/17, 42/23
83 1054.996 35/19
84 1067.707
85 1080.417
86 1093.128
87 1105.839 36/19
88 1118.55 21/11
89 1131.261 25/13
90 1143.971 29/15
91 1156.682 41/21
92 1169.393
93 1182.104
94 1194.815

Harmonics

Approximation of harmonics in 2syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -5.15 +4.72 -2.56 -0.36 +5.24 -4.32 +1.57 -0.32 -0.59 +4.86 +3.81
Relative (%) -40.5 +37.2 -20.2 -2.8 +41.3 -34.0 +12.3 -2.5 -4.7 +38.3 +29.9
Steps
(reduced)
94
(0)
150
(0)
219
(1)
265
(1)
327
(1)
349
(1)
386
(0)
401
(1)
427
(1)
459
(1)
468
(0)
2syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.57 +2.80 -3.38 -4.84 +3.25 -4.46 +1.39 +4.21 +5.51 -4.45 -1.37
Relative (%) +20.2 +22.1 -26.6 -38.1 +25.6 -35.1 +10.9 +33.1 +43.3 -35.0 -10.8
Steps
(reduced)
492
(0)
506
(0)
512
(0)
524
(0)
541
(1)
555
(1)
560
(0)
573
(1)
581
(1)
584
(0)
595
(1)


94edo, 150edt, 219ed5, 55edf for comparison:

Approximation of prime harmonics in 94edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.17 -3.33 +1.39 -2.38 +2.03 -2.83 -3.90 -2.74 +4.47 +3.90
Relative (%) +0.0 +1.4 -26.1 +10.9 -18.7 +15.9 -22.2 -30.5 -21.5 +35.0 +30.6
Steps
(reduced)
94
(0)
149
(55)
218
(30)
264
(76)
325
(43)
348
(66)
384
(8)
399
(23)
425
(49)
457
(81)
466
(90)
94edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +3.98 +4.98 -0.88 -1.68 -5.42 +0.40 -6.25 -2.71 -0.97 +2.00 +5.68
Relative (%) +31.1 +39.0 -6.9 -13.1 -42.5 +3.2 -48.9 -21.2 -7.6 +15.6 +44.5
Steps
(reduced)
490
(20)
504
(34)
510
(40)
522
(52)
538
(68)
553
(83)
557
(87)
570
(6)
578
(14)
582
(18)
593
(29)
Approximation of prime harmonics in 150edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +4.57 +0.00 +3.22 +3.97 -5.06 -2.63 +2.09 -0.27 -1.36 +3.08 +1.74
Relative (%) +36.1 +0.0 +25.4 +31.3 -39.9 -20.8 +16.5 -2.2 -10.7 +24.3 +13.8
Steps
(reduced)
95
(95)
150
(0)
220
(70)
266
(116)
327
(27)
350
(50)
387
(87)
402
(102)
428
(128)
460
(10)
469
(19)
150edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.25 -0.45 +5.85 +4.02 -1.11 +3.42 -3.57 -1.16 -0.11 +2.51 +5.24
Relative (%) -2.0 -3.6 +46.1 +31.7 -8.7 +27.0 -28.2 -9.1 -0.9 +19.8 +41.4
Steps
(reduced)
493
(43)
507
(57)
514
(64)
526
(76)
542
(92)
557
(107)
561
(111)
574
(124)
582
(132)
586
(136)
597
(147)
Approximation of prime harmonics in 219ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -4.05 -6.24 +0.00 +2.74 -3.65 -0.24 +6.08 +4.37 +4.40 -2.49 -3.44
Relative (%) -31.8 -49.1 +0.0 +21.5 -28.7 -1.9 +47.8 +34.3 +34.6 -19.6 -27.1
Steps
(reduced)
94
(94)
149
(149)
219
(0)
265
(46)
326
(107)
349
(130)
386
(167)
401
(182)
427
(208)
458
(20)
467
(29)
219ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -4.40 -4.00 +2.60 +1.29 -3.14 +2.03 -4.79 -1.81 -0.42 +2.38 +5.58
Relative (%) -34.6 -31.4 +20.5 +10.1 -24.7 +16.0 -37.6 -14.2 -3.3 +18.7 +43.9
Steps
(reduced)
491
(53)
505
(67)
512
(74)
524
(86)
540
(102)
555
(117)
559
(121)
572
(134)
580
(142)
584
(146)
595
(157)
Approximation of prime harmonics in 55edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.30 -0.30 -4.02 +0.56 -3.40 +0.93 -4.03 -5.15 -4.08 +3.03 +2.44
Relative (%) -2.3 -2.3 -31.5 +4.4 -26.7 +7.3 -31.6 -40.3 -31.9 +23.7 +19.1
Steps
(reduced)
94
(39)
149
(39)
218
(53)
264
(44)
325
(50)
348
(18)
384
(54)
399
(14)
425
(40)
457
(17)
466
(26)
55edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.44 +3.40 -2.48 -3.32 +5.65 -1.33 +4.77 -4.50 -2.79 +0.17 +3.81
Relative (%) +19.1 +26.6 -19.4 -26.0 +44.3 -10.4 +37.4 -35.3 -21.8 +1.3 +29.9
Steps
(reduced)
490
(50)
504
(9)
510
(15)
522
(27)
539
(44)
553
(3)
558
(8)
570
(20)
578
(28)
582
(32)
593
(43)


The third sooty fox scale

← 2ed343/338 3ed343/338 4ed343/338 →
Prime factorization 3 (prime)
Step size 8.47413¢ 
Octave 142\3ed343/338 (1203.33¢)
Twelfth 224\3ed343/338 (1898.21¢)
(semiconvergent)
Consistency limit 2
Distinct consistency limit 2

3ed343/338 or 3syfx for short.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 8.474
2 16.949
3 25.423
4 33.897 50/49
5 42.372 42/41
6 50.846 35/34
7 59.32 30/29
8 67.795 26/25
9 76.269 23/22
10 84.744
11 93.218
12 101.692 52/49
13 110.167 49/46
14 118.641
15 127.115
16 135.59
17 144.064 25/23
18 152.538
19 161.013 34/31
20 169.487 43/39
21 177.961 41/37
22 186.436 49/44
23 194.91 47/42
24 203.384
25 211.859 26/23
26 220.333 25/22, 42/37
27 228.807
28 237.282 47/41
29 245.756
30 254.231 22/19
31 262.705
32 271.179 55/47
33 279.654
34 288.128 13/11
35 296.602 51/43
36 305.077 31/26, 37/31
37 313.551
38 322.025
39 330.5 23/19
40 338.974
41 347.448
42 355.923
43 364.397 21/17, 37/30
44 372.871 31/25, 36/29
45 381.346
46 389.82
47 398.294
48 406.769
49 415.243 47/37
50 423.718
51 432.192
52 440.666 49/38
53 449.141
54 457.615 43/33
55 466.089 55/42
56 474.564 25/19, 46/35
57 483.038 41/31
58 491.512
59 499.987
60 508.461 55/41
61 516.935 31/23
62 525.41 42/31
63 533.884 34/25
64 542.358 26/19, 41/30
65 550.833
66 559.307 29/21, 47/34
67 567.781
68 576.256
69 584.73
70 593.205 31/22
71 601.679 17/12
72 610.153 37/26
73 618.628 10/7
74 627.102
75 635.576
76 644.051
77 652.525 35/24
78 660.999
79 669.474
80 677.948 34/23, 37/25
81 686.422 52/35, 55/37
82 694.897
83 703.371
84 711.845
85 720.32 47/31
86 728.794
87 737.268
88 745.743
89 754.217 17/11
90 762.692
91 771.166
92 779.64
93 788.115 41/26
94 796.589 19/12
95 805.063 35/22
96 813.538
97 822.012 37/23
98 830.486 21/13
99 838.961
100 847.435 31/19
101 855.909 41/25
102 864.384
103 872.858
104 881.332
105 889.807
106 898.281 42/25
107 906.755
108 915.23
109 923.704 29/17
110 932.179 12/7
111 940.653
112 949.127
113 957.602
114 966.076
115 974.55
116 983.025 30/17
117 991.499 55/31
118 999.973 41/23
119 1008.448 34/19
120 1016.922
121 1025.396 47/26
122 1033.871
123 1042.345 42/23
124 1050.819 11/6
125 1059.294
126 1067.768
127 1076.242 41/22
128 1084.717
129 1093.191 47/25
130 1101.666
131 1110.14 19/10
132 1118.614 21/11
133 1127.089 23/12
134 1135.563
135 1144.037
136 1152.512 37/19
137 1160.986
138 1169.46
139 1177.935
140 1186.409
141 1194.883
142 1203.358

Harmonics

Approximation of harmonics in 3syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +3.33 -3.75 +1.68 +3.88 +1.01 -0.08 +1.57 +3.91 +3.64 +0.63 +3.81
Relative (%) +39.3 -44.2 +19.8 +45.8 +11.9 -1.0 +18.5 +46.2 +43.0 +7.4 +44.9
Steps
(reduced)
142
(1)
224
(2)
329
(2)
398
(2)
490
(1)
524
(2)
579
(0)
602
(2)
641
(2)
688
(1)
702
(0)
3syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.57 +2.80 -3.38 +3.64 -0.98 -0.22 +1.39 -0.03 +1.27 +4.02 +2.86
Relative (%) +30.3 +33.1 -39.9 +42.9 -11.6 -2.6 +16.4 -0.3 +15.0 +47.5 +33.8
Steps
(reduced)
738
(0)
759
(0)
768
(0)
787
(1)
811
(1)
833
(2)
840
(0)
859
(1)
871
(1)
877
(1)
893
(2)


142edo, 224edt, 329ed5, 83edf for comparison:

Approximation of prime harmonics in 142edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.55 +2.42 +3.01 -2.02 -3.91 -3.55 -1.74 -2.92 +1.41 -4.19
Relative (%) +0.0 -6.5 +28.6 +35.6 -23.9 -46.2 -42.0 -20.6 -34.6 +16.7 -49.6
Steps
(reduced)
142
(0)
225
(83)
330
(46)
399
(115)
491
(65)
525
(99)
580
(12)
603
(35)
642
(74)
690
(122)
703
(135)
142edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.18 +1.92 +3.98 +2.10 -3.08 -2.83 -1.39 -3.25 -2.23 +0.38 -1.16
Relative (%) +25.8 +22.8 +47.0 +24.8 -36.5 -33.5 -16.5 -38.5 -26.4 +4.5 -13.7
Steps
(reduced)
740
(30)
761
(51)
771
(61)
789
(79)
813
(103)
835
(125)
842
(132)
861
(9)
873
(21)
879
(27)
895
(43)
Approximation of prime harmonics in 224edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -2.79 +0.00 -1.31 +2.05 +0.72 +0.20 +2.77 -2.99 -2.61 +3.65 -1.43
Relative (%) -32.8 +0.0 -15.4 +24.1 +8.5 +2.3 +32.6 -35.2 -30.7 +43.0 -16.8
Steps
(reduced)
141
(141)
224
(0)
328
(104)
397
(173)
489
(41)
523
(75)
578
(130)
600
(152)
639
(191)
687
(15)
700
(28)
224edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -2.06 -1.47 +0.98 -0.17 +4.10 -3.26 -1.54 -2.63 -1.13 +1.72 +0.83
Relative (%) -24.3 -17.4 +11.5 -2.0 +48.3 -38.4 -18.1 -31.0 -13.3 +20.3 +9.8
Steps
(reduced)
736
(64)
757
(85)
767
(95)
785
(113)
810
(138)
831
(159)
838
(166)
857
(185)
869
(197)
875
(203)
891
(219)
Approximation of prime harmonics in 329ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +2.60 +3.58 +0.00 +1.85 -1.49 -2.75 -1.38 +0.85 +0.38 -2.88 +0.23
Relative (%) +30.7 +42.3 +0.0 +21.9 -17.6 -32.5 -16.3 +10.0 +4.5 -34.0 +2.7
Steps
(reduced)
142
(142)
225
(225)
329
(0)
398
(69)
490
(161)
524
(195)
579
(250)
602
(273)
641
(312)
688
(30)
702
(44)
329ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -1.19 -1.06 +1.17 -0.37 +3.35 +4.01 -2.89 +4.07 -3.16 -0.44 -1.69
Relative (%) -14.1 -12.5 +13.9 -4.4 +39.6 +47.3 -34.2 +48.0 -37.4 -5.2 -19.9
Steps
(reduced)
738
(80)
759
(101)
769
(111)
787
(129)
812
(154)
834
(176)
840
(182)
860
(202)
871
(213)
877
(219)
893
(235)
Approximation of prime harmonics in 83edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.94 +0.94 -3.87 -2.82 +1.21 -0.45 +0.27 +2.23 +1.31 -2.50 +0.44
Relative (%) +11.1 +11.1 -45.7 -33.4 +14.3 -5.3 +3.2 +26.4 +15.4 -29.6 +5.2
Steps
(reduced)
142
(59)
225
(59)
329
(80)
398
(66)
491
(76)
525
(27)
580
(82)
603
(22)
642
(61)
689
(25)
703
(39)
83edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -1.41 -1.52 +0.59 -1.16 +2.27 +2.66 +4.15 +2.42 +3.52 -2.29 -3.72
Relative (%) -16.6 -18.0 +7.0 -13.7 +26.9 +31.5 +49.1 +28.6 +41.6 -27.1 -44.0
Steps
(reduced)
739
(75)
760
(13)
770
(23)
788
(41)
813
(66)
835
(5)
842
(12)
861
(31)
873
(43)
878
(48)
894
(64)


The fourth sooty fox scale

← 3ed343/338 4ed343/338 5ed343/338 →
Prime factorization 22
Step size 6.3556¢ 
Octave 189\4ed343/338 (1201.21¢)
(convergent)
Twelfth 299\4ed343/338 (1900.32¢)
(semiconvergent)
Consistency limit 3
Distinct consistency limit 2
Special properties

4ed343/338 or 4syfx for short.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 6.356
2 12.711
3 19.067
4 25.422
5 31.778 49/48, 50/49
6 38.134 51/50, 52/51
7 44.489 35/34, 39/38, 40/39
8 50.845 36/35
9 57.201 34/33
10 63.556
11 69.912 51/49
12 76.267 23/22, 24/23
13 82.623 21/20, 22/21
14 88.979 20/19
15 95.334 18/17, 19/18
16 101.69 17/16, 35/33
17 108.045 49/46, 52/49
18 114.401 15/14
19 120.757
20 127.112 14/13
21 133.468 27/25
22 139.824 13/12, 25/23
23 146.179 38/35
24 152.535 12/11, 49/45
25 158.89 23/21
26 165.246 11/10, 54/49
27 171.602 21/19
28 177.957 51/46
29 184.313 10/9, 49/44
30 190.668 19/17, 39/35
31 197.024
32 203.38
33 209.735 44/39
34 216.091 25/22, 26/23
35 222.447 17/15
36 228.802
37 235.158 8/7, 39/34
38 241.513 15/13, 23/20
39 247.869 38/33
40 254.225 22/19, 51/44
41 260.58
42 266.936 7/6
43 273.291 27/23
44 279.647 20/17, 33/28
45 286.003 46/39
46 292.358 13/11, 19/16
47 298.714 25/21
48 305.07
49 311.425
50 317.781 6/5
51 324.136
52 330.492 23/19
53 336.848 17/14, 39/32, 40/33
54 343.203 28/23
55 349.559 11/9, 27/22, 49/40
56 355.915
57 362.27 16/13, 21/17
58 368.626
59 374.981 26/21
60 381.337 5/4
61 387.693
62 394.048 49/39
63 400.404 44/35
64 406.759 24/19, 33/26
65 413.115 19/15
66 419.471 14/11, 51/40
67 425.826 23/18, 50/39
68 432.182 9/7
69 438.538 49/38
70 444.893 22/17
71 451.249 35/27
72 457.604 13/10, 30/23
73 463.96 17/13
74 470.316 25/19
75 476.671 46/35
76 483.027 33/25
77 489.382
78 495.738
79 502.094 4/3
80 508.449 35/26, 51/38
81 514.805 27/20
82 521.161 23/17
83 527.516 19/14
84 533.872 15/11, 49/36
85 540.227
86 546.583 11/8, 26/19
87 552.939 48/35
88 559.294 18/13
89 565.65 25/18
90 572.005 39/28
91 578.361 46/33
92 584.717 7/5
93 591.072
94 597.428 24/17, 38/27
95 603.784 17/12, 27/19
96 610.139
97 616.495 10/7
98 622.85 23/16, 33/23
99 629.206 49/34
100 635.562 36/25
101 641.917 13/9
102 648.273 35/24
103 654.628 16/11, 19/13, 51/35
104 660.984
105 667.34 22/15
106 673.695 28/19
107 680.051 34/23
108 686.407 40/27, 49/33
109 692.762
110 699.118 3/2
111 705.473
112 711.829
113 718.185 50/33
114 724.54 35/23
115 730.896 38/25
116 737.251 26/17
117 743.607 20/13, 23/15
118 749.963 54/35
119 756.318 17/11
120 762.674
121 769.03 14/9
122 775.385 36/23, 39/25
123 781.741 11/7
124 788.096 30/19
125 794.452 19/12
126 800.808 35/22, 51/32
127 807.163
128 813.519
129 819.874 8/5
130 826.23 21/13
131 832.586
132 838.941 13/8, 34/21
133 845.297
134 851.653 18/11, 44/27, 49/30
135 858.008 23/14
136 864.364 28/17, 33/20
137 870.719 38/23
138 877.075
139 883.431 5/3
140 889.786
141 896.142
142 902.497 42/25
143 908.853 22/13
144 915.209 39/23
145 921.564 17/10
146 927.92 46/27
147 934.276 12/7
148 940.631
149 946.987 19/11
150 953.342 33/19
151 959.698 40/23
152 966.054 7/4
153 972.409
154 978.765 30/17
155 985.12 23/13
156 991.476 39/22
157 997.832 25/14
158 1004.187
159 1010.543 34/19
160 1016.899 9/5
161 1023.254
162 1029.61 38/21
163 1035.965 20/11, 49/27, 51/28
164 1042.321 42/23
165 1048.677 11/6
166 1055.032 35/19
167 1061.388 24/13, 46/25
168 1067.744 50/27
169 1074.099 13/7
170 1080.455
171 1086.81 28/15
172 1093.166 49/26
173 1099.522 32/17
174 1105.877 17/9, 36/19
175 1112.233 19/10
176 1118.588 21/11, 40/21
177 1124.944 23/12, 44/23
178 1131.3 27/14
179 1137.655
180 1144.011 33/17
181 1150.367 35/18
182 1156.722 39/20, 45/23
183 1163.078 51/26
184 1169.433 49/25
185 1175.789
186 1182.145
187 1188.5
188 1194.856
189 1201.211 2/1

Harmonics

Approximation of harmonics in 4syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +1.21 -1.63 -2.56 -0.36 -1.11 +2.04 +1.57 -0.32 -0.59 -1.49 -2.55
Relative (%) +19.0 -25.7 -40.3 -5.6 -17.5 +32.0 +24.7 -5.1 -9.3 -23.5 -40.1
Steps
(reduced)
189
(1)
299
(3)
438
(2)
530
(2)
653
(1)
699
(3)
772
(0)
802
(2)
854
(2)
917
(1)
935
(3)
4syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.57 +2.80 +2.97 +1.52 -3.10 +1.90 +1.39 -2.15 -0.85 +1.91 -1.37
Relative (%) +40.4 +44.1 +46.7 +23.9 -48.8 +29.9 +21.8 -33.8 -13.3 +30.0 -21.6
Steps
(reduced)
984
(0)
1012
(0)
1025
(1)
1049
(1)
1081
(1)
1111
(3)
1120
(0)
1145
(1)
1161
(1)
1169
(1)
1190
(2)


189edo, 299edt, 438ed5, 110edf for comparison:

Approximation of prime harmonics in 189edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +2.81 +0.99 +2.60 +1.06 -2.43 +2.98 +0.90 +0.30 -1.01 -2.18
Relative (%) +0.0 +44.2 +15.6 +41.0 +16.7 -38.3 +47.0 +14.2 +4.7 -15.8 -34.3
Steps
(reduced)
189
(0)
300
(111)
439
(61)
531
(153)
654
(87)
699
(132)
773
(17)
803
(47)
855
(99)
918
(162)
936
(180)
189edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.62 +2.68 +2.77 +1.16 +2.69 +1.15 +0.58 -3.12 -1.92 +0.78 -2.63
Relative (%) +41.3 +42.3 +43.6 +18.3 +42.3 +18.0 +9.1 -49.1 -30.2 +12.3 -41.5
Steps
(reduced)
985
(40)
1013
(68)
1026
(81)
1050
(105)
1083
(138)
1112
(167)
1121
(176)
1146
(12)
1162
(28)
1170
(36)
1191
(57)
Approximation of prime harmonics in 299edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +2.24 +0.00 -0.17 +2.53 +2.45 -0.51 -0.58 -2.31 -2.30 -2.85 +2.55
Relative (%) +35.2 +0.0 -2.7 +39.8 +38.5 -8.1 -9.2 -36.3 -36.1 -44.8 +40.1
Steps
(reduced)
189
(189)
299
(0)
438
(139)
530
(231)
653
(55)
698
(100)
771
(173)
801
(203)
853
(255)
916
(19)
935
(38)
299edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +1.57 +1.96 +2.20 +0.88 +2.79 +1.60 +1.13 -2.26 -0.87 +1.92 -1.24
Relative (%) +24.7 +30.9 +34.6 +13.8 +43.9 +25.1 +17.8 -35.6 -13.7 +30.2 -19.6
Steps
(reduced)
983
(86)
1011
(114)
1024
(127)
1048
(151)
1081
(184)
1110
(213)
1119
(222)
1144
(247)
1160
(263)
1168
(271)
1189
(292)
Approximation of prime harmonics in 438ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +2.31 +0.12 +0.00 +2.74 +2.71 -0.24 -0.28 -1.99 -1.96 -2.49 +2.92
Relative (%) +36.4 +1.8 +0.0 +43.1 +42.6 -3.7 -4.4 -31.3 -30.8 -39.2 +45.9
Steps
(reduced)
189
(189)
299
(299)
438
(0)
530
(92)
653
(215)
698
(260)
771
(333)
801
(363)
853
(415)
916
(40)
935
(59)
438ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +1.96 +2.36 +2.60 +1.29 -3.14 +2.03 +1.57 -1.81 -0.42 +2.38 -0.78
Relative (%) +30.8 +37.1 +40.9 +20.3 -49.4 +32.0 +24.7 -28.5 -6.6 +37.4 -12.2
Steps
(reduced)
983
(107)
1011
(135)
1024
(148)
1048
(172)
1080
(204)
1110
(234)
1119
(243)
1144
(268)
1160
(284)
1168
(292)
1189
(313)
Approximation of prime harmonics in 110edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.30 -0.30 +2.36 +0.56 +2.98 +0.93 +2.35 +1.23 +2.30 +3.03 +2.44
Relative (%) -4.6 -4.6 +37.0 +8.7 +46.7 +14.6 +36.8 +19.3 +36.1 +47.5 +38.2
Steps
(reduced)
188
(78)
298
(78)
437
(107)
528
(88)
651
(101)
696
(36)
769
(109)
799
(29)
851
(81)
914
(34)
932
(52)
110edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.44 -2.98 -2.48 +3.07 -0.73 -1.33 -1.61 +1.88 -2.79 +0.17 -2.57
Relative (%) +38.2 -46.8 -38.9 +48.0 -11.4 -20.9 -25.3 +29.5 -43.7 +2.7 -40.2
Steps
(reduced)
980
(100)
1007
(17)
1020
(30)
1045
(55)
1077
(87)
1106
(6)
1115
(15)
1141
(41)
1156
(56)
1164
(64)
1185
(85)


The fifth sooty fox scale

← 4ed343/338 5ed343/338 6ed343/338 →
Prime factorization 5 (prime)
Step size 5.08448¢ 
Octave 236\5ed343/338 (1199.94¢)
(convergent)
Twelfth 374\5ed343/338 (1901.6¢)
(convergent)
Consistency limit 6
Distinct consistency limit 2

5ed343/338 or 5syfx for short.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 5.085
2 10.169
3 15.254
4 20.338
5 25.423
6 30.507 50/49, 52/51
7 35.592 51/50
8 40.676 39/38, 45/44, 46/45, 49/48
9 45.761 36/35, 40/39
10 50.845 33/32, 35/34
11 55.93 34/33
12 61.014
13 66.099 26/25, 27/26, 28/27, 51/49
14 71.183 24/23, 25/24
15 76.268 22/21
16 81.352 23/22
17 86.437 20/19, 21/20
18 91.521
19 96.606 18/17, 19/18
20 101.69
21 106.775 17/16, 35/33
22 111.859 16/15, 49/46
23 116.944 15/14
24 122.028
25 127.113
26 132.197 14/13, 27/25
27 137.282 13/12
28 142.366 25/23, 38/35
29 147.451
30 152.535 12/11
31 157.62 23/21, 35/32
32 162.704 11/10
33 167.789
34 172.873 21/19
35 177.958 51/46
36 183.042 10/9, 39/35
37 188.127
38 193.211 19/17
39 198.296 28/25
40 203.38 9/8
41 208.465 26/23, 44/39
42 213.549
43 218.634 17/15
44 223.718 25/22
45 228.803 8/7
46 233.887 39/34
47 238.972
48 244.056 23/20
49 249.141 15/13, 22/19, 38/33, 52/45
50 254.225
51 259.31 51/44
52 264.394
53 269.479 7/6
54 274.563 27/23
55 279.648 20/17, 33/28
56 284.732
57 289.817 13/11, 45/38, 46/39
58 294.901 32/27
59 299.986 19/16, 25/21
60 305.07
61 310.155
62 315.239 6/5
63 320.324
64 325.408
65 330.493 23/19
66 335.577 17/14, 40/33
67 340.662 28/23, 39/32
68 345.746 11/9
69 350.831
70 355.915 27/22, 49/40
71 361 16/13
72 366.084 21/17, 26/21
73 371.169
74 376.253
75 381.338
76 386.422 5/4
77 391.507 44/35
78 396.591
79 401.676 24/19, 34/27
80 406.76
81 411.845 19/15, 33/26
82 416.929
83 422.014 14/11, 51/40
84 427.098 23/18, 32/25
85 432.183 9/7, 50/39
86 437.267
87 442.352 22/17, 49/38
88 447.436
89 452.521 13/10, 35/27
90 457.605 30/23
91 462.69
92 467.774 17/13
93 472.859 21/16, 25/19, 46/35
94 477.943 33/25
95 483.028 45/34
96 488.112
97 493.197
98 498.281 4/3
99 503.366
100 508.45 51/38
101 513.535
102 518.619 27/20, 35/26
103 523.704 23/17
104 528.788 19/14
105 533.873 34/25
106 538.957 15/11, 26/19
107 544.042 48/35
108 549.126 11/8
109 554.211
110 559.295
111 564.38 18/13
112 569.464 25/18, 32/23, 39/28
113 574.549
114 579.633 46/33
115 584.718 7/5
116 589.802 45/32
117 594.887 24/17, 38/27
118 599.971
119 605.056 17/12, 27/19
120 610.14
121 615.225 10/7
122 620.309 33/23
123 625.394
124 630.478 23/16, 36/25
125 635.563 13/9, 49/34
126 640.647
127 645.732
128 650.816 16/11, 51/35
129 655.901 35/24
130 660.985 19/13, 22/15
131 666.07 25/17
132 671.154 28/19
133 676.239 34/23
134 681.323 40/27, 52/35
135 686.408
136 691.492
137 696.577
138 701.661 3/2
139 706.746
140 711.83
141 716.915
142 721.999 50/33
143 727.084 32/21, 35/23, 38/25
144 732.168 26/17
145 737.253
146 742.337 23/15, 49/32
147 747.422 20/13, 54/35
148 752.506
149 757.591 17/11
150 762.675
151 767.76 14/9, 39/25
152 772.844 25/16, 36/23
153 777.929 11/7
154 783.013
155 788.098 30/19, 52/33
156 793.182
157 798.267 19/12, 27/17
158 803.351
159 808.436 35/22, 51/32
160 813.52 8/5
161 818.605 45/28
162 823.689
163 828.774
164 833.858 21/13, 34/21
165 838.943 13/8
166 844.027 44/27
167 849.112
168 854.196 18/11, 49/30
169 859.281 23/14
170 864.365 28/17, 33/20
171 869.45 38/23
172 874.534
173 879.619
174 884.703 5/3
175 889.788
176 894.872
177 899.957 32/19, 42/25
178 905.041 27/16
179 910.126 22/13, 39/23
180 915.21
181 920.295 17/10
182 925.379 46/27
183 930.464 12/7
184 935.548
185 940.633
186 945.717
187 950.802 19/11, 26/15, 33/19, 45/26
188 955.886 40/23
189 960.971
190 966.055
191 971.14 7/4
192 976.224 44/25
193 981.309 30/17
194 986.393
195 991.478 23/13, 39/22
196 996.562 16/9
197 1001.647 25/14
198 1006.731 34/19
199 1011.816
200 1016.9 9/5
201 1021.985
202 1027.069 38/21
203 1032.154
204 1037.238 20/11, 51/28
205 1042.323 42/23
206 1047.407 11/6
207 1052.492
208 1057.576 35/19, 46/25
209 1062.661 24/13
210 1067.745 13/7, 50/27
211 1072.83
212 1077.914
213 1082.999 28/15
214 1088.083 15/8
215 1093.168 32/17
216 1098.252
217 1103.337 17/9, 36/19
218 1108.421
219 1113.506 19/10, 40/21
220 1118.59 44/23
221 1123.675 21/11
222 1128.759 23/12, 48/25
223 1133.844 25/13, 27/14, 52/27
224 1138.928
225 1144.013 33/17
226 1149.097
227 1154.182 35/18, 39/20
228 1159.266 45/23
229 1164.351
230 1169.435 49/25, 51/26
231 1174.52
232 1179.604
233 1184.689
234 1189.773
235 1194.858
236 1199.942 2/1

Harmonics

Approximation of harmonics in 5syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.06 -0.36 -0.02 +2.18 -2.38 -1.78 +1.57 +2.22 +1.95 +2.32 -1.28
Relative (%) -1.2 -7.1 -0.4 +43.0 -46.9 -35.0 +30.8 +43.7 +38.3 +45.6 -25.2
Steps
(reduced)
236
(1)
374
(4)
548
(3)
663
(3)
816
(1)
873
(3)
965
(0)
1003
(3)
1068
(3)
1147
(2)
1169
(4)
5syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -2.52 -2.28 +1.70 +0.25 +0.71 -1.91 +1.39 +1.67 -2.12 +0.63 +1.17
Relative (%) -49.5 -44.9 +33.4 +4.8 +14.0 -37.7 +27.3 +32.8 -41.6 +12.5 +23.0
Steps
(reduced)
1229
(4)
1264
(4)
1281
(1)
1311
(1)
1352
(2)
1388
(3)
1400
(0)
1432
(2)
1451
(1)
1461
(1)
1488
(3)
5syfx contd.
Harmonic 83 89 97 101 103 107 109 113 127 131 137
Error Absolute (¢) +2.09 -1.80 +1.72 -2.14 -0.49 -0.35 -1.91 +1.80 -2.12 +0.13 -1.14
Relative (%) +41.2 -35.3 +33.9 -42.0 -9.7 -7.0 -37.5 +35.3 -41.6 +2.5 -22.3
Steps
(reduced)
1505
(0)
1528
(3)
1558
(3)
1571
(1)
1578
(3)
1591
(1)
1597
(2)
1610
(0)
1649
(4)
1660
(0)
1675
(0)
5syfx contd.
Harmonic 139 149 151 157 163 167 173 179 181 191 193
Error Absolute (¢) -0.80 +0.95 -1.80 +1.93 -1.99 +1.80 +1.71 -1.39 -0.29 -1.87 +0.44
Relative (%) -15.8 +18.7 -35.3 +37.9 -39.1 +35.4 +33.6 -27.3 -5.6 -36.7 +8.6
Steps
(reduced)
1680
(0)
1704
(4)
1708
(3)
1722
(2)
1734
(4)
1743
(3)
1755
(0)
1766
(1)
1770
(0)
1788
(3)
1792
(2)
5syfx contd.
Harmonic 197 199 211 223 227 229
Error Absolute (¢) +0.52 -1.72 -1.40 -0.55 -0.83 -0.76
Relative (%) +10.1 -33.8 -27.5 -10.9 -16.2 -14.9
Steps
(reduced)
1799
(4)
1802
(2)
1822
(2)
1841
(1)
1847
(2)
1850
(0)


236edo, 374edt, 548ed5, 138edf for comparison:

Approximation of prime harmonics in 236edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.26 +0.13 +2.36 -2.17 -1.54 +1.82 +2.49 +2.23 -2.46 -0.97
Relative (%) +0.0 -5.1 +2.5 +46.4 -42.6 -30.4 +35.9 +48.9 +43.9 -48.4 -19.0
Steps
(reduced)
236
(0)
374
(138)
548
(76)
663
(191)
816
(108)
873
(165)
965
(21)
1003
(59)
1068
(124)
1146
(202)
1169
(225)
236edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -2.19 -1.94 +2.04 +0.60 +1.07 -1.54 +1.76 +2.05 -1.73 +1.02 +1.56
Relative (%) -43.1 -38.2 +40.2 +11.7 +21.1 -30.4 +34.6 +40.3 -34.0 +20.1 +30.8
Steps
(reduced)
1229
(49)
1264
(84)
1281
(101)
1311
(131)
1352
(172)
1388
(208)
1400
(220)
1432
(16)
1451
(35)
1461
(45)
1488
(72)
Approximation of prime harmonics in 374edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.16 +0.00 +0.51 -2.26 -1.60 -0.94 +2.50 -1.90 -2.11 -1.66 -0.15
Relative (%) +3.2 +0.0 +10.0 -44.5 -31.4 -18.4 +49.1 -37.4 -41.5 -32.7 -3.0
Steps
(reduced)
236
(236)
374
(0)
548
(174)
662
(288)
816
(68)
873
(125)
965
(217)
1002
(254)
1067
(319)
1146
(24)
1169
(47)
374edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -1.34 -1.06 -2.15 +1.51 +2.01 -0.58 -2.35 -2.04 -0.72 +2.04 -2.49
Relative (%) -26.3 -20.9 -42.3 +29.6 +39.6 -11.4 -46.3 -40.1 -14.2 +40.1 -48.9
Steps
(reduced)
1229
(107)
1264
(142)
1280
(158)
1311
(189)
1352
(230)
1388
(266)
1399
(277)
1431
(309)
1451
(329)
1461
(339)
1487
(365)
Approximation of prime harmonics in 548ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.05 -0.35 +0.00 +2.21 -2.35 -1.75 +1.60 +2.25 +1.99 +2.36 -1.24
Relative (%) -1.1 -6.8 +0.0 +43.4 -46.3 -34.4 +31.5 +44.3 +39.1 +46.4 -24.4
Steps
(reduced)
236
(236)
374
(374)
548
(0)
663
(115)
816
(268)
873
(325)
965
(417)
1003
(455)
1068
(520)
1147
(51)
1169
(73)
548ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -2.48 -2.24 +1.74 +0.29 +0.76 -1.87 +1.43 +1.72 -2.07 +0.69 +1.22
Relative (%) -48.7 -44.0 +34.3 +5.7 +14.9 -36.7 +28.2 +33.8 -40.6 +13.5 +24.0
Steps
(reduced)
1229
(133)
1264
(168)
1281
(185)
1311
(215)
1352
(256)
1388
(292)
1400
(304)
1432
(336)
1451
(355)
1461
(365)
1488
(392)
Approximation of prime harmonics in 138edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.44 +0.44 +1.16 -1.48 -0.63 +0.10 -1.44 -0.71 -0.84 -0.30 +1.24
Relative (%) +8.7 +8.7 +22.8 -29.0 -12.3 +2.0 -28.4 -13.9 -16.5 -5.9 +24.3
Steps
(reduced)
236
(98)
374
(98)
548
(134)
662
(110)
816
(126)
873
(45)
964
(136)
1002
(36)
1067
(101)
1146
(42)
1169
(65)
138edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.12 +0.44 -0.63 -2.02 -1.47 +1.07 -0.69 -0.34 +1.00 -1.31 -0.72
Relative (%) +2.5 +8.6 -12.4 -39.7 -28.8 +21.1 -13.5 -6.7 +19.7 -25.7 -14.1
Steps
(reduced)
1229
(125)
1264
(22)
1280
(38)
1310
(68)
1351
(109)
1388
(8)
1399
(19)
1431
(51)
1451
(71)
1460
(80)
1487
(107)

Recommended equalizer subgroups

This article or section contains multiple idiosyncratic terms. Such terms are used by only a few people and are not regularly used within the community.

Give a few of these a try, see which ones vibe with you. They’re all new and unexplored. So go out and explore, curious sooty fox!

All-stops
  • 2.3.5.47.53.73.79.103.106
  • 2.3.5.47.53.73.79.103.106.131.137
  • 2.3.5.47.53.73.79.103.106.131.137.181.193.197
  • 2.3.5.47.53.73.79.103.106.131.137.181.193.197.223.229
Hollow middles
  • 2.3.5.73.79.103.106.131.137.181.193.197.223.229
  • 2.3.5.103.106.131.137.181.193.197.223.229
  • 2.3.5.131.137.181.193.197.223.229
  • 2.3.5.181.193.197.223.229
Triplets & quadruplets
  • 2.3.5.47.53.73.79
  • 2.3.5.73.79.103.106
  • 2.3.5.103.106.131.137
  • 2.3.5.181.193.197
  • 2.3.5.193.197.223.229


The sixth sooty fox scale

← 5ed343/338 6ed343/338 7ed343/338 →
Prime factorization 2 × 3
Step size 4.23707¢ 
Octave 283\6ed343/338 (1199.09¢)
Twelfth 449\6ed343/338 (1902.44¢)
(semiconvergent)
Consistency limit 3
Distinct consistency limit 2
Special properties

6ed343/338 or 6syfx for short.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 4.237
2 8.474
3 12.711
4 16.948
5 21.185
6 25.422
7 29.659 52/51
8 33.897 46/45, 51/50
9 38.134 49/48, 50/49
10 42.371 40/39, 45/44
11 46.608 36/35, 39/38
12 50.845 34/33, 35/34
13 55.082
14 59.319 28/27
15 63.556
16 67.793 27/26
17 72.03 24/23, 51/49
18 76.267 23/22
19 80.504 22/21
20 84.741 21/20
21 88.978 20/19
22 93.216 19/18
23 97.453 18/17
24 101.69 35/33, 52/49
25 105.927
26 110.164 49/46
27 114.401
28 118.638
29 122.875 15/14
30 127.112 14/13
31 131.349 27/25
32 135.586
33 139.823 13/12, 38/35
34 144.06 49/45
35 148.297 12/11, 25/23
36 152.535
37 156.772 23/21
38 161.009
39 165.246 11/10
40 169.483 54/49
41 173.72 21/19
42 177.957
43 182.194 10/9, 51/46
44 186.431 39/35, 49/44
45 190.668 19/17
46 194.905
47 199.142
48 203.379
49 207.616 9/8, 44/39
50 211.854 26/23
51 216.091 17/15
52 220.328
53 224.565 25/22
54 228.802 8/7
55 233.039
56 237.276 39/34
57 241.513 23/20, 38/33
58 245.75
59 249.987 15/13
60 254.224 22/19
61 258.461 51/44
62 262.698
63 266.935 7/6
64 271.172
65 275.41
66 279.647 20/17, 27/23
67 283.884 46/39
68 288.121 13/11, 33/28
69 292.358
70 296.595 45/38
71 300.832 19/16
72 305.069 25/21
73 309.306
74 313.543 6/5
75 317.78
76 322.017
77 326.254
78 330.491 23/19, 40/33
79 334.729
80 338.966 17/14, 28/23
81 343.203
82 347.44 11/9
83 351.677 49/40
84 355.914 16/13, 27/22
85 360.151
86 364.388 21/17
87 368.625 26/21
88 372.862
89 377.099
90 381.336
91 385.573
92 389.81 5/4
93 394.048 44/35, 49/39
94 398.285 34/27
95 402.522 24/19
96 406.759 19/15
97 410.996
98 415.233 14/11, 33/26
99 419.47
100 423.707 23/18, 51/40
101 427.944
102 432.181 50/39
103 436.418 9/7
104 440.655 49/38
105 444.892 22/17
106 449.129 35/27
107 453.367 13/10
108 457.604
109 461.841 30/23
110 466.078 17/13
111 470.315 46/35
112 474.552 21/16
113 478.789 25/19, 33/25
114 483.026
115 487.263 45/34
116 491.5
117 495.737 4/3
118 499.974
119 504.211
120 508.448
121 512.685 51/38
122 516.923 35/26
123 521.16 23/17, 27/20
124 525.397
125 529.634 19/14, 34/25
126 533.871 49/36
127 538.108 15/11
128 542.345 26/19
129 546.582
130 550.819
131 555.056 11/8
132 559.293
133 563.53 18/13
134 567.767 32/23
135 572.004 25/18, 46/33
136 576.242 39/28
137 580.479 7/5
138 584.716
139 588.953 38/27
140 593.19 24/17
141 597.427
142 601.664
143 605.901 17/12
144 610.138 27/19
145 614.375
146 618.612 10/7
147 622.849
148 627.086 33/23, 36/25
149 631.323 23/16, 49/34
150 635.561 13/9
151 639.798
152 644.035
153 648.272
154 652.509 51/35
155 656.746 19/13, 35/24
156 660.983 22/15
157 665.22
158 669.457 25/17, 28/19
159 673.694
160 677.931 34/23, 40/27
161 682.168 49/33, 52/35
162 686.405
163 690.642
164 694.88
165 699.117
166 703.354 3/2
167 707.591
168 711.828
169 716.065
170 720.302 50/33
171 724.539
172 728.776 35/23
173 733.013 26/17
174 737.25 23/15
175 741.487 49/32
176 745.724 20/13
177 749.961 54/35
178 754.198 17/11
179 758.436
180 762.673 14/9
181 766.91 39/25
182 771.147
183 775.384 36/23
184 779.621
185 783.858 11/7, 52/33
186 788.095
187 792.332 30/19
188 796.569 19/12
189 800.806 27/17
190 805.043 35/22
191 809.28
192 813.517
193 817.755
194 821.992
195 826.229
196 830.466 21/13
197 834.703 34/21
198 838.94
199 843.177 13/8, 44/27
200 847.414 49/30
201 851.651 18/11
202 855.888
203 860.125 23/14, 28/17
204 864.362
205 868.599 33/20, 38/23
206 872.836
207 877.074
208 881.311
209 885.548 5/3
210 889.785
211 894.022 42/25
212 898.259 32/19
213 902.496
214 906.733
215 910.97 22/13
216 915.207 39/23
217 919.444 17/10, 46/27
218 923.681
219 927.918
220 932.155 12/7
221 936.393
222 940.63
223 944.867 19/11
224 949.104 26/15
225 953.341 45/26
226 957.578 33/19, 40/23
227 961.815
228 966.052
229 970.289 7/4
230 974.526 44/25
231 978.763
232 983 30/17
233 987.237 23/13
234 991.474 39/22
235 995.711
236 999.949
237 1004.186
238 1008.423 34/19
239 1012.66
240 1016.897 9/5
241 1021.134
242 1025.371 38/21
243 1029.608 49/27
244 1033.845 20/11
245 1038.082
246 1042.319 42/23, 51/28
247 1046.556
248 1050.793 11/6
249 1055.03
250 1059.268 24/13, 35/19
251 1063.505
252 1067.742 50/27
253 1071.979 13/7
254 1076.216
255 1080.453
256 1084.69
257 1088.927
258 1093.164
259 1097.401 49/26
260 1101.638 17/9
261 1105.875 36/19
262 1110.112 19/10
263 1114.349 40/21
264 1118.587 21/11
265 1122.824 44/23
266 1127.061 23/12
267 1131.298 52/27
268 1135.535 25/13
269 1139.772 27/14
270 1144.009
271 1148.246 33/17
272 1152.483 35/18
273 1156.72 39/20
274 1160.957 49/25
275 1165.194 45/23
276 1169.431 51/26
277 1173.668
278 1177.906
279 1182.143
280 1186.38
281 1190.617
282 1194.854
283 1199.091 2/1

Harmonics

Approximation of harmonics in 6syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.91 +0.49 +1.68 -0.36 +1.01 -0.08 +1.57 -0.32 -0.59 +0.63 -0.43
Relative (%) -21.5 +11.5 +39.5 -8.5 +23.8 -1.9 +37.0 -7.6 -14.0 +14.8 -10.2
Steps
(reduced)
283
(1)
449
(5)
658
(4)
795
(3)
980
(2)
1048
(4)
1158
(0)
1203
(3)
1281
(3)
1376
(2)
1403
(5)
6syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79 83
Error Absolute (¢) -1.67 -1.43 +0.85 -0.60 -0.98 -0.22 +1.39 -0.03 +1.27 -0.21 -1.37 +2.09
Relative (%) -39.5 -33.8 +20.1 -14.2 -23.2 -5.2 +32.7 -0.7 +30.0 -5.0 -32.4 +49.4
Steps
(reduced)
1475
(5)
1517
(5)
1537
(1)
1573
(1)
1622
(2)
1666
(4)
1680
(0)
1718
(2)
1742
(2)
1753
(1)
1785
(3)
1806
(0)


283edo, 449edt, 658ed5, 166edf for comparison:

Approximation of prime harmonics in 283edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +1.93 -0.45 -2.04 -0.08 -0.95 +1.05 -0.69 -0.71 +0.81 -0.16
Relative (%) +0.0 +45.6 -10.6 -48.1 -1.9 -22.4 +24.8 -16.3 -16.8 +19.1 -3.8
Steps
(reduced)
283
(0)
449
(166)
657
(91)
794
(228)
979
(130)
1047
(198)
1157
(25)
1202
(70)
1280
(148)
1375
(243)
1402
(270)
283edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79 83
Error Absolute (¢) -1.17 -0.79 +1.56 +0.22 -0.01 +0.90 -1.69 +1.26 -1.60 +1.19 +0.13 -0.58
Relative (%) -27.5 -18.7 +36.7 +5.1 -0.1 +21.2 -39.9 +29.7 -37.8 +28.0 +3.0 -13.6
Steps
(reduced)
1474
(59)
1516
(101)
1536
(121)
1572
(157)
1621
(206)
1665
(250)
1678
(263)
1717
(19)
1740
(42)
1752
(54)
1784
(86)
1804
(106)
Approximation of prime harmonics in 449edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -1.22 +0.00 +0.96 -1.22 -0.06 -1.22 +0.31 -1.63 -1.98 -0.87 -1.96
Relative (%) -28.7 +0.0 +22.7 -28.8 -1.4 -28.8 +7.3 -38.5 -46.8 -20.5 -46.2
Steps
(reduced)
283
(283)
449
(0)
658
(209)
795
(346)
980
(82)
1048
(150)
1158
(260)
1203
(305)
1281
(383)
1376
(29)
1403
(56)
449edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79 83
Error Absolute (¢) +0.96 +1.16 -0.82 +1.93 +1.49 -2.03 -0.44 -1.89 -0.62 -2.12 +0.92 +0.13
Relative (%) +22.7 +27.3 -19.3 +45.5 +35.2 -47.9 -10.4 -44.7 -14.6 -50.0 +21.8 +3.1
Steps
(reduced)
1476
(129)
1518
(171)
1537
(190)
1574
(227)
1623
(276)
1666
(319)
1680
(333)
1718
(371)
1742
(395)
1753
(406)
1786
(439)
1806
(10)
Approximation of prime harmonics in 658ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -1.63 -0.66 +0.00 +1.85 -1.49 +1.48 -1.38 +0.85 +0.38 +1.36 +0.23
Relative (%) -38.5 -15.5 +0.0 +43.7 -35.2 +35.0 -32.6 +20.0 +9.0 +32.0 +5.4
Steps
(reduced)
283
(283)
449
(449)
658
(0)
796
(138)
980
(322)
1049
(391)
1158
(500)
1204
(546)
1282
(624)
1377
(61)
1404
(88)
658ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -1.19 -1.06 +1.17 -0.37 -0.88 -0.23 +1.34 -0.17 +1.07 -0.44 -1.69
Relative (%) -28.2 -25.1 +27.7 -8.8 -20.8 -5.4 +31.7 -4.0 +25.3 -10.5 -39.8
Steps
(reduced)
1476
(160)
1518
(202)
1538
(222)
1574
(258)
1623
(307)
1667
(351)
1681
(365)
1719
(403)
1743
(427)
1754
(438)
1786
(470)
Approximation of prime harmonics in 166edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.94 +0.94 +0.36 +1.40 +1.21 -0.45 +0.27 -2.00 +1.31 +1.72 +0.44
Relative (%) +22.1 +22.1 +8.6 +33.2 +28.6 -10.7 +6.4 -47.2 +30.9 +40.8 +10.4
Steps
(reduced)
284
(118)
450
(118)
659
(161)
797
(133)
982
(152)
1050
(54)
1160
(164)
1205
(43)
1284
(122)
1379
(51)
1406
(78)
166edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79 83
Error Absolute (¢) -1.41 -1.52 +0.59 -1.16 -1.96 -1.56 -0.08 -1.81 -0.71 +1.94 +0.51 -0.43
Relative (%) -33.3 -36.0 +14.1 -27.5 -46.3 -37.0 -1.8 -42.8 -16.8 +45.9 +12.0 -10.2
Steps
(reduced)
1478
(150)
1520
(26)
1540
(46)
1576
(82)
1625
(131)
1669
(9)
1683
(23)
1721
(61)
1745
(85)
1757
(97)
1789
(129)
1809
(149)


The seventh sooty fox scale

← 6ed343/338 7ed343/338 8ed343/338 →
Prime factorization 7 (prime)
Step size 3.63177¢ 
Octave 330\7ed343/338 (1198.48¢)
Twelfth 524\7ed343/338 (1903.05¢)
Consistency limit 2
Distinct consistency limit 2

7ed343/338 or 7syfx for short.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 3.632
2 7.264
3 10.895
4 14.527
5 18.159
6 21.791
7 25.422
8 29.054
9 32.686
10 36.318 46/45
11 39.949
12 43.581
13 47.213 36/35, 39/38
14 50.845 34/33, 35/34
15 54.477
16 58.108
17 61.74
18 65.372
19 69.004 26/25, 51/49
20 72.635 25/24
21 76.267
22 79.899 23/22
23 83.531
24 87.163
25 90.794
26 94.426 19/18
27 98.058 18/17
28 101.69 35/33
29 105.321
30 108.953
31 112.585 49/46
32 116.217
33 119.848 15/14
34 123.48
35 127.112 14/13
36 130.744
37 134.376
38 138.007
39 141.639 13/12, 25/23, 38/35
40 145.271
41 148.903 12/11, 49/45
42 152.534
43 156.166 23/21
44 159.798
45 163.43
46 167.061 11/10, 54/49
47 170.693
48 174.325 21/19
49 177.957
50 181.589 51/46
51 185.22
52 188.852 39/35
53 192.484 19/17
54 196.116 28/25
55 199.747
56 203.379
57 207.011
58 210.643 26/23
59 214.275
60 217.906 17/15
61 221.538 25/22
62 225.17
63 228.802
64 232.433
65 236.065
66 239.697 39/34
67 243.329 38/33
68 246.96 15/13, 52/45
69 250.592 22/19
70 254.224
71 257.856
72 261.488
73 265.119
74 268.751 7/6
75 272.383
76 276.015
77 279.646 27/23
78 283.278 46/39
79 286.91 33/28
80 290.542 13/11
81 294.173 45/38
82 297.805
83 301.437
84 305.069
85 308.701
86 312.332
87 315.964 6/5
88 319.596
89 323.228
90 326.859
91 330.491 23/19
92 334.123
93 337.755 17/14, 28/23
94 341.386
95 345.018 11/9
96 348.65
97 352.282
98 355.914
99 359.545
100 363.177
101 366.809 21/17, 26/21
102 370.441
103 374.072
104 377.704
105 381.336
106 384.968
107 388.6 5/4
108 392.231
109 395.863 34/27, 49/39
110 399.495
111 403.127
112 406.758
113 410.39 19/15
114 414.022 33/26
115 417.654 14/11
116 421.285
117 424.917 23/18
118 428.549
119 432.181
120 435.813 9/7
121 439.444
122 443.076 22/17, 49/38
123 446.708 35/27
124 450.34
125 453.971
126 457.603 13/10, 30/23
127 461.235
128 464.867 17/13
129 468.498
130 472.13 25/19, 46/35
131 475.762
132 479.394
133 483.026 33/25
134 486.657 45/34
135 490.289
136 493.921
137 497.553
138 501.184
139 504.816
140 508.448
141 512.08 51/38
142 515.712 35/26
143 519.343
144 522.975 23/17
145 526.607
146 530.239 19/14
147 533.87 34/25
148 537.502 15/11
149 541.134 26/19
150 544.766
151 548.397
152 552.029
153 555.661
154 559.293
155 562.925 18/13
156 566.556 25/18
157 570.188
158 573.82 46/33
159 577.452
160 581.083
161 584.715 7/5
162 588.347 38/27
163 591.979
164 595.61
165 599.242
166 602.874
167 606.506 17/12
168 610.138 27/19
169 613.769
170 617.401
171 621.033
172 624.665 33/23
173 628.296
174 631.928 36/25
175 635.56 13/9, 49/34
176 639.192
177 642.824
178 646.455
179 650.087
180 653.719 51/35
181 657.351 19/13
182 660.982 22/15
183 664.614 25/17
184 668.246 28/19
185 671.878
186 675.509 34/23
187 679.141
188 682.773 52/35
189 686.405 49/33
190 690.037
191 693.668
192 697.3
193 700.932
194 704.564 3/2
195 708.195
196 711.827
197 715.459
198 719.091
199 722.722
200 726.354 35/23, 38/25
201 729.986
202 733.618 26/17
203 737.25
204 740.881 23/15
205 744.513
206 748.145
207 751.777 54/35
208 755.408 17/11
209 759.04
210 762.672 14/9
211 766.304
212 769.936
213 773.567 36/23
214 777.199
215 780.831 11/7
216 784.463 52/33
217 788.094 30/19
218 791.726
219 795.358
220 798.99 19/12
221 802.621 27/17
222 806.253 35/22
223 809.885
224 813.517
225 817.149
226 820.78
227 824.412 45/28
228 828.044
229 831.676 21/13, 34/21
230 835.307
231 838.939
232 842.571
233 846.203
234 849.834
235 853.466 18/11
236 857.098
237 860.73 23/14, 28/17
238 864.362
239 867.993 38/23
240 871.625
241 875.257
242 878.889
243 882.52 5/3
244 886.152
245 889.784
246 893.416
247 897.047
248 900.679 42/25
249 904.311
250 907.943 22/13
251 911.575
252 915.206 39/23
253 918.838 46/27
254 922.47
255 926.102
256 929.733 12/7
257 933.365
258 936.997
259 940.629
260 944.261
261 947.892 19/11
262 951.524 26/15, 45/26
263 955.156 33/19
264 958.788
265 962.419
266 966.051
267 969.683
268 973.315
269 976.946 44/25
270 980.578 30/17
271 984.21
272 987.842 23/13
273 991.474
274 995.105
275 998.737
276 1002.369 25/14
277 1006.001 34/19
278 1009.632
279 1013.264
280 1016.896
281 1020.528 9/5
282 1024.159 38/21
283 1027.791
284 1031.423 20/11, 49/27
285 1035.055
286 1038.687
287 1042.318 42/23
288 1045.95
289 1049.582 11/6
290 1053.214
291 1056.845 35/19, 46/25
292 1060.477
293 1064.109
294 1067.741
295 1071.373 13/7
296 1075.004
297 1078.636 28/15
298 1082.268
299 1085.9
300 1089.531
301 1093.163
302 1096.795
303 1100.427 17/9, 49/26
304 1104.058 36/19
305 1107.69
306 1111.322
307 1114.954
308 1118.586
309 1122.217 21/11
310 1125.849 48/25
311 1129.481 23/12, 25/13
312 1133.113
313 1136.744
314 1140.376 27/14
315 1144.008
316 1147.64 33/17
317 1151.271 35/18
318 1154.903
319 1158.535
320 1162.167 45/23
321 1165.799
322 1169.43 51/26
323 1173.062
324 1176.694
325 1180.326
326 1183.957
327 1187.589
328 1191.221
329 1194.853
330 1198.485 2/1

Harmonics

Approximation of harmonics in 7syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -1.52 +1.09 -0.75 +1.46 -0.20 +1.13 +1.57 +1.49 +1.22 -0.58 +0.17
Relative (%) -41.7 +30.1 -20.5 +40.1 -5.6 +31.1 +43.1 +41.1 +33.7 -16.1 +4.8
Steps
(reduced)
330
(1)
524
(6)
767
(4)
928
(4)
1143
(2)
1223
(5)
1351
(0)
1404
(4)
1495
(4)
1605
(2)
1637
(6)
7syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -1.07 -0.83 +0.25 -1.21 +1.44 +0.99 +1.39 -1.24 +0.06 -0.82 +0.44
Relative (%) -29.4 -22.8 +6.8 -33.2 +39.6 +27.3 +38.2 -34.1 +1.7 -22.5 +12.2
Steps
(reduced)
1721
(6)
1770
(6)
1793
(1)
1835
(1)
1893
(3)
1944
(5)
1960
(0)
2004
(2)
2032
(2)
2045
(1)
2083
(4)


330edo, 524edt, 767ed5, 187edf for comparison:

Approximation of prime harmonics in 330edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.14 -0.86 -1.55 +1.41 -0.53 +0.50 +0.67 +0.82 -0.49 +0.42
Relative (%) +0.0 -3.8 -23.6 -42.7 +38.8 -14.5 +13.7 +18.4 +22.5 -13.4 +11.5
Steps
(reduced)
330
(0)
523
(193)
766
(106)
926
(266)
1142
(152)
1221
(231)
1349
(29)
1402
(82)
1493
(173)
1603
(283)
1635
(315)
320edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.43 +0.03 +1.21 -0.05 -0.78 -0.99 -0.52 +0.69 -1.51 +1.30 -0.90
Relative (%) -12.0 +0.8 +33.3 -1.4 -21.4 -27.2 -14.3 +19.1 -41.7 +35.8 -24.8
Steps
(reduced)
1719
(69)
1768
(118)
1791
(141)
1833
(183)
1890
(240)
1941
(291)
1957
(307)
2002
(22)
2029
(49)
2043
(63)
2080
(100)
Approximation of prime harmonics in 524edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +1.43 +0.00 +1.28 -0.48 +1.04 -1.42 -1.25 -1.44 +1.73 -0.30 +0.39
Relative (%) +39.3 +0.0 +35.4 -13.2 +28.7 -39.2 -34.5 -39.5 +47.8 -8.3 +10.7
Steps
(reduced)
331
(331)
524
(0)
768
(244)
928
(404)
1144
(96)
1223
(175)
1351
(303)
1404
(356)
1496
(448)
1606
(34)
1638
(66)
524edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -1.03 -0.89 +0.14 -1.40 +1.12 +0.57 +0.93 -1.79 -0.55 -1.45 -0.27
Relative (%) -28.3 -24.5 +3.8 -38.7 +30.8 +15.6 +25.6 -49.3 -15.1 -40.1 -7.5
Steps
(reduced)
1722
(150)
1771
(199)
1794
(222)
1836
(264)
1894
(322)
1945
(373)
1961
(389)
2005
(433)
2033
(461)
2046
(474)
2084
(512)
Approximation of prime harmonics in 767ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -1.19 +1.60 +0.00 -1.27 +0.91 -1.32 -0.75 -0.77 -0.96 +0.97 +1.76
Relative (%) -32.9 +44.1 +0.0 -35.1 +25.0 -36.2 -20.7 -21.3 -26.3 +26.8 +48.6
Steps
(reduced)
330
(330)
524
(524)
767
(0)
927
(160)
1143
(376)
1222
(455)
1350
(583)
1403
(636)
1494
(727)
1605
(71)
1637
(103)
767ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.61 +0.89 -1.64 +0.58 -0.36 -0.75 -0.34 +0.71 -1.60 +1.17 -1.17
Relative (%) +16.7 +24.6 -45.2 +15.9 -9.8 -20.7 -9.4 +19.5 -43.9 +32.2 -32.1
Steps
(reduced)
1721
(187)
1770
(236)
1792
(258)
1835
(301)
1892
(358)
1943
(409)
1959
(425)
2004
(470)
2031
(497)
2045
(511)
2082
(548)
Approximation of prime harmonics in 187edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +1.21 +1.21 -1.02 -1.69 +0.35 +0.18 +1.22 +0.11 -0.32 +0.03 +0.94
Relative (%) +32.1 +32.1 -27.1 -45.1 +9.4 +4.9 +32.6 +2.8 -8.6 +0.7 +24.9
Steps
(reduced)
320
(133)
507
(133)
742
(181)
897
(149)
1106
(171)
1183
(61)
1307
(185)
1358
(49)
1446
(137)
1553
(57)
1584
(88)
187edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -1.32 +1.15 +1.27 +1.19 -0.35 +1.67 +0.26 -0.75 +0.22 +0.92 -0.69
Relative (%) -35.1 +30.5 +33.9 +31.7 -9.4 +44.5 +7.0 -19.9 +5.7 +24.5 -18.4
Steps
(reduced)
1665
(169)
1713
(30)
1735
(52)
1776
(93)
1831
(148)
1881
(11)
1896
(26)
1939
(69)
1966
(96)
1979
(109)
2015
(145)


The eighth sooty fox scale

← 7ed343/338 8ed343/338 9ed343/338 →
Prime factorization 23
Step size 3.1778¢ 
Octave 378\8ed343/338 (1201.21¢) (→189\4ed343/338)
Twelfth 599\8ed343/338 (1903.5¢)
Consistency limit 3
Distinct consistency limit 3

8ed343/338 or 8syfx for short.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 3.178
2 6.356
3 9.533
4 12.711
5 15.889
6 19.067
7 22.245
8 25.422
9 28.6
10 31.778 52/51
11 34.956 46/45, 51/50
12 38.134 50/49
13 41.312 45/44
14 44.489 39/38
15 47.667 35/34
16 50.845
17 54.023 34/33
18 57.201
19 60.378 28/27
20 63.556
21 66.734 26/25
22 69.912
23 73.09
24 76.267 23/22
25 79.445 22/21
26 82.623 21/20
27 85.801
28 88.979
29 92.156
30 95.334
31 98.512
32 101.69 18/17, 35/33
33 104.868 52/49
34 108.045 49/46
35 111.223
36 114.401 16/15
37 117.579
38 120.757 15/14
39 123.935
40 127.112
41 130.29 14/13
42 133.468
43 136.646
44 139.824
45 143.001 38/35
46 146.179 25/23
47 149.357
48 152.535
49 155.713 23/21
50 158.89
51 162.068 11/10
52 165.246
53 168.424
54 171.602
55 174.779 21/19
56 177.957
57 181.135 10/9, 51/46
58 184.313 49/44
59 187.491 39/35
60 190.668 19/17
61 193.846
62 197.024 28/25
63 200.202
64 203.38 9/8
65 206.558
66 209.735 44/39
67 212.913 26/23
68 216.091 17/15
69 219.269
70 222.447 25/22
71 225.624
72 228.802
73 231.98
74 235.158 39/34
75 238.336
76 241.513
77 244.691 38/33
78 247.869 52/45
79 251.047
80 254.225 22/19
81 257.402 51/44
82 260.58
83 263.758 7/6
84 266.936
85 270.114
86 273.291
87 276.469
88 279.647
89 282.825 20/17, 33/28
90 286.003 46/39
91 289.181 13/11
92 292.358
93 295.536 32/27, 45/38
94 298.714
95 301.892 25/21
96 305.07
97 308.247
98 311.425
99 314.603
100 317.781 6/5
101 320.959
102 324.136
103 327.314
104 330.492 23/19
105 333.67
106 336.848 17/14
107 340.025
108 343.203 28/23
109 346.381
110 349.559
111 352.737
112 355.915
113 359.092
114 362.27
115 365.448 21/17
116 368.626 26/21
117 371.804
118 374.981
119 378.159
120 381.337
121 384.515 5/4
122 387.693
123 390.87
124 394.048 49/39
125 397.226 34/27, 44/35
126 400.404
127 403.582
128 406.759 19/15
129 409.937
130 413.115 33/26
131 416.293
132 419.471 14/11, 51/40
133 422.648
134 425.826
135 429.004
136 432.182 50/39
137 435.36
138 438.538 49/38
139 441.715
140 444.893 22/17
141 448.071
142 451.249 13/10
143 454.427
144 457.604
145 460.782
146 463.96
147 467.138 17/13
148 470.316
149 473.493 46/35
150 476.671 25/19
151 479.849 33/25
152 483.027
153 486.205 45/34
154 489.382
155 492.56
156 495.738
157 498.916 4/3
158 502.094
159 505.271
160 508.449
161 511.627 51/38
162 514.805 35/26
163 517.983
164 521.161 23/17, 27/20
165 524.338
166 527.516 19/14
167 530.694
168 533.872 34/25
169 537.05
170 540.227
171 543.405 26/19
172 546.583
173 549.761
174 552.939
175 556.116
176 559.294
177 562.472
178 565.65 25/18
179 568.828
180 572.005 39/28
181 575.183 46/33
182 578.361
183 581.539 7/5
184 584.717
185 587.894 45/32
186 591.072
187 594.25
188 597.428
189 600.606 17/12
190 603.784
191 606.961
192 610.139
193 613.317
194 616.495
195 619.673 10/7
196 622.85
197 626.028 33/23
198 629.206
199 632.384
200 635.562
201 638.739
202 641.917
203 645.095
204 648.273
205 651.451
206 654.628 51/35
207 657.806 19/13
208 660.984 22/15
209 664.162
210 667.34 25/17
211 670.517
212 673.695 28/19
213 676.873
214 680.051 40/27
215 683.229 49/33
216 686.407 52/35
217 689.584
218 692.762
219 695.94
220 699.118
221 702.296 3/2
222 705.473
223 708.651
224 711.829
225 715.007
226 718.185
227 721.362 50/33
228 724.54 38/25
229 727.718 35/23
230 730.896
231 734.074 26/17
232 737.251 23/15
233 740.429
234 743.607
235 746.785
236 749.963
237 753.141
238 756.318 17/11
239 759.496
240 762.674 14/9
241 765.852
242 769.03 39/25
243 772.207
244 775.385
245 778.563
246 781.741 11/7
247 784.919
248 788.096 52/33
249 791.274
250 794.452
251 797.63
252 800.808
253 803.985 27/17, 35/22, 51/32
254 807.163
255 810.341
256 813.519
257 816.697 8/5
258 819.874
259 823.052 45/28
260 826.23
261 829.408
262 832.586 21/13
263 835.764 34/21
264 838.941
265 842.119
266 845.297
267 848.475
268 851.653
269 854.83
270 858.008 23/14
271 861.186
272 864.364 28/17, 33/20
273 867.542
274 870.719 38/23
275 873.897
276 877.075
277 880.253
278 883.431 5/3
279 886.608
280 889.786
281 892.964
282 896.142
283 899.32 42/25
284 902.497
285 905.675 27/16
286 908.853
287 912.031 22/13
288 915.209 39/23
289 918.387 17/10
290 921.564
291 924.742
292 927.92
293 931.098
294 934.276
295 937.453
296 940.631
297 943.809
298 946.987 19/11
299 950.165 26/15
300 953.342
301 956.52 33/19
302 959.698
303 962.876
304 966.054 7/4
305 969.231
306 972.409
307 975.587
308 978.765 44/25
309 981.943
310 985.12 30/17
311 988.298 23/13
312 991.476 39/22
313 994.654
314 997.832 16/9
315 1001.01
316 1004.187 25/14
317 1007.365
318 1010.543 34/19
319 1013.721
320 1016.899
321 1020.076 9/5
322 1023.254
323 1026.432 38/21
324 1029.61
325 1032.788
326 1035.965
327 1039.143 51/28
328 1042.321
329 1045.499 42/23
330 1048.677
331 1051.854
332 1055.032 46/25
333 1058.21 35/19
334 1061.388
335 1064.566 50/27
336 1067.744
337 1070.921 13/7
338 1074.099
339 1077.277
340 1080.455 28/15
341 1083.633
342 1086.81 15/8
343 1089.988
344 1093.166
345 1096.344 49/26
346 1099.522 17/9
347 1102.699
348 1105.877
349 1109.055 19/10
350 1112.233
351 1115.411
352 1118.588 40/21
353 1121.766 21/11
354 1124.944 44/23
355 1128.122
356 1131.3
357 1134.477 25/13
358 1137.655
359 1140.833
360 1144.011
361 1147.189 33/17
362 1150.367
363 1153.544 39/20
364 1156.722
365 1159.9
366 1163.078 49/25
367 1166.256
368 1169.433 51/26
369 1172.611
370 1175.789
371 1178.967
372 1182.145
373 1185.322
374 1188.5
375 1191.678
376 1194.856
377 1198.034
378 1201.211 2/1

Harmonics

Approximation of harmonics in 8syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +1.21 +1.55 +0.62 -0.36 -1.11 -1.14 +1.57 -0.32 -0.59 -1.49 +0.63
Relative (%) +38.0 +48.7 +19.4 -11.3 -35.0 -35.9 +49.3 -10.2 -18.7 -47.0 +19.7
Steps
(reduced)
378
(2)
599
(7)
877
(5)
1060
(4)
1306
(2)
1397
(5)
1544
(0)
1604
(4)
1708
(4)
1834
(2)
1871
(7)
8syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.61 -0.37 -0.21 +1.52 +0.08 -1.28 +1.39 +1.03 -0.85 -1.27 -1.37
Relative (%) -19.3 -11.8 -6.5 +47.7 +2.4 -40.2 +43.6 +32.5 -26.6 -40.0 -43.2
Steps
(reduced)
1967
(7)
2023
(7)
2049
(1)
2098
(2)
2163
(3)
2221
(5)
2240
(0)
2291
(3)
2322
(2)
2337
(1)
2380
(4)


378edo, 599edt, 877ed5, 221edf for comparison:

Approximation of prime harmonics in 378edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.37 +0.99 -0.57 +1.06 +0.74 -0.19 +0.90 +0.30 -1.01 +1.00
Relative (%) +0.0 -11.6 +31.1 -18.0 +33.5 +23.4 -6.1 +28.3 +9.4 -31.7 +31.4
Steps
(reduced)
378
(0)
599
(221)
878
(122)
1061
(305)
1308
(174)
1399
(265)
1545
(33)
1606
(94)
1710
(198)
1836
(324)
1873
(361)
378edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.55 -0.49 -0.41 +1.16 -0.49 +1.15 +0.58 +0.06 +1.26 +0.78 +0.54
Relative (%) -17.3 -15.5 -12.8 +36.5 -15.4 +36.1 +18.1 +1.8 +39.6 +24.6 +17.1
Steps
(reduced)
1969
(79)
2025
(135)
2051
(161)
2100
(210)
2165
(275)
2224
(334)
2242
(352)
2293
(25)
2325
(57)
2340
(72)
2383
(115)
Approximation of prime harmonics in 599edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.23 +0.00 +1.53 +0.08 -1.31 -1.57 +0.75 -1.29 +1.35 +0.12 -1.03
Relative (%) +7.3 +0.0 +48.1 +2.5 -41.2 -49.6 +23.8 -40.6 +42.4 +3.8 -32.4
Steps
(reduced)
378
(378)
599
(0)
878
(279)
1061
(462)
1307
(109)
1398
(200)
1545
(347)
1605
(407)
1710
(512)
1836
(39)
1872
(75)
599edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.66 +0.75 +0.85 -0.73 +0.84 -0.66 -1.22 +1.47 -0.49 -0.96 -1.17
Relative (%) +20.7 +23.7 +26.8 -22.9 +26.5 -20.9 -38.5 +46.2 -15.5 -30.1 -36.8
Steps
(reduced)
1969
(172)
2025
(228)
2051
(254)
2099
(302)
2165
(368)
2223
(426)
2241
(444)
2293
(496)
2324
(527)
2339
(542)
2382
(585)
Approximation of prime harmonics in 877ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.94 +1.13 +0.00 -1.10 +1.15 +1.05 +0.48 -1.45 +1.38 +0.40 -0.69
Relative (%) +29.7 +35.4 +0.0 -34.7 +36.1 +33.2 +15.2 -45.6 +43.6 +12.4 -21.7
Steps
(reduced)
378
(378)
599
(599)
877
(0)
1060
(183)
1307
(430)
1398
(521)
1544
(667)
1604
(727)
1709
(832)
1835
(81)
1871
(117)
877ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +1.18 +1.38 +1.53 +0.04 -1.44 +0.34 -0.19 -0.58 +0.70 +0.26 +0.13
Relative (%) +37.2 +43.5 +48.2 +1.3 -45.5 +10.6 -5.9 -18.2 +22.0 +8.3 +4.1
Steps
(reduced)
1968
(214)
2024
(270)
2050
(296)
2098
(344)
2163
(409)
2222
(468)
2240
(486)
2291
(537)
2323
(569)
2338
(584)
2381
(627)
Approximation of prime harmonics in 221edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.63 +0.63 -0.73 +1.19 +0.06 -0.11 -0.80 +0.40 -0.03 -1.13 +0.94
Relative (%) +19.8 +19.8 -22.9 +37.6 +2.0 -3.4 -25.2 +12.5 -1.1 -35.5 +29.5
Steps
(reduced)
378
(157)
599
(157)
877
(214)
1061
(177)
1307
(202)
1398
(72)
1544
(218)
1605
(58)
1709
(162)
1835
(67)
1872
(104)
221edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.45 -0.30 -0.17 +1.48 -0.06 -1.51 +1.13 +0.70 -1.23 +1.50 +1.33
Relative (%) -14.2 -9.4 -5.4 +46.5 -2.0 -47.4 +35.6 +21.9 -38.7 +47.2 +41.9
Steps
(reduced)
1968
(200)
2024
(35)
2050
(61)
2099
(110)
2164
(175)
2222
(12)
2241
(31)
2292
(82)
2323
(113)
2339
(129)
2382
(172)


The ninth sooty fox scale

← 8ed343/338 9ed343/338 10ed343/338 →
Prime factorization 32
Step size 2.82471¢ 
Octave 425\9ed343/338 (1200.5¢)
(semiconvergent)
Twelfth 673\9ed343/338 (1901.03¢)
Consistency limit 2
Distinct consistency limit 2

9ed343/338 or 9syfx for short.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 2.825
2 5.649
3 8.474
4 11.299
5 14.123
6 16.948
7 19.773
8 22.597
9 25.422
10 28.247
11 31.072
12 33.896 51/50
13 36.721 49/48
14 39.546
15 42.37 39/38
16 45.195 40/39
17 48.02 36/35
18 50.844 33/32, 34/33, 35/34
19 53.669
20 56.494
21 59.318
22 62.143
23 64.968
24 67.792
25 70.617 26/25
26 73.442 24/23
27 76.266 23/22
28 79.091
29 81.916 22/21
30 84.741 21/20
31 87.565 20/19
32 90.39
33 93.215
34 96.039 19/18
35 98.864 18/17
36 101.689 35/33, 52/49
37 104.513
38 107.338
39 110.163 49/46
40 112.987
41 115.812
42 118.637
43 121.461
44 124.286
45 127.111
46 129.935 14/13
47 132.76 27/25
48 135.585
49 138.409 13/12
50 141.234
51 144.059 38/35
52 146.884
53 149.708 12/11
54 152.533 35/32
55 155.358
56 158.182 23/21
57 161.007
58 163.832
59 166.656 11/10
60 169.481
61 172.306 21/19
62 175.13
63 177.955
64 180.78
65 183.604 10/9
66 186.429 39/35, 49/44
67 189.254
68 192.078
69 194.903 19/17
70 197.728
71 200.553
72 203.377
73 206.202
74 209.027
75 211.851 26/23
76 214.676
77 217.501 17/15
78 220.325
79 223.15
80 225.975
81 228.799
82 231.624 8/7
83 234.449
84 237.273 39/34
85 240.098
86 242.923 23/20
87 245.747 15/13, 38/33
88 248.572
89 251.397
90 254.222 22/19
91 257.046
92 259.871
93 262.696
94 265.52
95 268.345 7/6
96 271.17
97 273.994
98 276.819
99 279.644
100 282.468 20/17, 33/28
101 285.293
102 288.118 13/11, 46/39
103 290.942
104 293.767
105 296.592 19/16
106 299.416 25/21
107 302.241
108 305.066
109 307.89
110 310.715
111 313.54
112 316.365 6/5
113 319.189
114 322.014
115 324.839
116 327.663
117 330.488 23/19
118 333.313 17/14, 40/33
119 336.137
120 338.962
121 341.787 28/23
122 344.611
123 347.436
124 350.261
125 353.085 49/40
126 355.91
127 358.735
128 361.559 16/13
129 364.384
130 367.209 21/17
131 370.034 26/21
132 372.858
133 375.683
134 378.508
135 381.332
136 384.157 5/4
137 386.982
138 389.806
139 392.631
140 395.456
141 398.28 44/35
142 401.105 34/27
143 403.93 24/19
144 406.754
145 409.579
146 412.404 33/26
147 415.228
148 418.053 14/11, 51/40
149 420.878
150 423.703
151 426.527 23/18
152 429.352 50/39
153 432.177
154 435.001
155 437.826
156 440.651 49/38
157 443.475
158 446.3
159 449.125 22/17
160 451.949 35/27
161 454.774 13/10
162 457.599 30/23
163 460.423
164 463.248 17/13
165 466.073
166 468.897 21/16
167 471.722
168 474.547 46/35
169 477.371
170 480.196
171 483.021 33/25, 45/34
172 485.846
173 488.67
174 491.495
175 494.32
176 497.144
177 499.969 4/3
178 502.794
179 505.618
180 508.443
181 511.268
182 514.092 35/26
183 516.917 27/20
184 519.742
185 522.566
186 525.391 23/17
187 528.216 19/14
188 531.04
189 533.865 34/25
190 536.69
191 539.515
192 542.339 26/19
193 545.164
194 547.989 48/35
195 550.813 11/8
196 553.638
197 556.463
198 559.287
199 562.112 18/13
200 564.937
201 567.761 25/18
202 570.586
203 573.411 32/23
204 576.235 46/33
205 579.06
206 581.885
207 584.709 7/5
208 587.534
209 590.359
210 593.184
211 596.008
212 598.833 24/17
213 601.658 17/12
214 604.482
215 607.307
216 610.132
217 612.956
218 615.781 10/7
219 618.606
220 621.43
221 624.255 33/23
222 627.08 23/16
223 629.904
224 632.729 36/25
225 635.554
226 638.378 13/9
227 641.203
228 644.028
229 646.852
230 649.677 16/11, 51/35
231 652.502 35/24
232 655.327
233 658.151 19/13
234 660.976
235 663.801
236 666.625 25/17
237 669.45
238 672.275 28/19
239 675.099 34/23
240 677.924
241 680.749
242 683.573
243 686.398 49/33, 52/35
244 689.223
245 692.047
246 694.872
247 697.697
248 700.521 3/2
249 703.346
250 706.171
251 708.996
252 711.82
253 714.645
254 717.47 50/33
255 720.294
256 723.119
257 725.944 35/23
258 728.768
259 731.593 32/21
260 734.418
261 737.242 26/17, 49/32
262 740.067
263 742.892
264 745.716 20/13
265 748.541 54/35
266 751.366 17/11
267 754.19
268 757.015
269 759.84
270 762.665
271 765.489
272 768.314
273 771.139 39/25
274 773.963 36/23
275 776.788
276 779.613
277 782.437 11/7
278 785.262
279 788.087 30/19, 52/33
280 790.911
281 793.736
282 796.561 19/12
283 799.385 27/17
284 802.21 35/22
285 805.035
286 807.859
287 810.684
288 813.509
289 816.334 8/5
290 819.158
291 821.983
292 824.808
293 827.632
294 830.457 21/13
295 833.282 34/21
296 836.106
297 838.931 13/8
298 841.756
299 844.58
300 847.405
301 850.23 18/11
302 853.054
303 855.879
304 858.704 23/14
305 861.528
306 864.353
307 867.178 33/20
308 870.002 38/23
309 872.827
310 875.652
311 878.477
312 881.301
313 884.126 5/3
314 886.951
315 889.775
316 892.6
317 895.425
318 898.249
319 901.074
320 903.899 32/19
321 906.723
322 909.548
323 912.373 22/13, 39/23
324 915.197
325 918.022 17/10
326 920.847
327 923.671
328 926.496
329 929.321
330 932.146 12/7
331 934.97
332 937.795
333 940.62
334 943.444
335 946.269 19/11
336 949.094
337 951.918
338 954.743 26/15, 33/19
339 957.568 40/23
340 960.392
341 963.217
342 966.042
343 968.866 7/4
344 971.691
345 974.516
346 977.34
347 980.165
348 982.99 30/17
349 985.815
350 988.639 23/13, 39/22
351 991.464
352 994.289
353 997.113
354 999.938
355 1002.763
356 1005.587 34/19
357 1008.412
358 1011.237
359 1014.061
360 1016.886 9/5
361 1019.711
362 1022.535
363 1025.36
364 1028.185 38/21
365 1031.009
366 1033.834 20/11
367 1036.659
368 1039.483
369 1042.308 42/23
370 1045.133
371 1047.958
372 1050.782 11/6
373 1053.607
374 1056.432 35/19
375 1059.256
376 1062.081 24/13
377 1064.906
378 1067.73 50/27
379 1070.555 13/7
380 1073.38
381 1076.204
382 1079.029
383 1081.854
384 1084.678
385 1087.503
386 1090.328
387 1093.152
388 1095.977
389 1098.802 49/26
390 1101.627 17/9
391 1104.451 36/19
392 1107.276
393 1110.101
394 1112.925 19/10
395 1115.75 40/21
396 1118.575 21/11
397 1121.399
398 1124.224 44/23
399 1127.049 23/12
400 1129.873 25/13
401 1132.698
402 1135.523
403 1138.347
404 1141.172
405 1143.997
406 1146.821
407 1149.646 33/17
408 1152.471 35/18
409 1155.296 39/20
410 1158.12
411 1160.945
412 1163.77 51/26
413 1166.594
414 1169.419
415 1172.244
416 1175.068
417 1177.893
418 1180.718
419 1183.542
420 1186.367
421 1189.192
422 1192.016
423 1194.841
424 1197.666
425 1200.49 2/1

Harmonics

Approximation of harmonics in 9syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.50 -0.92 -1.15 +1.05 +1.01 -0.08 -1.26 +1.09 +0.82 +0.63 +0.98
Relative (%) +17.8 -32.7 -40.7 +37.3 +35.6 -2.9 -44.5 +38.6 +29.0 +22.1 +34.7
Steps
(reduced)
425
(2)
673
(7)
986
(5)
1193
(5)
1470
(3)
1572
(6)
1736
(8)
1805
(5)
1922
(5)
2064
(3)
2105
(8)
9syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.26 -0.02 -0.56 +0.81 -0.98 -0.22 +1.39 -0.03 +1.27 +1.20 +0.04
Relative (%) -9.2 -0.7 -19.8 +28.7 -34.8 -7.8 +49.1 -1.0 +45.0 +42.5 +1.4
Steps
(reduced)
2213
(8)
2276
(8)
2305
(1)
2360
(2)
2433
(3)
2499
(6)
2520
(0)
2577
(3)
2613
(3)
2630
(2)
2678
(5)


425edo, 673edt, 986ed5, 249edf for comparison:

Approximation of prime harmonics in 425edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +1.10 +0.51 -0.36 -0.73 +0.88 -0.48 -1.04 +1.37 +1.01 +1.32
Relative (%) +0.0 +39.1 +18.1 -12.6 -25.8 +31.3 -17.2 -36.9 +48.6 +35.8 +46.7
Steps
(reduced)
425
(0)
674
(249)
987
(137)
1193
(343)
1470
(195)
1573
(298)
1737
(37)
1805
(105)
1923
(223)
2065
(365)
2106
(406)
425edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.05 +0.11 -0.46 +0.85 -1.03 -0.35 +1.23 -0.25 +1.01 +0.92 -0.30
Relative (%) -1.8 +4.0 -16.3 +30.0 -36.6 -12.3 +43.7 -8.8 +35.7 +32.5 -10.7
Steps
(reduced)
2214
(89)
2277
(152)
2306
(181)
2361
(236)
2434
(309)
2500
(375)
2521
(396)
2578
(28)
2614
(64)
2631
(81)
2679
(129)
Approximation of prime harmonics in 673edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +1.09 +0.00 +0.21 -0.13 +0.20 -0.75 +1.13 +0.74 +0.63 +0.64 +1.05
Relative (%) +38.4 +0.0 +7.3 -4.7 +7.1 -26.5 +39.9 +26.3 +22.4 +22.5 +37.0
Steps
(reduced)
425
(425)
673
(0)
986
(313)
1192
(519)
1469
(123)
1571
(225)
1736
(390)
1804
(458)
1921
(575)
2063
(44)
2104
(85)
673edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.04 +0.28 -0.22 +1.23 -0.47 +0.39 -0.80 +0.69 -0.79 -0.84 +0.89
Relative (%) -1.6 +9.9 -7.7 +43.4 -16.5 +13.7 -28.4 +24.3 -27.9 -29.7 +31.6
Steps
(reduced)
2212
(193)
2275
(256)
2304
(285)
2359
(340)
2432
(413)
2498
(479)
2518
(499)
2576
(557)
2611
(592)
2628
(609)
2677
(658)
Approximation of prime harmonics in 986ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +1.00 -0.14 +0.00 -0.38 -0.11 -1.08 +0.77 +0.37 +0.23 +0.20 +0.61
Relative (%) +35.3 -5.0 +0.0 -13.5 -3.8 -38.1 +27.1 +13.0 +8.3 +7.3 +21.5
Steps
(reduced)
425
(425)
673
(673)
986
(0)
1192
(206)
1469
(483)
1571
(585)
1736
(750)
1804
(818)
1921
(935)
2063
(91)
2104
(132)
986ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.51 -0.19 -0.70 +0.73 -0.97 -0.13 -1.33 +0.15 -1.33 -1.39 +0.33
Relative (%) -17.9 -6.9 -24.8 +26.0 -34.5 -4.7 -47.0 +5.3 -47.2 -49.1 +11.8
Steps
(reduced)
2212
(240)
2275
(303)
2304
(332)
2359
(387)
2432
(460)
2498
(526)
2518
(546)
2576
(604)
2611
(639)
2628
(656)
2677
(705)
Approximation of prime harmonics in 249edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.94 +0.94 -1.05 -0.01 +1.21 -0.45 +0.27 -0.59 +1.31 +0.31 +0.44
Relative (%) +33.2 +33.2 -37.1 -0.2 +43.0 -16.0 +9.7 -20.8 +46.3 +11.1 +15.6
Steps
(reduced)
426
(177)
675
(177)
988
(241)
1195
(199)
1473
(228)
1575
(81)
1740
(246)
1808
(65)
1926
(183)
2068
(76)
2109
(117)
249edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -1.41 +1.30 +0.59 -1.16 -0.55 -0.15 +1.33 -0.40 +0.70 +0.53 -0.90
Relative (%) -49.9 +46.0 +21.1 -41.2 -19.4 -5.5 +47.3 -14.2 +24.8 +18.8 -32.0
Steps
(reduced)
2217
(225)
2281
(40)
2310
(69)
2364
(123)
2438
(197)
2504
(14)
2525
(35)
2582
(92)
2618
(128)
2635
(145)
2683
(193)


The tenth sooty fox scale

← 9ed343/338 10ed343/338 11ed343/338 →
Prime factorization 2 × 5
Step size 2.54224¢ 
Octave 472\10ed343/338 (1199.94¢) (→236\5ed343/338)
Twelfth 748\10ed343/338 (1901.6¢) (→374\5ed343/338)
Consistency limit 12
Distinct consistency limit 2

10ed343/338 or 10syfx for short.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 2.542
2 5.085
3 7.627
4 10.169
5 12.711
6 15.254
7 17.796
8 20.338
9 22.88
10 25.423
11 27.965
12 30.507
13 33.049 51/50
14 35.592 49/48, 50/49, 52/51
15 38.134 45/44, 46/45
16 40.676
17 43.218 40/39
18 45.761 39/38
19 48.303 36/35
20 50.845 34/33, 35/34
21 53.387 33/32
22 55.93
23 58.472
24 61.014
25 63.556 27/26, 28/27
26 66.099
27 68.641 26/25, 51/49
28 71.183 25/24
29 73.725 24/23
30 76.268 23/22
31 78.81
32 81.352 22/21
33 83.894 21/20
34 86.437
35 88.979 20/19
36 91.521
37 94.063 19/18
38 96.606
39 99.148 18/17
40 101.69 35/33
41 104.232 17/16, 52/49
42 106.775
43 109.317 49/46
44 111.859 16/15
45 114.401
46 116.944
47 119.486 15/14
48 122.028
49 124.57
50 127.113 14/13
51 129.655
52 132.197 27/25
53 134.739
54 137.282
55 139.824 13/12
56 142.366 38/35
57 144.908 25/23
58 147.451 49/45
59 149.993 12/11
60 152.535
61 155.077 35/32
62 157.62 23/21
63 160.162
64 162.704
65 165.246 11/10
66 167.789 54/49
67 170.331
68 172.873 21/19
69 175.415
70 177.958 51/46
71 180.5
72 183.042 10/9
73 185.584 49/44
74 188.127 39/35
75 190.669
76 193.211 19/17
77 195.753 28/25
78 198.296
79 200.838
80 203.38 9/8
81 205.922
82 208.465 44/39
83 211.007
84 213.549 26/23
85 216.091 17/15
86 218.634
87 221.176 25/22
88 223.718
89 226.26
90 228.803
91 231.345 8/7
92 233.887
93 236.429
94 238.972 39/34
95 241.514 23/20
96 244.056 38/33
97 246.598 15/13
98 249.141
99 251.683 52/45
100 254.225 22/19, 51/44
101 256.767
102 259.31
103 261.852
104 264.394
105 266.936 7/6
106 269.479
107 272.021
108 274.563
109 277.105 27/23
110 279.648
111 282.19 20/17
112 284.732 33/28, 46/39
113 287.274
114 289.817 13/11
115 292.359 45/38
116 294.901 32/27
117 297.443 19/16
118 299.986
119 302.528 25/21
120 305.07
121 307.612
122 310.155
123 312.697
124 315.239 6/5
125 317.781
126 320.324
127 322.866
128 325.408
129 327.95
130 330.493 23/19
131 333.035 40/33
132 335.577 17/14
133 338.119
134 340.662 28/23
135 343.204 39/32
136 345.746
137 348.288 11/9
138 350.831 49/40
139 353.373 27/22
140 355.915
141 358.457 16/13
142 361
143 363.542
144 366.084 21/17
145 368.626
146 371.169 26/21
147 373.711
148 376.253
149 378.795
150 381.338
151 383.88
152 386.422 5/4
153 388.964
154 391.507
155 394.049 49/39
156 396.591 44/35
157 399.133 34/27
158 401.676
159 404.218 24/19
160 406.76
161 409.302 19/15
162 411.845 33/26
163 414.387
164 416.929 14/11
165 419.471 51/40
166 422.014
167 424.556 23/18
168 427.098 32/25
169 429.64 50/39
170 432.183
171 434.725 9/7
172 437.267
173 439.809 49/38
174 442.352
175 444.894
176 447.436 22/17
177 449.978 35/27
178 452.521
179 455.063 13/10
180 457.605
181 460.147 30/23
182 462.69 17/13
183 465.232
184 467.774
185 470.316 21/16
186 472.859 46/35
187 475.401 25/19
188 477.943
189 480.485 33/25
190 483.028
191 485.57 45/34
192 488.112
193 490.654
194 493.197
195 495.739
196 498.281 4/3
197 500.823
198 503.366
199 505.908
200 508.45 51/38
201 510.992
202 513.535 35/26
203 516.077
204 518.619 27/20
205 521.161
206 523.704 23/17
207 526.246
208 528.788 19/14
209 531.33 34/25
210 533.873 49/36
211 536.415 15/11
212 538.957
213 541.499
214 544.042 26/19
215 546.584 48/35
216 549.126
217 551.668 11/8
218 554.211
219 556.753
220 559.295
221 561.837 18/13
222 564.38
223 566.922
224 569.464 25/18
225 572.006 32/23
226 574.549 39/28, 46/33
227 577.091
228 579.633
229 582.175 7/5
230 584.718
231 587.26
232 589.802 45/32
233 592.344 38/27
234 594.887
235 597.429 24/17
236 599.971
237 602.513 17/12
238 605.056
239 607.598 27/19
240 610.14
241 612.682
242 615.225
243 617.767 10/7
244 620.309
245 622.851
246 625.394 33/23
247 627.936 23/16
248 630.478 36/25
249 633.02 49/34
250 635.563
251 638.105 13/9
252 640.647
253 643.189
254 645.732
255 648.274 16/11
256 650.816 51/35
257 653.358 35/24
258 655.901 19/13
259 658.443
260 660.985
261 663.527 22/15
262 666.07
263 668.612 25/17
264 671.154 28/19
265 673.696
266 676.239 34/23
267 678.781
268 681.323 40/27
269 683.865 49/33
270 686.408 52/35
271 688.95
272 691.492
273 694.034
274 696.577
275 699.119
276 701.661 3/2
277 704.203
278 706.746
279 709.288
280 711.83
281 714.372
282 716.915
283 719.457 50/33
284 721.999
285 724.541 38/25
286 727.084 35/23
287 729.626 32/21
288 732.168
289 734.71
290 737.253 26/17, 49/32
291 739.795 23/15
292 742.337
293 744.879 20/13
294 747.422
295 749.964 54/35
296 752.506 17/11
297 755.048
298 757.591
299 760.133
300 762.675
301 765.217 14/9
302 767.76
303 770.302 39/25
304 772.844 25/16
305 775.386 36/23
306 777.929
307 780.471
308 783.013 11/7
309 785.555
310 788.098 52/33
311 790.64 30/19
312 793.182
313 795.724 19/12
314 798.267
315 800.809 27/17
316 803.351 35/22
317 805.893 51/32
318 808.436
319 810.978
320 813.52 8/5
321 816.062
322 818.605
323 821.147 45/28
324 823.689
325 826.231
326 828.774 21/13
327 831.316
328 833.858 34/21
329 836.4
330 838.943
331 841.485 13/8
332 844.027
333 846.569 44/27
334 849.112 49/30
335 851.654 18/11
336 854.196
337 856.738
338 859.281 23/14
339 861.823
340 864.365 28/17
341 866.907 33/20
342 869.45 38/23
343 871.992
344 874.534
345 877.076
346 879.619
347 882.161
348 884.703 5/3
349 887.245
350 889.788
351 892.33
352 894.872
353 897.414 42/25
354 899.957
355 902.499 32/19
356 905.041 27/16
357 907.583
358 910.126 22/13
359 912.668
360 915.21 39/23
361 917.752 17/10
362 920.295
363 922.837 46/27
364 925.379
365 927.921
366 930.464
367 933.006 12/7
368 935.548
369 938.09
370 940.633
371 943.175
372 945.717 19/11
373 948.259 45/26
374 950.802
375 953.344 26/15
376 955.886 33/19
377 958.428 40/23
378 960.971
379 963.513
380 966.055
381 968.597 7/4
382 971.14
383 973.682
384 976.224
385 978.766 44/25
386 981.309
387 983.851 30/17
388 986.393 23/13
389 988.935
390 991.478 39/22
391 994.02
392 996.562 16/9
393 999.104
394 1001.647
395 1004.189 25/14
396 1006.731 34/19
397 1009.273
398 1011.816
399 1014.358
400 1016.9 9/5
401 1019.442
402 1021.985
403 1024.527
404 1027.069 38/21
405 1029.611
406 1032.154 49/27
407 1034.696 20/11
408 1037.238 51/28
409 1039.781
410 1042.323 42/23
411 1044.865
412 1047.407
413 1049.95 11/6
414 1052.492
415 1055.034 46/25
416 1057.576 35/19
417 1060.119 24/13
418 1062.661
419 1065.203
420 1067.745 50/27
421 1070.288
422 1072.83 13/7
423 1075.372
424 1077.914
425 1080.457 28/15
426 1082.999
427 1085.541
428 1088.083 15/8
429 1090.626
430 1093.168
431 1095.71 32/17, 49/26
432 1098.252
433 1100.795 17/9
434 1103.337
435 1105.879 36/19
436 1108.421
437 1110.964 19/10
438 1113.506
439 1116.048 40/21
440 1118.59 21/11
441 1121.133
442 1123.675 44/23
443 1126.217 23/12
444 1128.759 48/25
445 1131.302 25/13
446 1133.844
447 1136.386 27/14, 52/27
448 1138.928
449 1141.471
450 1144.013
451 1146.555
452 1149.097 33/17
453 1151.64 35/18
454 1154.182
455 1156.724 39/20
456 1159.266
457 1161.809 45/23
458 1164.351 49/25, 51/26
459 1166.893
460 1169.435
461 1171.978
462 1174.52
463 1177.062
464 1179.604
465 1182.147
466 1184.689
467 1187.231
468 1189.773
469 1192.316
470 1194.858
471 1197.4
472 1199.942 2/1

Harmonics

Approximation of harmonics in 10syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.06 -0.36 -0.02 -0.36 +0.16 +0.76 -0.98 -0.32 -0.59 -0.22 +1.26
Relative (%) -2.5 -14.2 -0.8 -14.1 +6.3 +30.1 -38.4 -12.7 -23.3 -8.7 +49.7
Steps
(reduced)
472
(2)
748
(8)
1096
(6)
1325
(5)
1633
(3)
1747
(7)
1929
(9)
2005
(5)
2135
(5)
2293
(3)
2339
(9)
10syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.02 +0.26 -0.84 +0.25 +0.71 +0.63 -1.16 -0.88 +0.42 +0.63 +1.17
Relative (%) +0.9 +10.3 -33.1 +9.7 +28.0 +24.7 -45.5 -34.4 +16.7 +25.0 +45.9
Steps
(reduced)
2459
(9)
2529
(9)
2561
(1)
2622
(2)
2704
(4)
2777
(7)
2799
(9)
2863
(3)
2903
(3)
2922
(2)
2976
(6)


472edo, 748edt, 1096ed5, 276edf for comparison:

Approximation of prime harmonics in 472edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.26 +0.13 -0.18 +0.38 +1.00 -0.72 -0.06 -0.31 +0.08 -0.97
Relative (%) +0.0 -10.2 +5.0 -7.2 +14.8 +39.2 -28.2 -2.2 -12.1 +3.3 -38.1
Steps
(reduced)
472
(0)
748
(276)
1096
(152)
1325
(381)
1633
(217)
1747
(331)
1929
(41)
2005
(117)
2135
(247)
2293
(405)
2338
(450)
472edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.35 +0.60 -0.50 +0.60 +1.07 +1.00 -0.78 -0.49 +0.81 +1.02 -0.98
Relative (%) +13.8 +23.5 -19.7 +23.4 +42.2 +39.2 -30.8 -19.4 +31.9 +40.3 -38.5
Steps
(reduced)
2459
(99)
2529
(169)
2561
(201)
2622
(262)
2704
(344)
2777
(417)
2799
(439)
2863
(31)
2903
(71)
2922
(90)
2975
(143)
Approximation of prime harmonics in 748edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.16 +0.00 +0.51 +0.28 +0.94 -0.94 -0.05 +0.64 +0.43 +0.88 -0.15
Relative (%) +6.5 +0.0 +20.0 +11.0 +37.2 -36.9 -1.9 +25.2 +17.1 +34.7 -6.1
Steps
(reduced)
472
(472)
748
(0)
1096
(348)
1325
(577)
1633
(137)
1746
(250)
1929
(433)
2005
(509)
2135
(639)
2293
(49)
2338
(94)
748edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +1.21 -1.06 +0.39 -1.04 -0.53 -0.58 +0.19 +0.50 -0.72 -0.50 +0.06
Relative (%) +47.4 -41.9 +15.3 -40.7 -20.9 -22.8 +7.5 +19.7 -28.4 -19.8 +2.2
Steps
(reduced)
2459
(215)
2528
(284)
2561
(317)
2621
(377)
2703
(459)
2776
(532)
2799
(555)
2863
(619)
2902
(658)
2921
(677)
2975
(731)
Approximation of prime harmonics in 1096ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.05 -0.35 +0.00 -0.34 +0.19 +0.80 -0.94 -0.29 -0.56 -0.18 -1.24
Relative (%) -2.2 -13.6 +0.0 -13.2 +7.4 +31.3 -37.0 -11.3 -21.9 -7.2 -48.7
Steps
(reduced)
472
(472)
748
(748)
1096
(0)
1325
(229)
1633
(537)
1747
(651)
1929
(833)
2005
(909)
2135
(1039)
2293
(101)
2338
(146)
1096ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.07 +0.31 -0.80 +0.29 +0.76 +0.68 -1.11 -0.83 +0.48 +0.69 +1.22
Relative (%) +2.6 +12.0 -31.4 +11.5 +29.8 +26.6 -43.6 -32.5 +18.7 +27.0 +48.0
Steps
(reduced)
2459
(267)
2529
(337)
2561
(369)
2622
(430)
2704
(512)
2777
(585)
2799
(607)
2863
(671)
2903
(711)
2922
(730)
2976
(784)
Approximation of prime harmonics in 276edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.44 +0.44 +1.16 +1.07 -0.63 +0.10 +1.10 -0.71 -0.84 -0.30 +1.24
Relative (%) +17.5 +17.5 +45.6 +41.9 -24.7 +4.0 +43.2 -27.9 -33.0 -11.7 +48.6
Steps
(reduced)
472
(196)
748
(196)
1096
(268)
1325
(221)
1632
(252)
1746
(90)
1929
(273)
2004
(72)
2134
(202)
2292
(84)
2338
(130)
276edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.12 +0.44 -0.63 +0.52 +1.08 +1.07 -0.69 -0.34 +1.00 +1.23 -0.72
Relative (%) +4.9 +17.2 -24.8 +20.5 +42.3 +42.1 -27.1 -13.3 +39.5 +48.5 -28.2
Steps
(reduced)
2458
(250)
2528
(44)
2560
(76)
2621
(137)
2703
(219)
2776
(16)
2798
(38)
2862
(102)
2902
(142)
2921
(161)
2974
(214)


The eleventh sooty fox scale

← 10ed343/338 11ed343/338 12ed343/338 →
Prime factorization 11 (prime)
Step size 2.31113¢ 
Octave 519\11ed343/338 (1199.47¢)
Twelfth 823\11ed343/338 (1902.06¢)
(convergent)
Consistency limit 4
Distinct consistency limit 2

11ed343/338 or 11syfx for short.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 2.311
2 4.622
3 6.933
4 9.244
5 11.556
6 13.867
7 16.178
8 18.489
9 20.8
10 23.111
11 25.422
12 27.733
13 30.044
14 32.355 51/50, 52/51
15 34.667 50/49
16 36.978 46/45
17 39.289
18 41.6
19 43.911 39/38, 40/39
20 46.222
21 48.533
22 50.844 34/33
23 53.155
24 55.467 33/32
25 57.778
26 60.089
27 62.4 28/27
28 64.711
29 67.022 27/26, 51/49
30 69.333
31 71.644 24/23
32 73.955
33 76.266
34 78.578 22/21, 23/22
35 80.889
36 83.2
37 85.511 21/20
38 87.822 20/19
39 90.133
40 92.444
41 94.755 19/18
42 97.066
43 99.377 18/17
44 101.689
45 104 35/33
46 106.311 17/16
47 108.622
48 110.933 49/46
49 113.244
50 115.555
51 117.866
52 120.177 15/14
53 122.489
54 124.8
55 127.111
56 129.422 14/13
57 131.733 27/25
58 134.044
59 136.355
60 138.666 13/12
61 140.977 38/35
62 143.288
63 145.6 25/23
64 147.911 49/45
65 150.222 12/11
66 152.533
67 154.844
68 157.155 23/21
69 159.466
70 161.777
71 164.088 11/10
72 166.4 54/49
73 168.711
74 171.022
75 173.333 21/19
76 175.644
77 177.955 51/46
78 180.266
79 182.577 10/9
80 184.888
81 187.199
82 189.511
83 191.822
84 194.133 19/17, 28/25
85 196.444
86 198.755
87 201.066
88 203.377
89 205.688 9/8
90 207.999 44/39
91 210.311 26/23
92 212.622
93 214.933 17/15
94 217.244
95 219.555
96 221.866
97 224.177
98 226.488
99 228.799
100 231.11
101 233.422
102 235.733
103 238.044 39/34
104 240.355
105 242.666 23/20
106 244.977 38/33
107 247.288
108 249.599 15/13
109 251.91 22/19
110 254.221
111 256.533 51/44
112 258.844
113 261.155
114 263.466
115 265.777
116 268.088 7/6
117 270.399
118 272.71
119 275.021
120 277.333 27/23
121 279.644
122 281.955 20/17
123 284.266 33/28
124 286.577 46/39
125 288.888 13/11
126 291.199
127 293.51 45/38
128 295.821
129 298.132
130 300.444
131 302.755 25/21
132 305.066
133 307.377
134 309.688
135 311.999
136 314.31 6/5
137 316.621
138 318.932
139 321.244
140 323.555
141 325.866
142 328.177
143 330.488 23/19
144 332.799 40/33
145 335.11 17/14
146 337.421
147 339.732 28/23
148 342.043
149 344.355 39/32
150 346.666 11/9
151 348.977
152 351.288
153 353.599 49/40
154 355.91 27/22
155 358.221 16/13
156 360.532
157 362.843
158 365.155
159 367.466 21/17, 26/21
160 369.777
161 372.088
162 374.399
163 376.71
164 379.021
165 381.332
166 383.643
167 385.954
168 388.266 5/4
169 390.577
170 392.888
171 395.199
172 397.51 34/27
173 399.821
174 402.132 24/19
175 404.443
176 406.754
177 409.065 19/15
178 411.377
179 413.688 33/26
180 415.999
181 418.31 14/11
182 420.621 51/40
183 422.932
184 425.243 23/18
185 427.554
186 429.865
187 432.177 50/39
188 434.488 9/7
189 436.799
190 439.11
191 441.421 49/38
192 443.732
193 446.043 22/17
194 448.354
195 450.665 35/27
196 452.976 13/10
197 455.288
198 457.599
199 459.91 30/23
200 462.221
201 464.532 17/13
202 466.843
203 469.154
204 471.465 46/35
205 473.776
206 476.088 25/19
207 478.399 33/25
208 480.71
209 483.021
210 485.332
211 487.643
212 489.954
213 492.265
214 494.576
215 496.887 4/3
216 499.199
217 501.51
218 503.821
219 506.132
220 508.443 51/38
221 510.754
222 513.065
223 515.376
224 517.687
225 519.999 27/20
226 522.31
227 524.621 23/17
228 526.932
229 529.243 19/14
230 531.554
231 533.865
232 536.176
233 538.487 15/11
234 540.798 26/19
235 543.11
236 545.421
237 547.732
238 550.043
239 552.354 11/8
240 554.665
241 556.976
242 559.287
243 561.598
244 563.909 18/13
245 566.221
246 568.532
247 570.843 25/18
248 573.154 39/28
249 575.465 46/33
250 577.776
251 580.087
252 582.398 7/5
253 584.709
254 587.021
255 589.332
256 591.643 38/27
257 593.954
258 596.265 24/17
259 598.576
260 600.887
261 603.198 17/12
262 605.509
263 607.82 27/19
264 610.132
265 612.443
266 614.754
267 617.065 10/7
268 619.376
269 621.687
270 623.998 33/23
271 626.309
272 628.62
273 630.932
274 633.243
275 635.554 13/9
276 637.865
277 640.176
278 642.487
279 644.798
280 647.109 16/11
281 649.42
282 651.731
283 654.043
284 656.354
285 658.665 19/13
286 660.976 22/15
287 663.287
288 665.598
289 667.909
290 670.22 28/19
291 672.531
292 674.843 34/23
293 677.154
294 679.465 40/27
295 681.776
296 684.087
297 686.398 49/33
298 688.709
299 691.02
300 693.331
301 695.642
302 697.954
303 700.265
304 702.576 3/2
305 704.887
306 707.198
307 709.509
308 711.82
309 714.131
310 716.442
311 718.753
312 721.065 50/33
313 723.376 38/25
314 725.687
315 727.998 35/23
316 730.309
317 732.62
318 734.931 26/17
319 737.242
320 739.553 23/15
321 741.865
322 744.176
323 746.487 20/13
324 748.798 54/35
325 751.109
326 753.42 17/11
327 755.731
328 758.042
329 760.353
330 762.664
331 764.976 14/9
332 767.287
333 769.598
334 771.909
335 774.22 36/23
336 776.531
337 778.842
338 781.153 11/7
339 783.464
340 785.776 52/33
341 788.087
342 790.398 30/19
343 792.709
344 795.02
345 797.331 19/12
346 799.642
347 801.953 27/17
348 804.264
349 806.575
350 808.887 51/32
351 811.198
352 813.509
353 815.82
354 818.131
355 820.442
356 822.753 45/28
357 825.064
358 827.375
359 829.687
360 831.998 21/13, 34/21
361 834.309
362 836.62
363 838.931
364 841.242 13/8
365 843.553 44/27
366 845.864
367 848.175
368 850.486 49/30
369 852.798 18/11
370 855.109
371 857.42
372 859.731 23/14
373 862.042
374 864.353 28/17
375 866.664 33/20
376 868.975 38/23
377 871.286
378 873.598
379 875.909
380 878.22
381 880.531
382 882.842
383 885.153 5/3
384 887.464
385 889.775
386 892.086
387 894.397
388 896.709 42/25
389 899.02
390 901.331
391 903.642
392 905.953
393 908.264
394 910.575 22/13
395 912.886 39/23
396 915.197
397 917.508 17/10
398 919.82
399 922.131 46/27
400 924.442
401 926.753
402 929.064
403 931.375 12/7
404 933.686
405 935.997
406 938.308
407 940.62
408 942.931
409 945.242
410 947.553 19/11
411 949.864
412 952.175
413 954.486 33/19
414 956.797 40/23
415 959.108
416 961.419
417 963.731
418 966.042
419 968.353
420 970.664 7/4
421 972.975
422 975.286
423 977.597
424 979.908
425 982.219
426 984.531 30/17
427 986.842
428 989.153 23/13
429 991.464 39/22
430 993.775
431 996.086
432 998.397
433 1000.708
434 1003.019
435 1005.33 25/14, 34/19
436 1007.642
437 1009.953
438 1012.264
439 1014.575
440 1016.886 9/5
441 1019.197
442 1021.508
443 1023.819
444 1026.13 38/21
445 1028.442
446 1030.753
447 1033.064 49/27
448 1035.375 20/11
449 1037.686 51/28
450 1039.997
451 1042.308 42/23
452 1044.619
453 1046.93
454 1049.241 11/6
455 1051.553
456 1053.864 46/25
457 1056.175
458 1058.486 35/19
459 1060.797 24/13
460 1063.108
461 1065.419
462 1067.73 50/27
463 1070.041 13/7
464 1072.352
465 1074.664
466 1076.975
467 1079.286 28/15
468 1081.597
469 1083.908
470 1086.219
471 1088.53
472 1090.841
473 1093.152 32/17
474 1095.464
475 1097.775
476 1100.086 17/9
477 1102.397
478 1104.708 36/19
479 1107.019
480 1109.33
481 1111.641 19/10
482 1113.952 40/21
483 1116.263
484 1118.575
485 1120.886 21/11, 44/23
486 1123.197
487 1125.508
488 1127.819 23/12
489 1130.13
490 1132.441 52/27
491 1134.752
492 1137.063 27/14
493 1139.375
494 1141.686
495 1143.997
496 1146.308
497 1148.619 33/17
498 1150.93
499 1153.241 35/18
500 1155.552 39/20
501 1157.863
502 1160.174
503 1162.486 45/23
504 1164.797 49/25
505 1167.108 51/26
506 1169.419
507 1171.73
508 1174.041
509 1176.352
510 1178.663
511 1180.974
512 1183.286
513 1185.597
514 1187.908
515 1190.219
516 1192.53
517 1194.841
518 1197.152
519 1199.463 2/1

Harmonics

Approximation of harmonics in 11syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.53 +0.10 +0.91 +0.80 -0.53 -0.85 -0.74 +0.83 +0.56 -0.92 -0.82
Relative (%) -22.7 +4.4 +39.2 +34.5 -23.1 -36.9 -32.2 +36.0 +24.3 -39.6 -35.4
Steps
(reduced)
519
(2)
823
(9)
1206
(7)
1458
(6)
1796
(3)
1921
(7)
2122
(10)
2206
(6)
2349
(6)
2522
(3)
2572
(9)
11syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.25 +0.49 -1.07 -0.22 -0.21 -0.99 -0.93 +0.74 -0.27 +0.17 -0.22
Relative (%) +11.0 +21.3 -46.4 -9.4 -9.2 -42.8 -40.0 +32.1 -11.6 +7.5 -9.5
Steps
(reduced)
2705
(10)
2782
(10)
2817
(1)
2884
(2)
2974
(4)
3054
(7)
3079
(10)
3150
(4)
3193
(3)
3214
(2)
3273
(6)
11syfx contd.
Harmonic 83 89 97 101 103 107 109 113 127 131 137
Error Absolute (¢) -0.22 -0.87 +0.34 -0.29 +0.43 -0.82 -0.52 -0.51 +0.66 +0.13 -1.14
Relative (%) -9.4 -37.7 +14.6 -12.5 +18.7 -35.3 -22.6 -22.3 +28.5 +5.5 -49.1
Steps
(reduced)
3310
(10)
3362
(7)
3427
(6)
3457
(3)
3472
(7)
3500
(2)
3514
(5)
3541
(10)
3629
(10)
3652
(0)
3685
(0)


519edo, 823edt, 1206ed5, 304edf, for comparison:

Approximation of prime harmonics in 519edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.94 -0.19 -0.04 -1.03 +1.09 -0.91 +0.75 +0.63 -0.68 -0.53
Relative (%) +0.0 +40.4 -8.1 -1.7 -44.5 +47.2 -39.3 +32.6 +27.1 -29.2 -22.8
Steps
(reduced)
519
(0)
823
(304)
1205
(167)
1457
(419)
1795
(238)
1921
(364)
2121
(45)
2205
(129)
2348
(272)
2521
(445)
2571
(495)
519edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.68 +1.00 -0.54 +0.39 +0.48 -0.21 -0.12 -0.69 +0.65 +1.11 +0.78
Relative (%) +29.4 +43.1 -23.1 +16.8 +20.9 -9.2 -5.3 -30.0 +28.1 +48.1 +33.8
Steps
(reduced)
2704
(109)
2781
(186)
2816
(221)
2883
(288)
2973
(378)
3053
(458)
3078
(483)
3148
(34)
3192
(78)
3213
(99)
3272
(158)
Approximation of prime harmonics in 823edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.59 +0.00 +0.76 +0.62 -0.76 -1.09 -1.01 +0.56 +0.27 +1.08 -1.14
Relative (%) -25.5 +0.0 +32.7 +26.6 -32.8 -47.3 -43.6 +24.2 +11.7 +46.8 -49.2
Steps
(reduced)
519
(519)
823
(0)
1206
(383)
1458
(635)
1796
(150)
1921
(275)
2122
(476)
2206
(560)
2349
(703)
2523
(54)
2572
(103)
823edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.08 +0.15 +0.89 -0.58 -0.58 +0.94 +1.00 +0.35 -0.67 -0.23 -0.63
Relative (%) -3.6 +6.3 +38.4 -24.9 -25.2 +40.7 +43.4 +15.2 -28.8 -9.9 -27.1
Steps
(reduced)
2705
(236)
2782
(313)
2818
(349)
2884
(415)
2974
(505)
3055
(586)
3080
(611)
3150
(681)
3193
(724)
3214
(745)
3273
(804)
Approximation of prime harmonics in 1206ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.91 -0.52 +0.00 -0.30 +0.43 +0.02 -0.03 -0.82 +1.11 -0.50 -0.44
Relative (%) -39.6 -22.3 +0.0 -12.9 +18.5 +0.7 -1.2 -35.6 +48.0 -21.6 -18.9
Steps
(reduced)
519
(519)
823
(823)
1206
(0)
1458
(252)
1797
(591)
1922
(716)
2123
(917)
2206
(1000)
2350
(1144)
2523
(111)
2573
(161)
1206ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.53 +0.71 -0.88 -0.07 -0.14 -0.97 -0.93 +0.69 -0.35 +0.07 -0.37
Relative (%) +23.1 +30.9 -38.0 -3.1 -5.9 -42.1 -40.1 +29.8 -15.4 +3.0 -15.8
Steps
(reduced)
2706
(294)
2783
(371)
2818
(406)
2885
(473)
2975
(563)
3055
(643)
3080
(668)
3151
(739)
3194
(782)
3215
(803)
3274
(862)
Approximation of prime harmonics in 304edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.71 +0.71 +0.72 +0.10 +0.38 -0.20 -0.51 +0.90 +0.33 +0.81 +0.80
Relative (%) +30.9 +30.9 +31.4 +4.2 +16.3 -8.7 -21.9 +38.8 +14.4 +34.9 +34.7
Steps
(reduced)
520
(216)
824
(216)
1207
(295)
1459
(243)
1798
(278)
1923
(99)
2124
(300)
2208
(80)
2351
(223)
2525
(93)
2575
(143)
304edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.71 -0.63 +0.04 +0.76 +0.57 -0.37 -0.35 -1.14 +0.07 +0.46 -0.05
Relative (%) -30.8 -27.4 +1.7 +32.8 +24.9 -15.9 -15.3 -49.5 +2.9 +20.1 -2.1
Steps
(reduced)
2707
(275)
2784
(48)
2820
(84)
2887
(151)
2977
(241)
3057
(17)
3082
(42)
3152
(112)
3196
(156)
3217
(177)
3276
(236)


The twelfth sooty fox scale

← 11ed343/338 12ed343/338 13ed343/338 →
Prime factorization 22 × 3
Step size 2.11853¢ 
Octave 566\12ed343/338 (1199.09¢) (→283\6ed343/338)
Twelfth 898\12ed343/338 (1902.44¢) (→449\6ed343/338)
Consistency limit 2
Distinct consistency limit 2
Special properties

12ed343/338 or 12syfx for short.

Harmonics

Approximation of harmonics in 12syfx
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.910 +0.488 -0.443 -0.358 +1.007 -0.083 -0.552 -0.323 -0.593 +0.626 -0.432
Relative (%) -43.0 +23.0 -20.9 -16.9 +47.5 -3.9 -26.0 -15.2 -28.0 +29.5 -20.4
Steps
(reduced)
566
(2)
898
(10)
1315
(7)
1590
(6)
1960
(4)
2096
(8)
2315
(11)
2406
(6)
2562
(6)
2752
(4)
2806
(10)
12syfx contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.447 +0.685 +0.853 -0.602 -0.984 -0.220 -0.732 -0.028 -0.846 -0.213 +0.744
Relative (%) +21.1 +32.3 +40.2 -28.4 -46.4 -10.4 -34.6 -1.3 -39.9 -10.0 +35.1
Steps
(reduced)
2951
(11)
3035
(11)
3074
(2)
3146
(2)
3244
(4)
3332
(8)
3359
(11)
3436
(4)
3483
(3)
3506
(2)
3571
(7)


566edo, 898edt, 1315ed5, 331edf, for comparison:

Approximation of prime harmonics in 566edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.188 -0.448 +0.079 -0.081 -0.952 +1.052 -0.693 -0.713 +0.811 -0.159
Relative (%) +0.0 -8.9 -21.1 +3.7 -3.8 -44.9 +49.6 -32.7 -33.6 +38.3 -7.5
Steps
(reduced)
566
(0)
897
(331)
1314
(182)
1589
(457)
1958
(260)
2094
(396)
2314
(50)
2404
(140)
2560
(296)
2750
(486)
2804
(540)
566edo contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.953 -0.794 -0.564 +0.218 -0.006 +0.899 +0.430 -0.862 +0.515 -0.934 +0.127
Relative (%) +44.9 -37.4 -26.6 +10.3 -0.3 +42.4 +20.3 -40.6 +24.3 -44.1 +6.0
Steps
(reduced)
2949
(119)
3032
(202)
3071
(241)
3144
(314)
3242
(412)
3330
(500)
3357
(527)
3433
(37)
3481
(85)
3503
(107)
3568
(172)
Approximation of prime harmonics in 898edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.900 +0.000 +0.961 +0.896 -0.058 +0.897 +0.309 +0.489 +0.134 -0.869 +0.162
Relative (%) +42.5 +0.0 +45.4 +42.3 -2.7 +42.4 +14.6 +23.1 +6.3 -41.0 +7.7
Steps
(reduced)
567
(567)
898
(0)
1316
(418)
1591
(693)
1960
(164)
2097
(301)
2316
(520)
2407
(611)
2563
(767)
2752
(58)
2807
(113)
898edt contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.962 -0.963 -0.817 -0.192 -0.627 +0.089 -0.438 +0.225 -0.619 +0.001 +0.923
Relative (%) +45.4 -45.5 -38.6 -9.1 -29.6 +4.2 -20.7 +10.6 -29.2 +0.1 +43.6
Steps
(reduced)
2952
(258)
3035
(341)
3074
(380)
3147
(453)
3245
(551)
3333
(639)
3360
(666)
3437
(743)
3484
(790)
3507
(813)
3572
(878)
Approximation of prime harmonics in 1315ed5
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.720 +0.790 +0.000 +0.177 -0.452 +0.623 +0.228 +0.488 +0.270 -0.567 +0.513
Relative (%) -34.0 +37.3 +0.0 +8.4 -21.3 +29.4 +10.8 +23.0 +12.7 -26.7 +24.2
Steps
(reduced)
566
(566)
898
(898)
1315
(0)
1590
(275)
1959
(644)
2096
(781)
2315
(1000)
2406
(1091)
2562
(1247)
2751
(121)
2806
(176)
1315ed5 contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -0.678 -0.412 -0.231 +0.458 +0.109 +0.902 +0.399 -0.989 +0.327 +0.968 -0.172
Relative (%) -32.0 -19.4 -10.9 +21.6 +5.1 +42.6 +18.8 -46.7 +15.4 +45.7 -8.1
Steps
(reduced)
2950
(320)
3034
(404)
3073
(443)
3146
(516)
3244
(614)
3332
(702)
3359
(729)
3435
(805)
3483
(853)
3506
(876)
3570
(940)
Approximation of prime harmonics in 331edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.322 +0.322 +0.299 +0.982 +1.032 +0.239 +0.247 +0.674 +0.743 +0.255 -0.686
Relative (%) +15.2 +15.2 +14.1 +46.3 +48.7 +11.3 +11.6 +31.8 +35.0 +12.0 -32.3
Steps
(reduced)
566
(235)
897
(235)
1314
(321)
1589
(265)
1958
(303)
2094
(108)
2313
(327)
2404
(87)
2560
(243)
2749
(101)
2803
(155)
331edf contd.
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.509 +0.930 -0.938 -0.115 -0.284 +0.672 +0.218 -1.030 +0.374 +1.058 +0.036
Relative (%) +24.0 +43.9 -44.2 -5.4 -13.4 +31.7 +10.3 -48.6 +17.6 +49.9 +1.7
Steps
(reduced)
2948
(300)
3032
(53)
3070
(91)
3143
(164)
3241
(262)
3329
(19)
3356
(46)
3432
(122)
3480
(170)
3503
(193)
3567
(257)